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ABSTRACT 

If the solar neutrino flux were constant, as is widely assumed, the histogram of flux 

measurements would be unimodal. On the other hand, sinusoidal or square-wave 

modulation (either periodic or stochastic) may lead to a bimodal histogram. We here 

present evidence that the neutrino flux histogram is in fact bimodal. We analyze all 

available data from gallium experiments, coordinating results from the GALLEX and 

GNO experiments into one data set, and adopting results from the SAGE experiment as 

another data set. The two histograms, from the two data sets, are consistent in showing 

peaks in the range 45 - 75 SNU and 90 - 120 SNU, with a valley in between. By 

combining the data into one data set, we may form more detailed histograms; these 

strengthen the case that the flux is bimodal. A preliminary statistical analysis indicates 

that the bimodal character of the solar neutrino flux is highly significant. Since the upper 

peak is close to the expected flux (120 - 140 SNU), we may infer that the neutrino deficit 

is due to time-varying attenuation of the flux produced in the core. We estimate the time 

scale of this variation to be in the range 10 – 60 days. Attenuation that varies on such a 

time scale is suggestive of the influence of solar rotation, and points towards a process 

involving the solar magnetic field in conjunction with a nonzero neutrino magnetic 

moment. 

 

1. INTRODUCTION 

The results of solar neutrino experiments present a number of puzzles that have been 

reviewed and analyzed by Bahcall and others (Bahcall 1989, Bahcall et al. 1996). These 
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analyses are based on the assumption that the solar neutrino flux is constant. A number of 

authors have looked for a correlation between the solar neutrino flux and an index of 

solar variability such as the Wolf sunspot number (Bahcall, Field & Press 1987; Bahcall 

& Press 1991; Bieber et al. 1990; Dorman & Wolfendale 1991), the surface magnetic 

field strength (Massetti & Storini 1993; Oakley et al. 1994), the intensity of the green-line 

corona (Massetti & Storini 1996), and the solar-wind flux (McNutt 1995). Some (but not 

all) of these authors claim that the studies give positive results and show evidence of 

variability on a time-scale of years, but these claims have been criticized by Walther 

(1997). However, there is independent evidence for variability on shorter time-scales. We 

have found in our analysis of the Homestake data that the scatter is larger than one would 

expect from a constant flux, and that the neutrino flux varies with a period comparable 

with that of solar rotation, indicating a dependence of the flux on solar longitude 

(Sturrock, Walther & Wheatland 1997). We have also found that the flux displays a 

seasonal variation that may be attributed to a dependence upon solar latitude (Sturrock, 

Walther & Wheatland 1998). Preliminary analysis of GALLEX data also provides 

evidence for rotational modulation (Sturrock, Scargle, Walther, & Wheatland, 1999).  

 

The issue of time variability has crucial significance for the resolution of the neutrino 

problem. If the flux is indeed constant, then the most likely interpretation of the deficit is 

the MSW effect (Mikhevev & Smirnov 1986a, 1986b, 1986c; Wolfenstein 1978, 1979) as 

is generally believed, although the VVO effect (Voloshin, Vysotskii, & Okun 1986a, 

1986b) and the RSFP effect (Akhmedov 1988a, 1988b; Lim & Marciano 1988) cannot be 

ruled out. On the other hand, if the solar flux varies on a time-scale of days or weeks, we 

must go back to square one. We may then consider the possibility that nuclear burning is 

variable and perhaps is not spherically symmetric, due to some presently unrecognized 

instability: in this case, the deficit may still be due to the MSW effect, and a combination 

of asymmetric burning and the MSW effect may lead to modulation at the solar rotation 

frequency. However, if nuclear burning is constant and is spherically symmetric, some 

process other than the MSW effect must be involved, since the MSW effect depends only 

on mass density which, in the Sun, is very close to being spherically symmetric.  
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If the solar neutrino flux is variable, and if the possibility of fluctuations or asymmetry of 

the nuclear burning process may be ignored, then one must conclude that the flux is 

modulated in transit from the core to the Earth, presumably in the radiative zone or in the 

convection zone. If the variation is periodic, the relevant period will be a clue to the 

location of the region in which modulation occurs. This modulation must be spatially 

inhomogeneous, indicating that the mechanism involves the Sun’s internal magnetic field 

and either the VVO effect or the RSFP effect. Either mechanism requires that the 

neutrino magnetic moment be nonzero. 

 

It is difficult (but, we believe, not impossible) to determine from radiochemical data 

whether or not the solar neutrino flux varies on a time-scale of days or weeks since the 

data are acquired in runs, each of which may last from two to six weeks. Data from the 

Kamiokande and Super-Kamiokande experiments (Fukuda et al. 1998) are not yet 

available for analysis. In this article, we present another approach to the problem of 

deciding whether or not the solar neutrino flux is constant. We consider histograms 

formed from flux estimates obtained from the GALLEX (Anselmann et al. 1993, 1995; 

Hampel et al. 1996), GNO (Altman et al. 2000), and SAGE (Abdurashitov et al. 1999) 

experiments. If the neutrino flux were constant, these histograms should have only one 

peak, i.e. they would be unimodal. On the other hand, if the flux varies in time, there can 

be more than one peak. In particular, a periodic variation can lead to a bimodal 

distribution. For instance, if the flux z varies sinuoidally,  

    z = C + Asin ωt( ),     (1.1) 

the distribution function for z is given by 

f z( )dz =
1
π

dz

A2 − z − C( )2[ ]1 2 for z − C ≤ A, f z( )dz = 0 for z − C > A. , (1.2) 

which has two cusps.  

