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A bstract

The interaction between the Earth’s m agnetic � eld and the solarwind plasm a re-

sults in a naturalplasm a con� nem ent system which stores energy. D issipation of

this energy through Joule heating in the ionosphere can be studied via the A uro-

ralElectrojet (A E) index. The apparent broken power law form ofthe frequency

spectrum ofthisindex has m otivated investigation ofwhether itcan be described

as fractalcoloured noise. O ne frequently-applied test forself-a� nity isto dem on-

strate linearscaling ofthe logarithm ofthe structure function ofa tim e serieswith

the logarithm ofthe dilation factor �. W e point out that,while this is conclusive

when applied to signalsthat are self-a� ne over m any decades in �,such asBrow-

nian m otion,the slope deviates from exact linearity and the conclusions becom e

am biguouswhen thetestisused overshorterrangesof�.W edem onstratethatnon

self-a� ne tim e series m ade up ofrandom pulses can show near-linearscaling over

a � nite dynam ic range such thatthey could be m isinterpreted asbeing self-a� ne.

In particularwe show thatpulseswith functionalform ssuch asthose identi� ed by

W eim erwithin the A L index,from which A E ispartly derived,willexhibitnearly

linear scaling over ranges sim ilarto those previously shown for A E and A L. The

value ofthe slope,related to the H urstexponent for a self-a� ne fractal,seem s to

be a m ore robustdiscrim inatorforfractality,ifother inform ation isavailable.

1 IN T R O D U C T IO N

The characterisation of globalenergy transport in the coupled solar wind-

m agnetosphere-ionosphere system is a fundam entalproblem in space plasm a

physics1. Solar wind energy is transferred to,stored by,and ultim ately re-

leased from them agnetosphereby a rangeofm echanism s,in which substorm s

play a key role.M ostinvestigationsofthe substorm problem havefocused on

single substorm sorsm allgroupsofsim ilarevents,analogousto the study of

individualearthquakesin seism ology.

aCurrently at: D A M TP,Centre for M athem aticalSciences,W ilberforce R oad,Cam bridge,

CB3 0W A
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A com plem entary approach isto analyse inputsto and outputsfrom the

system in an attem ptto constrain the range ofpossible physicsoccurring in

them agnetospheric\black box"(c.f.analogousapproachesin clim atology and

seism ology2).Reviewsofthe signi�cantprogressm ade so farin applying the

m ethodsoflow dim ensionalchaosto the m agnetosphere are given by K lim as

etal3 and Sharm a4;whilem orerecentinvestigationsinto whetherornotthe

\black box" can be treated asa self-organised critical(SO C)system 5 are re-

viewed by W atkinsetal6,Chapm an and W atkins7 and Consoliniand Chang8.

O nem echanism fordissipation ofm agnetosphericenergyisthrough Jouleheat-

ing in theionosphere’sauroralelectrojets.Thisprocesscan bestudied via the

auroralelectrojet(AE )index,which isam eansofestim atingtheelectrojetcur-

rent.TheJouleenergy dissipated dependsupon both thisand theionospheric

conductivity.AE isavailableat1-m inuteresolution.Tsurutanietal.9 showed

thisto have a \broken powerlaw" frequency spectrum . The high frequencies

approxim ately follow f�2 while the lowerfrequenciesaref�1 with a break at

about1=5 h�1 . Powerlaw frequency spectra are com m on in nature and can

have severalcauses5 such asK olm ogorov turbulence orthe bifurcation route

to chaos. They are thus in them selves not su�cientto com pletely constrain

sim ple m odels. A parallele�ort to studies ofthe power spectrum has been

the search forlow dim ensionality,initially through the G rassberger-Procaccia

(G P)algorithm 3;4.However,asnoted byO sborneand Provenzale10,alow and

fractionalG P dim ension isnotuniquely a signatureoflow dim ensionalchaos.

