
ar
X

iv
:a

st
ro

-p
h/

00
11

20
6v

1 
 9

 N
ov

 2
00

0

Exploding and Non-exploding Stars:
Coupling Nuclear Reaction Networks
to Multidimensional Hydrodynamics

K. Kifonidis∗, T. Plewa†,∗ and E. Müller∗

∗Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85741 Garching,

Germany
†Nicolaus Copernicus Astronomical Center, Bartycka 18, 00716 Warsaw, Poland

Abstract. After decades of one-dimensional nucleosynthesis calculations, the growth
of computational resources has meanwhile reached a level, which for the first time allows
astrophysicists to consider performing routinely realistic multidimensional nucleosyn-
thesis calculations in explosive and, to some extent, also in non-explosive environments.
In the present contribution we attempt to give a short overview of the physical and
numerical problems which are encountered in these simulations. In addition, we as-
sess the accuracy that can be currently achieved in the computation of nucleosynthetic
yields, using multidimensional simulations of core collapse supernovae as an example.

INTRODUCTION

Thermonuclear reactive flows are ubiquituous in astrophysics and occur in non-
explosive environments as, e.g., in most (hydrostatic) stars as well as in explosive
events, for which novae and supernovae are examples. Often they provide the en-
ergy which powers stellar outbreaks (as in the case of novae, X-ray flashes, and
thermonuclear, i.e. Type Ia, supernovae) and even for stellar explosions where this
is not the case (as e.g. in core collapse supernovae, which are driven by neutrino
heating), the strong coupling of hydrodynamic advection and thermonuclear re-
actions is of utmost importance for the nucleosynthesis which accompanies these
events. It is by a proper numerical modelling of this coupling through which a
more detailed insight into the origin of the nuclear abundances in the solar system
can be gained, which are themselves the result of a superposition of material which
has been processed in explosive and non-explosive thermonuclear environments.
By comparing the results of numerical models with the observed solar abundance
pattern, on the other hand, one might also hope to learn more about the thermo-
dynamic conditions in the otherwise unaccessible nucleosynthetic sites and events
themselves.
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The high precision with which nuclear abundances can be measured nowadays
poses great demands on the accuracy of the numerical models, especially since it
was convincingly demonstrated in recent years that due to the importance of hydro-
dynamic instabilities, rotation, and other effects, most of the nucleosynthetic sites
do not possess spherical symmetry. Thus a reliable computation of the highly non-
linear interaction of hydrodynamic advection and nuclear burning requires multi-
dimensional numerical models. In the following sections we give a general overview
of the methods which are currently employed for modelling thermonuclear flows
and discuss some of the problems which are hereby encountered. Further reviews
on reactive flow modelling can be found in [9], [10] and [11].

THE GOVERNING EQUATIONS

A rather wide range of astrophysical reactive flows, in which relativistic effects,
viscosity and magnetic fields can be neglected, is described by the well-known
(reactive) Euler equations. This system of non-linear partial differential equations
which expresses the conservation of the total mass, momentum, total (i.e. kinetic
+ internal) energy and baryons of the fluid reads

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

∂ρv

∂t
+ ∇ · (ρvv) + ∇P = ρg + ρfadd (2)

∂ρE

∂t
+ ∇ · ([ρE + P ]v) = ρv · g + ρQ̇add + ρQ̇nuc (3)

∂ρXi

∂t
+ ∇ · (ρXiv) = ρẊi (4)

∑

i

Xi = 1, (5)

where ρ, v, E = v2/2+e, and P have their usual meanings, Xi is the mass fraction of
nucleus i, and ρẊi as well as ρQ̇nuc are source terms due to nuclear transmutations.
If self-gravity is important, the gravitational acceleration

g = −∇Φ (6)

which appears in the source terms of Eqs. (2) and (3) and which depends on the
gravitational potential, Φ, has to be obtained from a solution of the Poisson equa-
tion

∆Φ = 4πGρ. (7)

In mathematical terms Eqs. (1–7) describe a mixed initial/boundary value prob-
lem due to the hyperbolic and elliptic nature of the Euler and Poisson equations,
respectively. Given appropriate initial and boundary conditions, an equation of



state relating ρ, P and e, and the additional source terms fadd and Q̇add, which in
general will be problem-dependent, Eqs. (1–7) can be solved after an appropriate
flow representation as well as a suitable numerical scheme have been adopted.

