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A bstract

T he interaction between the Earth’sm agnetic eld and the solar w ind plasm a re—
sults In a naturalplasm a con nem ent system which stores energy. D issipation of
this energy through Joule heating in the ionosphere can be studied via the A uro—

ralE lectroet AE) index. T he apparent broken power law form of the frequency

spectrum of this index has m otivated investigation of w hether it can be described

as fractal coloured noise. O ne frequently-applied test for selfa nity is to dem on—
strate linear scaling of the logarithm ofthe structure function ofa tin e series w ith

the logarithm of the dilation factor . W e point out that, while this is conclusive

when applied to signals that are selfa ne overm any decades in , such as B row —
nian m otion, the slope deviates from exact linearity and the conclusions becom e

am biguousw hen the test isused over shorter rangesof .W e dem onstrate that non

selfa ne tin e series m ade up of random pulses can show near-linear scaling over

a nite dynam ic range such that they could be m isinterpreted as being selfa ne.
In particular we show that pulses w ith functional form s such as those identi ed by
W eim er w ithin the AL index, from which AE is partly derived, w illexhibit nearly

linear scaling over ranges sim ilar to those previously shown forAE and AL. The

value of the slope, related to the Hurst exponent for a selfa ne fractal, seem s to

be a m ore robust discrim inator for fractality, if other inform ation is available.

1 INTRODUCTION

The characterisation of global energy transport in the coupled solar w ind-
m agnetosphere-ionosphere system is a fundam ental problem In space plasn a
physicsH. Solar w ind energy is transferred to, stored by, and ulim ately re—
leased from the m agnetosphere by a range ofm echanisn s, In which substom s
play a key role. M ost investigations of the substom problem have focused on
single substomm s or sm all groups of sin ilar events, analogous to the study of
Individual earthquakes in seism ology.
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A oom plem entary approach is to analyse Inputs to and outputs from the
system In an attem pt to constrain the range of possble physics occurring in
them aqnetﬁspherjc \black box" (c.f. analogous approaches In clin atology and
seisn ologyH) . Review s of the signi cant progressm ade so far in applying the
m ethods of Iow din ensional chaos to the m agnetosphere are given by K lin as
et ald and Sham all; while m ore recent investigations into whether or not the
\black box" can be t.te%ted as a selforganised critical (SOC) system H are
viewed by W atkinset all, Chapm an and W atkinsll and C onsoliniand C hangtl.
O nem echanisn fordissipation ofm agnetospheric energy is through Joule heat—
Ing in the ionosphere’s auroralelectro gts. T his process can be studied via the
auroralelectro gt A E ) index, which isam eansofestin ating the electro £t cur-
rent. T he Joul energy dissipated depends upon both this and the ionospheric
conductivity. AE isavailable at 1-m inute resolution. T surutaniet alH showed
this to have a \broken power law " frequency spectrum . The high frequencies
approxin ately Hllow £ ? while the lower frequencies are £ ' with a break at
about 1=5h ! . Poger law frequency spectra are comm on in nature and can
have several causesH such as K olm ogorov turbulence or the bifircation route
to chaos. They are thus in them selves not su cient to com pletely constrain
sin ple models. A paralkel e ort to studies of the power soectrum has been
the search for din ensionality, Iniially through the G rass P rocaccia
G P ) algorithm . However, asnoted by O sbome and P mvenzﬁ a low and
fractionalGP dim ension is not uniquely a s:ignatu@ of low dim ensional chaos.
Tt isalso com patible w ith selfa ne coloured noise 1 or SOC K. In view ofthe
fact that AE is known a priori to be the output ofa com plex system , Takalo
and T in onen, in an in portant series of paperst? 1%, mvestigated w hether the
dynam ics of m agnetospheric and auroral Indices were better encapsulated
stochastic \coloured noise" rather than by chaos. O ne test applied to AE
was for self a niy —a property of both coloured noise and chaos. A partic—
ularly im portant technique for identifying selfa nity in the work of Takalo
and T in onen’? 1® was the use of the second order structure fiinction S, @k
though other m ethods have also been applied to this problem 7 1° ). In this
paper, by constructing a sin ple exam ple, we illustrate that S, alone cannot re—
liably distinguish exponential autocorrelation from intrinsic selfa niy in the
short tin escale part oﬁhe AE signal, which hasbeen linked to the substom
\unloading” tim escaleMd. By considering how S, is related to otherm easures
of selfa niy we address the question of what additional know ledge m ay be
required to m ake S; m ore usefiul.
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Figure 1: Power spectrum ofm odelBrownian motion H = 0:35).