Itisalso com patiblewith self-a�necoloured noise 10 orSO C 11.In view ofthe

factthatAE isknown a priorito be the outputofa com plex system ,Takalo

and Tim onen,in an im portantseriesofpapers12�16 ,investigated whetherthe

dynam icsofm agnetospheric and auroralindiceswere betterencapsulated by

stochastic \coloured noise" ratherthan by chaos. O ne testapplied to AE 14

wasforselfa�nity -a property ofboth coloured noise and chaos. A partic-

ularly im portant technique for identifying self-a�nity in the work ofTakalo

and Tim onen12�16 wasthe use ofthe second orderstructure function S2 (al-

though other m ethods have also been applied to this problem 17�19 ). In this

paper,by constructingasim pleexam ple,weillustratethatS2 alonecannotre-

liably distinguish exponentialautocorrelation from intrinsicself-a�nity in the

shorttim escale partofthe AE signal,which hasbeen linked to the substorm

\unloading" tim escale16.By considering how S2 isrelated to otherm easures

ofself-a�nity we addressthe question ofwhatadditionalknowledge m ay be

required to m akeS2 m oreuseful.
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Figure 1: Power spectrum ofm odelBrownian m otion (H = 0:5).

2 SELF-A FFIN IT Y (H = 0:5) IN B R O W N IA N M O T IO N

There are two kinds offractal: self-sim ilar and self-a�ne 20. They are dis-

tinguished by whether the rescaling necessary to produce the originalobject

is isotropic (self-sim ilar)or anisotropic (self-a�ne). In the case ofa random

fractalsuch asatim eseriesX (t),oneistestingforstatisticalratherthan exact

self-a�nity,so thetestapplied 14 usesthesecond orderstructurefunction14;20

S2(�),de�ned by

S2(�)= < (X (t+ ��t)� X (t)) 2
> (1)

where< :::> denotesan averageovertim e t.Fora selfa�ne curveX (t),

S2(�)� �
2H
S2(1) (2)

where H is the Hurst exponent (0 < H < 1 for a self-a�ne fractal) and

S2(1)= < (X (t+ �t)� X (t))2 > 20. Thisresultsin lineardependence (with

slope H )oflog [S(�)=S(1)]1=2 on the logarithm ofthe dilation factor�. W e

notethatnotonly isitnotnecessary for�to be sm all14 butthatself-a�nity

in fact im plies that the above holds for allscales �. The tim e stationarity
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Figure 2: A utocovariance (top panel) and scaling plot (bottom panel) for m odelBrownian

m otion (H = 0:5).

assum ption im plicit in equation (1)20 allows us to use the de�nition ofthe

norm alised autocorrelation function AC F (��t):

AC F (��t)=
< (X (t+ ��t)X (t)>

< X 2(t)>
(3)

to rewriteS2(�)=S 2(1)in term softhe ACF

S2(�)

S2(1)
=
(1� AC F (��t))

(1� AC F (�t))
: (4)

Alternativelyonem ayform thenum eratorand denom inatorof(3)from the

tim e-averaged,tim e-lagged,productsoftheseries�X = X (t)� �X (seeequation

(1)ofTakaloand Tim onen14).W efollow engineeringconvention21 in referring

to equation (3)with �X replacingX asthenorm alised autocovariance(ACV).

Equation (4) holds with AC V (��t) replacing AC F (��t),so either can be

used as a test for self-a�nity 14. In num ericalwork we willfollow Takalo

and Tim onen 13 in using the ACV.It is calculated for a discrete series (X i;
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i= 1;:::;N with m ean �X )by

AC V (j)=

P N �j

i= 1
(X i� �X )(X i+ j � �X )
P N

i= 1
(X i� �X )2

: (5)

A classicexam pleofaprocesswhich isboth self-a�neand fractalisBrow-

nian m otion.Figure1 showsa representativepowerspectralestim ate(unwin-

dowed periodogram ) for a tim e series of131072 points ofsim ple Brownian

m otion (H = 0:5). The well-known f�2 form is easily seen,lim ited only by

the available dynam ic range ofthe data. The upper panelof�gure 2 shows

the norm alised autocovarianceofthe sam etim e series.

The lowerpanelof�gure 2 showslog[S2(�)=S 2(1)]
1=2 versuslog�,where

we calculate S2 using the norm alised autocovariance from equation (5). The

range in the plot ofS2 was chosen for ease ofcom parison with �gure 4 of

Takalo and Tim onen14 and our�gure6.Thecurvesin both panelsof�gure2

arenearly straightlines.ThevalueH = 1=2 can be read o� from theslopeof

the line in the lowerpanelof�gure 2. Asexpected,the structure function is

an e�ectivedetectorofitsoriginalintended target,a widespectrum self-a�ne

fractalsignal.