FLOW REPRESENTATIONS AND NUMERICAL
SCHEMES

There are two primary approaches to solve the homogeneous part of the system
of equations (1–5). In the Eulerian framework the system of conservation laws is
solved on a grid which is fixed in space and the evolution of the flow is followed
by advecting the fluid through the computational cells. The principal assets of
this method are its straightforward extension from one to two or three spatial
dimensions and the simplicity of its implementation on serial and parallel computer
architectures. If an appropriate shock-capturing, finite-volume numerical scheme
is used, it is equally straightforward to obtain strict numerical conservation of
all physically conserved quantities and a sharp resolution of shocks. The major
drawback is numerical diffusion. Consider the continuity equation (1) in its Eulerian
form, which can be written as

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = 0, (8)

where the second term describes advection and the third term compression. Nu-
merical diffusion is introduced into a numerical solution of this equation as a result
of discretization errors of the v · ∇ operator. There appears to be a simple remedy
to this problem: using the comoving derivative d/dt = ∂/∂t +v · ∇ we can rewrite
Eq. (8) in the frame comoving with the matter to obtain its Lagrangian form

dρ

dt
+ ρ∇ · v = 0. (9)

Note that in this frame the advection term v · ∇ρ has vanished. Therefore the
Lagrangian approach is (in principle) not prone to numerical diffusion of mass (or
composition). In Lagrangian methods each cell of the numerical grid represents a
discretized fluid element which evolves subject to forces which are due to interac-
tions with its neighbors and the time rate of change of the density of such a fluid
element is solely determined by the compression (or expansion) that it experiences.
Density interfaces (contact discontinuities) as well as composition discontinuities
can be easily aligned with the boundaries of grid cells and do not have to be ad-
vected through the grid in the course of the calculation.

While this very desirable property of the Lagrangian approach has made it the
method of choice for one-dimensional nucleosynthesis calculations, considerable dif-
ficulties are experienced when Lagrangian schemes are applied to multidimensional
flows. Shear and vortices can severely distort a Lagrangian grid. The discrete ap-
proximation of differential operators over such a grid results in large errors in the
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FIGURE 1. Comparison of the diffusivity of different advection schemes for the problem of the

propagation of a contact discontinuity through an Eulerian grid. The curves give the width of

the discontinuity (in grid zones) as a function of the number of zones it has propagated through

the grid (adapted from [4] and [5]).

numerical derivatives, and in the extreme case that the grid lines cross (grid tan-
gling) the calculations have to be stopped. Some remapping procedure to a new,
more regular grid must then be applied which unavoidably introduces numerical
diffusion to the solution. The distortion problem can be overcome if triangular
instead of quadrilateral grids are used [11] or if (as in the Smoothed Particle Hy-
drodynamics, or SPH approach) no grid at all is adopted and instead the flow is
sampled by a finite number of particles. In the former method considerable logic
overhead is added in restructuring the deformed triangular grid, while in the latter
case, due to the Monte-Carlo nature of the sampling, Poisson noise is introduced.

Due to the aforementioned drawbacks and due to significant progress in the de-
velopment of accurate Eulerian schemes in the early 1980’s, Lagrangian methods
employing quadrilateral or triangular grids have not been used extensively in mul-
tidimensional calculations of astrophysical flows (see [18], [12] as well as [11] and
the references therein for examples). On the other hand, the simplicity of SPH
has made this method very popular for astrophysical (especially cosmological) sim-
ulations. Without attempting to escalate the very vigorous discussion, whether
SPH or grid-based Eulerian schemes are to be prefered in astrophysical calcula-
tions (see e.g. [10]), we will argue below that, due to its Monte-Carlo nature, the
SPH scheme appears to be rather unsuited for multidimensional nucleosynthesis
calculations, especially in cases where hydrodynamic instabilities are known to be
important.

Among Eulerian schemes, the so-called shock-capturing schemes have proven to
be the most accurate ones for problems which involve discontinuities in the flow



as shock waves (see [19] for details). The latter are very frequently encountered in
explosive events, since in these cases the flows can attain supersonic speeds. Shock-
capturing schemes derive their accuracy from a discretization of the hydrodynamic
equations which closely mimics the physics of compressible flows by making use of
the Riemann problem, i.e. the dissolution of an arbitrary flow discontinuity into a
set of simple waves (shocks, contact discontinuities and rarefaction waves). Suitably
constructed Riemann problems at the interfaces between adjacent computational
cells are solved within each time step, from which the complete solution of the
system of conservation laws is constructed. This allows one to avoid the use of large
amounts of artificial viscosity in order to obtain a well-behaved numerical scheme
in the vicinity of shocks. One of the most accurate shock-capturing schemes, which
has been widely applied in astrophysics, is the (direct Eulerian) PPM scheme of
[3], a second order extension of Godunov’s original (and rather diffusive) first-
order shock-capturing scheme [6]. In addition to its accurate treatment of shocks
PPM includes a special detection and steepening algorithm to minimize numerical
diffusion across contact discontinuities.