2 SELFAFFINITY (H =0:5) IN BROW NIAN MOTION

There are two kinds of fractal: selfsim ilar and selfa ne E . They are dis-
tinguished by whether the rescaling necessary to produce the original ob fct
is isotropic (selfsim ilar) or anisotropic (selfa ne). In the case of a random
fractalsuch as a tin e series X (ﬁ, one is testing for statistical rather than eDaﬁ
selfa nity, so the test applied M uses the second order structure finction

S2 (), de ned by

S ()=< X &+ bt X @©)*> @)

where < :::> denotes an average over tin e t. Fora selfa ne curve X (t),
S2() s @)

where H is the Hurst exponentﬁ < H < 1 for a s=lfa ne fractal) and
S, (1) =< X €+ t) X )% >EBl. This results in linear dependence (w ith
slope H ) of Iog B ( )=S (1)]*? on the logarithm ofthedilation factor . W e
note that not only is it not necessary for to be sn all&d but that selfa nity
In fact m plies that the above holds for all scales . The tin e stationarity

3



Autocovariance
o
o ©
© o
T T
L L

o

©

o
T

I

08 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
A

10

[s,M/s,m1"
5
T
1

10

Figure 2: Autocovariance (top panel) and scaling plot (bottom panel) for m odel B row nian
motion H = 0:5).

assum ption im plicit in equation (1) E allow s us to use the de nition of the
nom alised autocorrelation fuinction ACFEF ( t):

< t+ X © >
ACF ( ©v = (X(<X2(t;>() (3)

to rewrite S, ( )=S, (1) In term softhe ACF

S2() _ @ ACF (1)
S, (1) @1 ACF (1Y)

(4)

A ltematively onem ay form thenum eratorand denom inatorof (3) from the
tin e-averaged, tin e-lagg: roductsoftheseries X = X (t) X equation
(1) ofTakalo and T in onenkd) . W e follow engineering conventionktd in referring
to equation (3) wih X replacingX asthe nom alised autocovariance ACV).
Equation (4) hods wih ACV t) replacing ACF ( t), so either can be
used as a test for selfa nity . In num erical work we will ollow Takalo
and TinonenHd in using the ACV . It is calculated for a discrete serdes K ;5
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i= 1;25N wih mean X ) by
P .
ACY () = ‘iifPoii X)Wy X))
i=1 (X i X )2

A classic exam ple ofa processwhich isboth selfa ne and fractalisB row —
nian m otion. Figure 1 show s a representative pow er spectralestim ate (unw in—
dowed periodogram ) for a tin e serdies of 131072 points of sim ple B rownian
motion @ = 0:5). The weltknown £ ? form is easily seen, lin ited only by
the available dynam ic range of the data. The upper panel of gure 2 shows
the nom alised autocovariance of the sam e tim e serdes.

The lower panelof gure 2 shows logB, ( )=S, (1) versus log , where
we calculate S, using the nom alised autocovariance from equation (5). The
range In the plt of@z was chosen for ease of com parison with gure 4 of
Takalo and T Im onentd and our gure 6. The curves in both panels of gure 2
are nearly straight lines. The valule H = 1=2 can be read o from the slope of
the line in the lower panelof gure 2. A s expected, the structure function is
an e ective detector of its original intended target, a w ide spectrum selfa ne
fractal signal.