3 A P PA R EN T SELF-A FFIN E FR A C TA LIT Y (H = 0:5) IN EX -

P O N EN T IA LLY C O R R ELAT ED R A N D O M P U LSES

The identi�cation problem ofself-a�nity overa �nite range beginsto be ap-

parentwhen one appliesthe structure function m ethod to a seriesofrandom

pulses.W e�rstconsiderthecaseofrandom tim eserieswhich haveexponential

autocorrelation function.M anyphysically interestingrandom processescan be

wellapproxim ated byan exponentialACF22.Asan exactlysolubleexam plewe

note the sim ple \random telegraph"5;22.Thisisa two levelPoisson-switched

processwhich switchesbetween levelF and level� F with constantprobability

1=� perunittim e.Thisprocesshas5;22 an autocorrelation function:

AC F (��t)� e
�2j�� tj=� (6)

which,by the W iener-K hinchine theorem ,indicatesa powerspectrum ofthe

form f�2 for high frequencies (f � 1=�),but at (f0) for low frequencies

(f � 1=�)5. Because e�2j�� tj=� = 1� 2j��tj=� + O(� 2� 2t2) the scaling of

log
p
S2(�)=S 2(1)versus� willnotonly be linear(i.e. apparently self-a�ne)

for��tsm allcom pared with �=2 butwillalso give rise to a Hurstexponent

valueof1=2 ifH isderived from theslopeoftheline(i.e.apparentfractality).

W ithoutknowinga priorithatitisa 2-level,Poisson-switched system ,ap-

plication ofS2 toa tim eseriesthatwasexponentially autocorrelated overtim e

5



could causeoneto infer(erroneously)thattheshortlagbehaviourcorrespond-

ingtotim es��t< �=2wasboth self-a�neandfractal.Thisservestounderline

thepointthatself-a�nityisan intrinsicallywidebandwidth property,and that

application ofa wide-band testoverthe restricted range (��t< �=2)m akes

ithard to distinguish certain typesofrandom nessfrom self-a�nefractality.

4 A P PA R EN T SELF-A FFIN IT Y IN W EIM ER P U LSES.

Therelevanceoftheaboveobservationsto theAE tim eseriesbecom esclearer

when weconsiderthatAE containsrecurring\pulses" associated with m agne-

tospheric substorm s.Both the pulse shape and itsrecurrentpropertiescould

giveriseto theobserved scaling in AE .W e�rstconsiderapparentscaling due

to thepulseitself,and then exam inethebehaviourofa random seriesofsuch

pulses.

4.1 Restricted range self-a� nity from a single W eim er pulse

The pulse shape was studied by W eim er23 in the AL index,one ofthe two

indices from which AE is derived (AE = AU � AL). A random sam ple of

55 substorm s was divided into three classes based upon the peak AL value

attained. Foreach class,the AL tim e serieswere superposed with respectto

the substorm epoch,from which the averagetim e serieswasthen calculated.

The three resultant average substorm pro�les were shown to be well�tted

by the functionalform �pte�pt with both � and p increasing with increasing

peak AL. This functionalform is the solution ofan ordinary second-order

di�erentialequation thatwasargued to describe the evolution ofthe electric

�eld and currentsin the substorm currentwedge.Theionosphericpartofthe

substorm currentwedgeisa westward currentthattheAL index wasdesigned

to m easure.

W enow show thatthisshapecausesapparentscalingin S2 atsm allvalues

of��tin the case ofa single,isolated W eim erpulse.W e take �= 1 without

lossofgenerality.Thenum erator(AC F �)ofequation (3)becom es:

AC F
�(��t)= < pte

�pt
p(t+ ��t)e �p(t+ �� t)

> : (7)

By starting with the identity

< e
�2pt

> =

Z 1

0

e
�2pt

dt; (8)

wem ay evaluateaveragessuch as(7)by di�erentiation with respectto p.W e

�nd

AC F
�(��t)=

1

4p
(1+ p��t)e �p�� t (9)
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and so using the denom inatorof(3)to norm alisethe ACF wehave

AC F (��t)= (1+ p��t)e �p�� t (10)

Expanding the norm alised ACF asa Taylorseriesgives

AC F (��t)= 1�
1

2
p
2
�
2�t2 + O (�3) (11)

which yields,on insertion into the righthand side ofequation (4),a scaling

ofS2(�)=S 2(1) with �2,for ��t sm allcom pared with 1=p (observed to be

� 30 m inutes). This im plies linear behaviour when the logarithm ofeither

S2(�)=S 2(1)orits square rootisplotted againstlog�. Hence the pulse then

appearsselfa�neoverthisrange,though,asexpected foradi�erentiablecurve

we�nd H = 1,i.e.the valueofthe slopedetectsthatthe pulse isnotfractal.