The superiority of shock-capturing schemes in computing compressible flows has
been demonstrated e.g. in [19], and their performance for computing reactive as-
trophysical flows was studied in [4] and [13]. Fig. 1 shows a representative result
from [4] in which PPM was compared to a number of older Eulerian schemes which
were in wide-spread use until the mid 1980’s. The figure shows the width of a
contact discontinuity as a function of the number of zones that it has travelled
across a numerical grid. Most Eulerian schemes tend to smear such fluid (and also
composition) interfaces without limit, i.e. the width of the “discontinuity” tends to
grow with time. Of all the schemes investigated, only PPM maintained a sharp res-
olution of the interface within two zones. Still however, numerical diffusion cannot
be completely avoided in Eulerian calculations and its minimization necessitates an
adequate spatial resolution in addition to an excellent advection scheme. This has
led to the development of adaptive mesh refinement methods [1], which concentrate
the computational effort in critical regions of the flow and thereby often allow for
substantial savings in computer time.

ADDITIONAL PHYSICS

While the numerical problems encountered in solving the homogeneous part of
the Euler equations are difficult to overcome, they represent only a part of the
computational difficulties for a realistic simulation. The source terms, which are
usually taken into account using the operator splitting technique [9], often require
much more computer time than the solution of the hydrodynamic equations them-
selves. This holds, e.g. if large nuclear networks need to be evolved with the
hydrodynamics or transport processes need to be taken into account (as e.g. neu-
trino transport in core collapse supernovae, see [15] and the references therein and
A. Burrows, this volume). In some cases even phenomenological (sub-grid) models



might have to be introduced. This is e.g. the case for turbulent combustion in ther-
monuclear supernovae, where a white dwarf is incinerated by a deflagration front
whose propagation speed is impossible to compute in a direct simulation since this
would require a resolution of the turbulent energy cascade down to the dissipation
length scale [16]. Exacerbating the situation is the fact that stellar models, which
serve as initial data for supernova simulations, might be affected by considerable
uncertainties. In the absence of computational schemes and resources which al-
low for a consistent multidimensional treatment of stellar convection and rotation
over stellar evolutionary time scales, one is forced to describe these phenomena by
one-dimensional appoximations (see the contribution of N. Langer, this volume).
Finally, uncertainties in nuclear reaction rates enter the calculations.

It is apparent that progress in only a single of the involved fields is not going to
improve the accuracy of the desired nucleosynthetic yields considerably. In fact, a
concerted effort in all areas appears to be required, since, as we will show in our
example below, the different effects can conspire in falsifying the nucleosynthetic
yields.

CORE COLLAPSE SUPERNOVAE: A CASE STUDY

Nucleosynthesis in core collapse supernovae is a good example for illustrating the
aforementioned problems and we will start with a discussion of numerical diffusion
using results of simple one-dimensional calculations. We subsequently address the
complications introduced by convection in multidimensional calculations as well as
by “additional physics”, i.e. neutronization due to neutrino matter interactions.
Finally we show how a multidimensional numerical failure, the so-called “odd-
even-decoupling” phenomenon, an instability which appears to plague most shock-
capturing schemes and whose effects have not yet been discussed extensively in
the numerical astrophysics literature, can enhance neutronization by strengthening
hydrodynamic convection and affect the nucleosythetic yields in multidimensional
simulations.

Nucleosynthesis in a 15 M⊙ star (1D)

In core collapse supernovae nucleosynthesis is triggered by a shock wave which
forms after the collapse of the iron core of a massive star has proceeded to supranu-
clear densities. The shock, while initially powerful, stalls after a few milliseconds
due to the energy losses from which it suffers while propagating through the outer
iron core, but eventually ejects the outer stellar layers if heating by neutrinos from
the collapsed core is able to overcompensate for the energy losses. In most nu-
cleosynthesis calculations, however, these processes are not modelled in detail and
instead a shock is initiated by simply depositing the typical observed supernova
energy of ∼ 1051 erg near the center of a presupernova model.



FIGURE 2. Left: Eulerian PPM calculation of explosive nucleosynthesis in the presupernova

model of [20] using an α-nucleus network and the Consistent Multifluid Advection scheme (CMA)

(from [13]). Right: Comparison of Eulerian PPM results using: 1st order advection for nuclear

species (top), the FMA advection scheme for multifluid flows of [4] (middle), and the CMA scheme

of [13] (bottom). Note the decreasing amount of diffusion and the sharp interfaces obtained with

CMA (from [13]).