©)

3 APPARENT SELFAFFINE FRACTALITY (H = 0:5) IN EX -
PONENTIALLY CORRELATED RANDOM PULSES

T he identi cation problem of selfa nity over a nite range begins to be ap-
parent when one applies the structure function m ethod to a series of random
pulses. W e rst consider the case ofrandom tim e serdesw hich have exponential
autocorrelation fiinction. M any physically_interesting random processes can be
wellapproxin ated by an exponentjalﬁéF .Asan exactly solubleexam plewe
note the sim ple \random telegraph" . This is a two level P oisson-sw itched
processwhich sw itchesbetween ]eveshF d level F wih constant probability
1= perunit tin e. This process ha. @n autocorrelation fiinction:

ACF( t) e 31 tF 6)

which, by the W ifenerX hinchine theorem , .ndicates a power soectrum of the
om f 2 ﬁr high frequencies (£ 1= ), but at (f°) for low frequencies
€ 5 1=) .Becausee ?d ¥ =1 2 tF + 0 ( ? 2t) the scaling of
log S, ()=S, (1) versus willnot only be lnear (ie. apparently selfa ne)
for tanallocompared with =2 but will also give rise to a Hurst exponent
value of 1=2 ifH isderived from the slope ofthe line (ie. apparent fractality).
W ithout know Ing a priorithat it isa 2-level, P oisson-sw itched system , ap—
plication ofS; to a tin e serdes that w as exponentially autocorrelated overtin e

5



could cause one to infer (erroneously) that the short lJag behaviour corresoond-
hgtotines t< =2wasboth selfa neand fractal. T his servesto underline
the point that selfa niy isan ntrinsically w ide bandw idth property, and that
application of a w ideband test over the restricted range ( t< =2) m akes
it hard to distinguish certain types of random ness from selfa ne fractality.

4 APPARENT SELF-AFFINITY IN W EIM ER PULSES.

T he relevance of the above observations to the AE tim e series becom es clearer
when we consider that AE contains recurring \pulses" associated w ith m agne—
tospheric substom s. Both the pulse shape and its recurrent properties could
give rise to the observed scaling In AE . W e rst consider apparent scaling due
to the pulse itself, and then exam ine the behaviour ofa random series of such
pulses.

4.1 Restricted range selfa nity from a singlke W ein er pulse

The pulse shape was studied by W eJmerB In the AL index, one of the two
indices from which AE is derived AE = AU AL). A random sampl of
55 substom s was divided into three classes based upon the peak AL value
attained. For each class, the AL tin e serdes were superposed w ith respect to
the substom epoch, from which the average tin e series was then calculated.
T he three resultant average substormm pro les were shown to be well tted
by the fiinctional orm pte P* with both and p increasing w ith increasing
peak AL. This functional form is the solution of an ordinary second-order
di erential equation that was argued to describbe the evolution of the electric

eld and currents in the substom current wedge. T he ionospheric part of the
substom current wedge is a westw ard current that the AL index was designed
to m easure.

W enow show that this shape causes apparent scaling in S; at am allvalies

of tin the case ofa singl, isolated W ein er pulse. W e take = 1 without
loss of generality. The num erator ACF ) ofequation (3) becom es:

ACF ( t=<pte P'p+ tle P& 9 5. )
By starting w ith the identity
Z 1
< et > e Pt gy @®)

0

wem ay evaliate averages such as (7) by di erentiation w ith respect top. W e
nd

1 t
ACF ( )= —(@+p te P 9)
4p



and so using the denom inator of (3) to nom alise the ACF we have
ACF( t)= 1+p e P ° 10)

E xpanding the nom alised ACF as a Taylor series gives

ACF( =1 ép22t2+0(3) 11)
which yields, on insertion into the right hand side of equation (4), a scaling
ofS,()=S, (1) with 2, or tanall com pared wih 1=p (cbserved to be

30 m inutes). This in plies linear behaviour when the logarithm of either
S, ()=S, (1) or is square root is plotted against log . Hence the pulse then
appears selfa ne overthis range, though, asexpected fora di erentiable curve
we nd H = 1, ie. the value of the slope detects that the pulse is not fractal.