4.2 Restricted range self-a� nity from random W eim er pulse train

Now letusinvestigate the scaling propertiesofa sequence ofsuch pulses,as

m ightoccurin the AE tim e serieswhen m easured,forexam ple,overthe 100

days (144000 points) studied by Takalo and Tim onen 14. As in the random

telegraph we chose a random sequence ofpulses,specialised here to a repre-

sentativeexam pleoftheW eim erpulseshape.Each pulsewasofform �pte�pt

where p = 1=30 m inutes�1 ,� = 1,and the sam pling intervalwas 1 m inute

for131136 points. The inter-pulse intervalswere drawn from an exponential

distribution with e-folding tim e300 m inutes24.Theabovem odelisnotm eant

to provide an exhaustive m odelfor the AE tim e series,but the pulse is a

known 23 com ponentofthe AL (and thusAE )signaland so itscontribution

to the apparentself-a�nity ofAE m ustbe investigated.

Figure 3 showsa spectrum estim ate forthe m odeltim e series.The spec-

trum hasthe characteristicsofthe exponentially autocorrelated random tele-

graph with a breakpointataround 1=p between f0 forf � 1=p and f�2 for

f � 1=p.Thetim eseriesgivesriseto an autocovariancefunction with a steep

(quadratic)slope atsm alllags��t< 30 m in(= 1=p)(see �gure 4)character-

istic ofthe pulse shape. The associated structure function hasslope � 1 for

��tlessthan 10 m inutes,and progressively lessthan 1 as��tincreases,such

thatitappearsnearly linearovertwo decadesin ��t(�gure 5).

Again thisnear-linearity,used alone withoutotherinform ation on a nat-

uralsignalof necessarily restricted dynam ic range, could lead one to infer

self-a�neproperties(orindeed chaoticones)in a signalthatisnotself-a�ne.

Theaddition ofrandom nessto thesingle-pulsebehaviourdescribed in section

4.1 has given rise to a Hurst exponent less than 1,when m easured over the

7



Figure 3: R epresentative exam ple ofa spectrum from a random W eim erpulse train.

whole ofthe range 1 < ��t< 100. W e believe there to be com petition be-

tween the e�ectsofrandom ness(e.g. H = 0:5 in the random telegraph)and

the integervalueofH = 1 associated with individualdi�erentiable pulses.

5 AE R E-EX A M IN ED ,D ISC U SSIO N A N D C O N C LU SIO N S

W enow considerthescaling propertiesofthem easured AE tim eseriesin the

lightofthepreviousexam ples.Thetop panelof�gure6 showstheautocovari-

anceofthe �rst100 daysofAE for1983,and m ay be com pared with the top

panelof�gure4 ofTakalo and Tim onen 14.Again,thesteep (exponential)fall

ofthe ACV resultsin a nearlinearslope forsm all��t,and a slow decrease

in the slope as larger and larger ranges of��t is considered . Im portantly,

however,the slope is,alwaysless than 1 (J.Takalo,Private com m unication,

1999). O verallit resem bles near-linear scaling in the structure function for

m ostofthe �rsttwo decadesof� (bottom panelof�gure 6),and (plotted in

thethem iddlepanelof�gure4ofTakaloand Tim onen14),wascited by Takalo

and Tim onen 14 as a key piece ofevidence for self-a�nity in AE . They also

noted the resem blance ofthe AE autocovariance function to an exponential

and proposed that the autocorrelation tim e ofAE be de�ned as the lag for

8



Figure 4: A utocovariance ofrandom W eim erpulse train

Figure 5:Scaling plotforrandom W eim er pulse train.

tim escaleslongerthan thatoverwhich the autocovarianceceased to be expo-

nential. Inspection of�gures 4,5 and 6 lead us to conclude,however,that,

unliketheidealcaseofBrownian m otion,neitherthecurveofS2 forAE ,nor

thatofthe sim pli�ed random W eim erpulse train are straightoverthe range

��t= 1 to �= 120.W erem ark that,insofarastheACF ofAE isexponential

forsm all��t,therem usteventually bea departurefrom near-linearity in the

structurefunction as��tincreases,unlesstherangeoverwhich the exponen-

tialbehaviourisseen isso sm allthata straightline would be justasgood an

approxim ation asthe exponential.

In addition,both AE and the m odelW eim er pulse train ofsection 4.2

give a fractionalH value when taken over the whole range from 10 to 100.