In the left panels of Fig. 2 we show snapshots of the mass fractions from the first
500ms of such a calculation, focusing on the silicon-rich layers just outside the iron
core in which explosive nucleosynthesis takes place. Only 100ms after the start
of the calculations explosive silicon burning has frozen out and has left behind a
significant abundance of 56Ni as well as 40Ca, 36Ar and 32S. Particularly noteworthy
for the following discussion is the nucleus 44Ti. From one-dimensional Lagrangian
nucleosynthesis calculations [17], [21] it is known that this isotope should be primar-
ily synthesized in the innermost stellar layers which experience an α-rich freezeout.
However, in the present Eulerian calculation a significant abundance of 44Ti has
formed in zones with mass coordinates around 1.36M⊙ (marked with arrows in
the left panels of Fig. 2), i.e. at the interface of the regions enriched in 4He and
40Ca. This 44Ti “bump” results from the reaction 40Ca(α, γ)44Ti and the amount



FIGURE 3. Final 44Ti yield of the one-dimensional calculations shown in Fig. 2 as a function

of radial resolution and different multifluid advection schemes. Top curve: 1st order species

advection. Middle: FMA. Bottom: CMA (from [13]).

of 44Ti thereby produced is very sensitive to numerical diffusion in this region.
Consequently, the strength of the 44Ti “bump” varies with the diffusivity of the
numerical scheme which is used to advect the nuclear species. This is illustrated
in the right panels of Fig. 2. The top right panel depicts results from a calculation
with Godunov’s first-order scheme. In this case, all mass fraction profiles are heavily
smeared due to strong diffusion, as can be seen by a comparison to the middle right
and bottom right panels which show results that were obtained with the FMA and
CMA advection schemes of [4] and [13], respectively. Of all these schemes, CMA is
the least diffusive since it is the only method which includes a detection and steep-
ening algorithm for composition interfaces which was derived from PPM’s original
detection and steepening algorithm for contact discontinuities. Note the size of the
44Ti bump for the three different runs. The more diffusive schemes produce much
more 44Ti. This is also illustrated in Fig. 3 which summarizes how the 44Ti yield
depends on the adopted advection scheme and the spatial resolution. While the
CMA results (bottom curve) are already converged for a resolution of ∆r = 40 km,
FMA (middle curve) needs a resolution of about 10 km. The first-order scheme (top
curve) would need much finer zoning than ∆r = 5km to yield results of comparable
quality. Note also that, if a diffusive advection scheme and coarse resolution are
used, the errors might be as large as a factor of four!

It should be pointed out, however, that 44Ti is a somewhat extreme (though very
important) example. The (relative) errors due to numerical diffusion are usually
smaller for the more abundant nuclei. This is illustrated in Fig. 4 which shows
the dependence of the yields of different α-nuclei on resolution in a 1D calculation
from [8], in which no ad hoc energy deposition was adopted, but where the shock
revival phase was followed in detail by including the effects of neutrino heating
from a central light bulb neutrino source [7]. It can be seen from this figure that



FIGURE 4. Accuracy of various elemental yields from one-dimensional shock-revival and explo-

sive nucleosynthesis calculations in the post-bounce model of [2] (see also [20] for the presupernova

model). The logarithm of the deviations of the elemental yields of various α-nuclei as compared

to an essentially converged 6400 zone calculation (∆r ≤ 5 km) is displayed as a function of the

radial resolution (in grid zones)(from [8]).

individual elemental yields are more accurate than the 44Ti yield by more than an
order of magnitude. However, if one is aiming at a numerical accuracy of about 1%
for all yields, about 3000 radial zones are required for this calculation. This amount
of spatial resolution makes accurate multidimensional simulations very expensive.