42 Restricted range selfa niy from random W ein er pulse train

Now lt us investigate the scaling properties of a sequence of such pulses, as
m Ight occur in the AE tin e series when m easured, forexam ple, over the 100
days (144000 points) studied by Takalo and Timonenkd. A s in the random

telegraph we chose a random sequence of pulses, specialised here to a repre—
sentative exam ple of the W ein er pulse shape. Each pulse wasof o pte Pt

where p = 1=30 mnutes !, = 1, and the sam pling interval was 1 m fute

for 131136 points. The interpulse intervals were drawn from an exponential
distribution w ith e<folding tin e 300 m nutes?* . T he above m odel is not m eant
to proyide an exhaustive m odel for the AE tin e serdes, but the pulse is a
knownkd com ponent ofthe AL (and thus AE ) signaland so its contribution
to the apparent selfa niy of AE must be investigated.

Figure 3 show s a spectrum estin ate or the m odel tin e series. T he goec—
trum has the characteristics of the exponentially autocorrelated random tele—
graph w ith a breakpoint at around 1=p between f° forf 1=pand f ? fr
f 1=p. T he tin e series gives rise to an autocovariance function w ith a steep
(quadratic) slope at samalllags t< 30mnE 1=p) (see gure 4) character—
istic of the pulse shape. T he associated structure function has slope 1 for

t less than 10 m nutes, and progressively lessthan 1 as t increases, such
that it appears nearly linear overtwo decadesin  t ( gure 5).

A gain this nearlinearity, used alone w ithout other inform ation on a nat-
ural signal of necessarily restricted dynam ic range, could lead one to infer
selfa ne properties (or indeed chaotic ones) in a signalthat is not selfa ne.
T he addition of random ness to the single-pulse behaviour describbed in section
41 has given rise to a Hurst exponent less than 1, when m easured over the
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Figure 3: R epresentative exam ple of a spectrum from a random W ein er pulse train.

whole of the range 1 < t < 100. W e believe there to be com petition be-
tween the e ects of random ness (e€g. H = 0:5 in the random telegraph) and
the integer value of H = 1 associated w ith individualdi erentiable pulses.

5 AE RE-EXAM INED ,DISCUSSION AND CONCLUSION S

W e now consider the scaling properties ofthe m easured AE tin e serdes in the
light ofthe previous exam ples. T he top panelof gure 6 show sthe autocovari-
ance of the rst 100 daysof AE for 1983, and m ay be com pared w ith the top
panelof gure 4 ofTakalo and T in onentd. A gain, the steep (exponential) 21l
ofthe ACV results in a near linear slope for snall t, and a slow decrease
In the slope as larger and larger ranges of t is considered . Im portantly,
how ever, the slope is, always less than 1 (J. Takalo, P rivate com m unication,
1999). Overall it resam bles near-linear scaling in the structure finction for
most of the st two decades of (bottom panel of 6), and (lotted In
the them iddk panelof gure4 ofTakaloand T in onengﬁi was cited by Takalo
and T in onen b1 as a key piece of evidence for selfa nity in AE . They also
noted the ressmblance of the AE autocovariance fiinction to an exponential
and proposed that the autocorrelation tine of AE be de ned as the lag or
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Figure 5: Scaling plot for random W eim er pulse train.

tin escales longer than that over w hich the autocovariance ceased to be expo—
nential. Inspection of gures 4, 5 and 6 lad us to conclude, however, that,
unlike the ideal case of B row nian m otion, neither the curve ofS, orAE ,nor
that of the sin pli ed random W ein er pulse traln are straight over the range

t=1to = 120.W e ram ark that, hsofarasthe ACF ofAE isexponential
foram all t, there m ust eventually be a departure from near-linearity in the
structure fuinction as t Increases, unless the range over w hich the exponen—
tialbehaviour is seen is so am all that a straight line would be jist as good an
approxin ation as the exponential.

In addition, both AE and the model W eim er pulse train of section 42
give a fractional H value when taken over the whole range from 10 to 100.
W ithout a priori additionalknow ledge, we m ight equally well have concluded
that the random pulse train was selfa ne over the range t< 100, but by
construction we know this is not so.