W ithouta prioriadditionalknowledge,wem ightequally wellhaveconcluded

thatthe random pulse train wasself-a�ne overthe range ��t< 100,butby

construction weknow thisisnotso.

O urm odelwasdeliberately sim pli�ed.In thenaturalAE tim eseries,the

extended tailoftheACV isexpected toreectthesolarwind-drivencom ponent

(also presentin AU and AL),which our sim ulation neglected. As originally

conjectured by Tsurutanietal9 thesolarwind driverisprobably theorigin of

9
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Figure 6:A utocovariance and scaling plotfor100 daysofA E,starting on 1stJanuary 1983

the \1/f" partofthe AU=AL=AE spectrum 25;26.

W em ay sum m ariseour�ndingsasfollows.By construction ofan explicit

counter-exam plewe haveshown thatnear-linearscaling ofS2 overabouttwo

decades is not in itself su�cient to show self-a�nity. W e have also given

analytic and num ericalevidence that non-fractalrandom series can produce

non-integerHurstexponentsoverlim ited dynam ic ranges.W e thusinferthat

self-a�nity in the range0 to 100 m inutesforAE hasnotbeen and could not

be proved by the use ofS2 alone.

O nem ay reasonably pointoutthatseveralotherm ethodshavebeen used

to provide evidence ofself-a�nity in geom agnetic indices;both in the papers

ofTakalo etal.and those ofotherworkers17�19 .O ne m ay thusenquire asto

whatkind ofadditionalknowledge oranalysistechniqueswould be necessary

forconsidering theresultsofthestructurefunction m ethod fruitful? Based on

whatwehavefound,wesuggestthatanswerisatleastthreefold.

1)Be aware thatm any testsfor fractality are actually designed assum ing

a fractalsignal: A test based on the assum ption offractality can disprove

fractality butcannotprove it. The m ethodsform easuring fractaldim ension

that we are aware ofassum e self-a�nity in their design i.e. they typically

exam ine the scaling behaviour ofa signal. O nly ifthey �nd no evidence of

10



scaling atallisthereno am biguity.

2) Use m ore than one test: Severaltests are better than one because

di�erent m ethods are sensitive to di�erent non-fractale�ects. Thus use of

severaltests m eans that a series with non-fractalaspects is less likely to be

m isinterpreted. M ost ofthe m ethods for m easuring fractaldim ension which

have been applied to geom agnetic data are ofone oftwo basic types. The

�rst type ofm ethod basically estim ates the dim ension ofa fractalcurve by

exam ining how the averagevalueofshortlengthsofcurve

S1 = < X (t+ ��t)� X (t)> (12)

scales with the ruler length � (in units ofthe sam pling interval�t). Such

m ethods have been applied by V�or�os17 to m agnetom eterdata,and m ore re-

cently to geom agneticand solarwind quantitiesby Priceand Newm an27,who

used the related,cum ulative"R/S" analysis.

The second typestudiesthe positivede�nite second orderfunction

S2 = < (X (t+ ��t)� X (t))2 > (13)

and returnsthesam einform ation20 astheACF when estim ated on astationary

signal(see section 2). For this reason it is thus also form ally related to the

power spectrum via the W iener-K hinchine theorem . S2, the ACF and the

power spectrum have allbeen extensively investigated for the AE ,D Stand

related indicesby Takalo etal12�16 .Them eaning ofthisfam ily oftechniques

can be understood as studying the behaviour ofthe histogram ofvariance

ofthe signal(or the power spectrum ) with increasing tim e dilation ��t (or

frequency);depending on whether one is dilating in tim e (in the case ofS2
and the ACF)orfrequency (in the case ofthe powerspectrum ). W e caution

that tim e lag in the ACF or in S2 is not trivially 1/(the Fourier frequency)

becauseany frequency in a Fouriertransform hascontributionsfrom m ultiple

ACF lags and vice versa (see Bendat and Piersol21,pages 120-122). In the

case of a sim ple fractal,the dim ension (and Hurst exponent H ) estim ated

from such m ethodsshould theoretically be the sam e asfrom S1,although in

practice the errorsofthe two m ethodsneed notbe the sam e18.Ifthey di�er

substantially,thism ay be a pointerthatthe tim e seriesisnotintrinsically a

wideband fractal,and thatoneofS1 orS2 ism oresensitiveto this.