Convection and 56Ni synthesis in core collapse supernovae

Neutrino matter interactions play a crucial role in the explosion of core collapse
supernovae. They heat the matter behind the stalling shock and thereby trigger the
explosion. On the other hand they determine the electron fraction per baryon, Ye,
(or equivalently the ratio of protons to neutrons) in the ejecta and thus influence the
nucleosynthetic yields. If the Ye value of material that has been photodissociated
by the shock is significantly reduced below 0.5 by neutrino/matter interactions, this
matter will recombine mainly to neutron-rich nuclei after expanding and cooling.
In that case nuclei with Z = N like 56Ni will not form in the ejecta. Fig. 5 which
shows results of a two-dimensional simulation of shock revival illustrates this effect.
In this calculation the luminosities of νe and ν̄e were such that ν̄e absorption on
protons was favored against νe absorption on neutrons and thus the heated gas
was neutronized [7]. The sharp division between this material which is visible in
the bubbles behind the shock in Fig. 5 and the lepton-rich material farther out
which has formed 56Ni (the region enclosed by the white contour line in Fig. 5) is
clearly visible. The negative entropy gradient that the heating has imprinted on the
layers between the radius of maximum neutrino heating (close to the center) and
the shock farther out, has also led to strong convective motions: bubbles of heated



FIGURE 5. Distribution of the entropy (in units of kB/nucl.) 320ms after core bounce in a

two-dimensional core collapse supernova simulation of a 15M⊙ star. The white contour line

encloses the region in which the 56Ni mass fraction exceeds 20% (from [8]).

deleptonized gas rise toward the shock while lower entropy flux tubes transport
lepton-rich matter to deeper layers where it interacts with the neutrino fluxes much
more efficiently. This interplay of convection and deleptonization is crucial for the
56Ni yield. The shock is only able to heat a certain amount of lepton-rich material
to temperatures in excess of the 5× 109 K which are required for 56Ni synthesis. If
convection is strong enough to advect significant amounts of this matter close to
the neutron star, where the gas will experience deleptonization, the 56Ni yield will
be lower than in a model with no or weak convection.

Multidimensional numerical failures: Odd-even decoupling

Quirk [14] has reported on a subtle flaw in a number of shock capturing schemes
which becomes evident when calculating multidimensional flows with strong, grid-
aligned shocks. He has dubbed this failure the “odd-even decoupling” phenomenon.
The problem shows up only if a sufficiently strong shock is either fully or nearly
aligned with one of the coordinate directions of the grid, and if, in addition, the
flow is slightly perturbed. This can be due to either perturbations intentionally
introduced in order to study physical instabilities, as it is done in all studies of
convection in supernovae, or due to perturbations caused by other flow features.
Many Riemann solvers show the tendency to allow these perturbations to grow
without limit along the shock surface, thus triggering a strong rippling of the shock
front as well as the post shock state. In supernova simulations these perturbations,
whose amplitudes can exceed those of the seed perturbations by several orders of
magnitude, enhance the growth of hydrodynamic instabilities. In case of neutrino
driven convection they lead to large-scale overturn and angular wavelengths of con-
vective bubbles which are significantly larger than in a “clean” calculation. This



FIGURE 6. Top: Entropy distribution 208ms after core bounce (in units of kB/nucl.) in a

two-dimensional supernova model showing odd-even decoupling. Bottom: Entropy distribution

for an equivalent calculation in which odd-even decoupling has been suppressed (from [8]).

artificial enhancement of convection is demonstrated in Fig. 6 where the entropy
distribution of a simulation exhibiting odd-even decoupling (top panel) is compared
to one in which the numerical failure has been cured (bottom panel). A modifi-
cation of PPM’s original dissipation algorithms [3] was necessary for this purpose.
Alternatively the hybrid Riemann solver method of [14] might be used. Note that
the calculations have been carried out in spherical coordinates (r, θ) so that the
(initially spherical) shock wave was fully aligned with the grid. However, cylindri-
cal coordinates which have been used for plotting are indicated in the figures. The
difference in the final 56Ni yield for these two simulations was about 40%, the cal-
culation not exhibiting odd-even decoupling showing the larger yield, as expected
from our discussion in the previous section. This demonstrates that due to the
strong coupling of neutrino physics and convection, the 56Ni yield in multidimen-
sional calculations is much more difficult to calculate correctly than in one spatial
dimension. Therefore the error of at most a few percent which can be deduced



for the latter case from Fig. 4 can be deceptive. The results shown in Fig. 6 also
suggest that numerical noise, whatever its origin is, leads to a grossly overestimated
efficiency of convection. Thus, schemes which are known to suffer from this prob-
lem (like SPH) do not appear to be suited for nucleosynthesis calculations in core
collapse supernovae.

CONCLUSIONS

Realistic nucleosynthesis calculations in astrophysical contexts represent a chal-
lenge in many respects. The difficulties involve the numerical treatment of multidi-
mensional hydrodynamic advection, complex physics in addition to hydrodynamics
and burning, disparate length and time scales, realistic initial conditions and uncer-
tainties in reaction rates. It is our conviction, that substantial efforts are required
in each of these fields in order to obtain reliable yields in multidimensional nucle-
osynthesis calculations.
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