Ourm odelwasdelberately sin pli ed. In the naturalAE tin e serdes, the
extended tailofthe ACV isexpected to re ectthe solarw ind-driven com ponent
(@lso present In AU and AL),which our sim ulation neglected. A s origihally
conctured by T surutaniet alE the solar w ind driver is probably the origin of
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Figure 6: A utocovariance and scaling plot for 100 days of AE, starting on 1lst January 1983

the \1/f" part ofthe AU=AL=AE spectrum EE .

W em ay summ arise our ndings as follow s. By construction of an explicit
counter-exam ple we have shown that near-linear scaling of S, over about two
decades is not iIn itself su cient to show selfa niy. W e have also given
analytic and num erical evidence that non-fractal random serdes can produce
non-integer H urst exponents over lim ited dynam ic ranges. W e thus Infer that
selfa nity in the range 0 to 100 m inutes for AE has not been and could not
be proved by the use of S, alone.

Onem ay reasonably point out that severalotherm ethods have been used
to provide evidence of selfa nity in geom agnetic indices; both in the papers
of Takal et al. and those of other workers!’ '° . O ne m ay thus enquire as to
what kind of additional know ledge or analysis techniques would be necessary
for considering the results of the structure fiinction m ethod fruifiil? Based on
w hat we have found, we suggest that answer is at least threefold.

1) Be aware that m any tests for fractality are actually designed assum ing
a fractal signal: A test based on the assum ption of fractality can disprove
fractality but cannot prove it. T he m ethods for m easuring fractal din ension
that we are aware of assum e selfa niy In their design ie. they typically
exam Ine the scaling behaviour of a signal. Only if they nd no evidence of
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scaling at all is there no am biguiy.
2) Use more than one test: Several tests are better than one because
di erent m ethods are sensitive to di erent non-fractal e ects. Thus use of
several tests m eans that a serdes w ith non-fractal aspects is lss likely to be
m isinterpreted. M ost of the m ethods for m easuring fractal dim ension which
have been applied to geom agnetic data are of one of two basic types. The
rst type of m ethod basically estin ates the dim ension of a fractal curve by
exam Ining how the average value of short lengths of curve

S;=<X &+ ©H X @©> 12)

scales w ith the ruler length (n un@s of the sam pling interval t). Such
m ethods have been applied by Vorostd to m agnetom eter data, and re re—
cently to geom agnetic and solarw ind quantities by P rice and Newm ankEd, who
used the related, cum ulative "R /S" analysis.

T he second type studies the positive de nite second order function

S2=< K (t+ B X ©)7> 13)
and retums the sam e nform atjonE astheACF when estin ated on a stationary
signal (see section 2). For this reason it is thus also fom ally related to the
power spectrum via the W ienerX hinchine theorem . S,, the ACF and the
power spectrum have all been extensively nvestigated for the AE , D St and
related ndices by Takal et al'? '® . Them eaning ofthis fam ily oftechniques
can be understood as studying the behaviour of the histogram of variance
of the signal (or the power soectrum ) w ith increasing tin e dilation t (or
frequency); depending on whether one is dilating in tine (in the case of S,
and the ACF) or frequency (in the case of the power spectrum ). W e caution
that tine lJag in the ACF or in S, is not trivially 1/ (the Fourder frequency)
because any frequency in a Fourder transform has tributions from multiple
ACF lags and vice versa (see Bendat and P Jerso]ﬁrz pages 120-122). In the
case of a sin ple fractal, the dimension (and Hurst exponent H ) estim ated
from such m ethods should theoretically be the sam e as from _S,, although in
practice the errors of the two m ethods need not be the sam etd. Ifthey di er
substantially, this m ay be a pointer that the tin e serdes is not intrinsically a
w deband fractal, and that one of S; or S, ism ore sensitive to this.