An exam pleofhow additionaltestsforfractality havesupplied new knowl-

edge isin the continuing study ofthe AE index. Thishasbeen known since

the work ofTsurutanietal9 to have a \1/f" low frequency and \1/f2" high

frequency powerspectraldensity.Acting only on inform ation from the power

spectrum orotherS2-typem ethods,onem ightthusinferthatAE isabi-a�ne

11



quantity12�16 ,i.e. it has two separate scaling regions and a break between

them . In contrast,Consoliniand De M ichelis28 have studied the \burstdis-

tributions"29 ofAE .Thesearethe histogram sofintervalsbetween threshold

crossing tim es (burst and inter-burstlifetim es) and ofareasabove threshold

between crossings(burstsizes).Thelifetim edistributionsarean S1-typem ea-

surem ent30;31 and were found to have (exponentially rolled-o�)scaling with

a single slope overa very wide range,interrupted only by a non-scaling com -

ponentatabout2 hours.The apparently paradoxicalobservation ofbi-a�ne

behaviour in S2 and \contam inated" m ono-a�ne behaviour in S 1 has been

addressed in two di�erentways.O nehasbeen to introducem odelswhich have

the required properties in both S1 and S2,such as forest �re m odels 28 or

coupled m ap lattices26 driven by wideband solar-wind likesignals.Theother,

inform ed by thefact(section 4 and 5 above)thatthehigh frequency f�2 part

ofa powerspectrum need notarise from a fractalaspectofthetim eseries,has

been to postulate25 thatthe AE seriesisin facta hybrid tim e serieswith a

fractalelem entarising from thesolar-wind driven ionosphericcurrentsystem s

and a non-fractalpartarising from energy storageand releasein them agneto-

sphere(substorm s).Thiswassupported25 by theobservation thatthescaling

in AE (and AU=AL)burstlifetim esisthesam easthatseen in thesolarwind

(see also Freem an etal31)while the non-scaling com ponentwasseen only in

the m agnetosphericquantitiessuch asAE 28 and AU and AL 25.

There have been exceptionsto the use ofS2 orS1 type techniquesin the

geom agnetic context.W e are gratefulto an anonym ousreferee forrem inding

us ofthe results ofa m ultifractalanalysis ofthe AE index by Consoliniet

al.32.Theseresultsm ustim ply som econstraintson possiblem odelsdescribing

the variability ofauroralcurrents. However,in the sam e way thatAE when

m easured over 1 year by a m ethod oftype S1 is essentially fractal29,and

required theuseofseveralyears’m easurem entsforthe\bum p"-likefeaturein

the otherwisescaling S2 to becom eapparent
28,itseem sto usthatonem ight

expecta m ultifractalanalysisoflessthan 2 m onthsofAE 32 to givea good �t

to a p-m odelofturbulence becausethe solarwind driverisalso well�tted by

thisparticularturbulencem odel33.W ebelievethata study on a m uch longer

seriesofAE would be required to exclude even ourown toy m odelofrandom

di�erentiable W eim erpulse trains,when superposed on the m ultifractalsolar

wind background.W enotethat,independently,a recentm ultifractalstudy of

geom agneticdata from Thule,Alaska hasexcluded thebia�necoloured noise

m odel34 forthatdataset.

3)Rem em berthatNaturedoesnothavetobepurelyfractalanym orethan it

hasto benon-fractal:M any typesofnaturalsignalhaveboth fractaland non-

fractalcom ponents.In consequence,when usingm ethodstoexam inefractality,

12



oneshould beawarethatitispossibleto �nd som ething between theextrem es

ofwideband fractality and none atall,asdiscussed in point(2)aboveforthe

case ofAE . Another exam ple is to im agine looking out ofone’s tea-room

window ata treethrough a regularly spaced window blind.Thedistinguishing

ofthe fractaltree and the periodic blind is a task that the hum an eye and

brain perform routinely,and which a Fourier transform can also do because

it can resolve the blind spacing as a spatialfrequency. A \random blind"

appearing atPoisson-switched intervalswould bem uch m oreofa problem for

an FFT,and would be analogousto the pulses ofsection 3 and 4. The user

thus needs to determ ine how m uch the presence ofa \contam inating" signal

or signals in the fractaltim e series m ay a�ect their interpretation,at which

point the question m ay becom e as m uch physicalas m athem atical. This is

currently an adm ittedly very di�culttask becauseofthesparsity ofliterature

on such hybrid tim eseries,and isonewhich weplan to exam inein m oredetail

in future papers.
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