An exam pl ofhow additionaltests for fractality have supplied new know -
edge is in the continuing dy of the AE index. This hasbeen known since
the work of T surutaniet all to have a \1/f" low frequency and \1/f?" high
frequency pow er spectraldensity. A cting only on inform ation from the power
spectrum or other S, -typem ethods, onem ight thus nferthat AE isa bia ne
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quantiy'? ¢, ie. it has two separate scalin ions and a break between
them . In og&ast, Consoliniand D e M ichelistd have studied the \burst dis-
tributions"Ed of AE . These are the histogram s of intervals between threshold
crossing tin es (purst and interburst lifetin es) and of areas above threshold
betw een ings (ourst sizes). T he lifetim e distributions are an S;-typem ea—
surem ent and were found to have (exponentially rolled-o ) scaling w ith
a single slope over a very w ide range, Interrupted only by a non-scaling com —
ponent at about 2 hours. T he apparently paradoxical observation ofbia ne

behaviour in S, and \contam inated" m ono-a ne behaviour in S ; has been
addressed In two di erent ways. O ne hasbeen to Introduce m odels w hich have
the required properties in both S; and S,, such as forest re m odels or
coupled m ap latticestd driven by w ideband solarw ind like signals. T he other,
inform ed by the fact (section 4 and 5 above) that the high frequency £ ? part
ofa power sp ne=d not arise from a fractalaspect of the tim e series, has
been to postulate®d that the AE serdes is in fact a hybrid tine serieswih a
fractalelem ent arising from the solarw Ind driven ionospheric current system s
and a non—fractalpart arising from en storage and release in the m agneto—
sphere (substom s). Thiswas supported&d by the observation that the scaling
InAE @dAU=AL)Db lifetim es is the sam e as that seen in the solarw ind
(see also Freem an et alkd) while the non—ﬁljng com ponent v@s seen only in
the m agnetospheric quantities such asAE and AU and ALH,

T here have been exoeptions to the use 0f S, or S; type techniques in the
geom agnetic context. W e are gratefiil to an anonym ous referee for rem inding
us qf the results of a multifractal analysis of the AE index by Consolini et
alkd. These resultsm ust In ply som e constraints on possiblem odels describing
the variability of auroral currents. However, in the sam e way that AE_when
m easured over 1 year by a method of type S; is essentially fractalkd, and
required the use of several years’ m easurem for the \bum p"-lke feature in
the otherw ise scaling S, to becom e apparentkd, i seem s t@us that onem ight
expect a m ultifractal analysis of less than 2 m onths of AE Ed to give a good t
to a p-m odel of turbulence beca the solar w ind driver is also well tted by
this particular turbulence m odelEd. W e believe that a study on a m uch longer
series of AE would be required to exclude even our own toy m odel of random
di erentiable W ein er pulse trains, when superposed on the m ultifractal solar
w ind background. W e note that, independently, a recent m ultifractal study of
geom etic data from T hule, A Jaska has exclided the bia ne coloured noise
m odeld for that dataset.

3) Rem em ber that N atuire does not have to be purely fractalany m ore than it
has to be non-fractal: M any types of natural signalhave both fractaland non—
fractalcom ponents. In consequence, when usingm ethods to exam ine fractality,
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one should be aw are that it ispossible to nd som ething between the extrem es
ofw ideband fractality and none at all, as discussed in point (2) above for the
case of AE . Another exampl is to Im agine looking out of one’s tea-room

window at a tree through a regularly spaced w indow blind. T he distinguishing
of the fractal tree and the periodic blind is a task that the hum an eye and
brain perform routinely, and which a Fourier transform can also do because
it can resolve the blind spacing as a spatial frequency. A \random blind"
appearing at P oisson-sw itched intervals would be m uch m ore ofa problem for
an FFT, and would be analogous to the pulses of section 3 and 4. The user
thus needs to determ ne how much the presence of a \contam nating" signal
or signals in the fractal tim e series m ay a ect their Interpretation, at which

point the question m ay becom e as m uch physical as m athem atical. This is
currently an adm ittedly very di cul task because of the sparsity of literature

on such hybrid tim e serdes, and is one which we plan to exam ine in m ore detail
n future papers.
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