 

2. BAYESIAN ANALYSIS 

The usual approach to analyzing solar-neutrino data is to represent the measurement from 

each run by a probability-distribution function (PDF). Experimenters give, for each run, 

an estimate of the flux z (in SNU), and upper and lower one-sigma error bars. By adding 
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to these estimates assumptions about the form of the PDF (say half-gaussian forms above 

and below the flux estimate), one can construct a PDF for each run. We really need to 

consider also PDF’s representing various possible forms for the measurements to be 

expected on the basis of one or more hypotheses. We may take into account both sets of 

PDF’s by a Bayesian procedure (Sturrock 1973). We represent by P z | r( ) the probability 

that the true flux measurement for run r was z where, for simplicity, we consider a 

discrete sequence of values of z, namely integral values. We represent byP z | Hα( ) the 

probability that we should have measured the flux to be z, based on the hypothesis Hα . 

We need to consider a set of hypotheses, say α = 1,..., A  , and we need to set a “prior 

probability” P Hα | −( )  for each hypothesis. Then the post-probability for each 

hypothesis, based on information for run r alone, it given by 

  P Hα | r( )=
P z | Hα( )P z | r( )
P z | Hβ( )P Hβ | −( )

β
∑z

∑
 

 

 
 

 

 

 
 
P Hα | −( ) .   (2.1) 

The post-probabilities based on information for all runs is given by 

  P Hα | r = 1 − R( )= K P Hα |−( )[ ]− R−1( )
P Hα | r( )

r=1

R

∏  ,   (2.2) 

where K is chosen so that the post-probabilities sum to unity. 

 

The usual approach is to form the likelihood function 

    L z( ) = P z | r( )
r

∏  .     (2.3) 

The value of z for which L is a maximum is taken to be the best estimate of the actual 

flux, and the width of the peak is taken to give an estimate of the uncertainty in the flux 

estimate. This procedure is effectively the same as the above Bayesian procedure if we 

adopt a delta function representation of P z | Hα( ): 

    P z | H Z( )( ) = δz, Z  .     (2.4) 

This is a “zero-entropy” or “minimum-ignorance” hypothesis: the other extreme is the 

“maximum entropy” or “maximum-ignorance” hypothesis H0, for which 

    P z | H0( ) = const .      (2.5) 
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over the specified range for z, that we take to extend from a minimum value zl to a 

maximum value zu. The constant is to be chosen so that P z | H0( ) sums to unity.  

 

We have considered data for the 84 runs so far reported for the GALLEX and GNO 

experiments. For each run, we have formed a gaussian distribution P(z|r) centered on the 

reported flux estimate, and (to be conservative) with standard deviation given by the 

larger of the lower and upper error estimates. In order to cover all values, negative as well 

as positive, we adopted zl  = -200 and zu  = 400. With this choice of data, hypotheses, and 

parameters, we find that the post probability P H Z( ) | r = 1− 84( ) is a maximum for Z = 

56. However, this maximum value is of order 10-200. Compared with the maximum-

entropy hypothesis (for which the post-probability is 1 - 10-200), the delta-function 

hypothesis fares very badly! If we consider only runs for which the flux estimate is non-

negative, we find that the maximum occurs near z = 71, which is closer to the estimates 

cited in Altman et al. (2000). 

 

The ignorance hypothesis does not have any physical significance, since it assigns non-

zero prior probability to negative values of the flux. We can form another hypothesis 

H0n, which is physically significant, by assigning constant prior probability to all non-

negative values of z up to the maximum zu. This corresponds to a completely erratic 

neutrino flux that is equally likely, for any run, to have any value whatever in the 

prescribed range. If we repeat the above analysis in such a way as to compare H(Z) and 

H0n, we find that the maximum value of P H Z( ) | r = 1− 84( ) is of order 10-171.  The 

usual zero-entropy or delta-function hypothesis again fares poorly. 

 

3. EVIDENCE FOR BIMODAL FLUX DISTRIBUTIONS 

We have examined flux estimates obtained by the GALLEX-GNO experiment, and find 

that the distribution appears to be bimodal. However, the data obtained from any one 

experiment may be subject to some unrecognized systematic effect that could influence 

the histogram. For this reason, we begin by comparing the histogram formed from 

GALLEX-GNO data with that formed from SAGE data. 
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Published data from the GALLEX-GNO experiment now comprise 84 runs. Published 

data from the SAGE experiment now comprise 57 runs for which flux estimates are 

derived from K-line data, and 31 runs for which flux estimates are derived from L-line 

data. In order to concentrate on the main features of the histogram, we display only the 

part of the histogram in the range 0 < z < 300 (77 flux estimates from GALLEX-GNO 

and 70 from SAGE). In order to have at least 10 counts in at least one bin for each data 

set, we choose displays with 20 bins. Figure 1(a) shows the histogram formed from the 

GALLEX-GNO data, Figure 1(b) shows the histogram formed from the SAGE data, and 

Figure 1(c) shows the histogram formed from the combined data. We see that Figures 1 

(a) and (b) both show peaks at 45 – 75 and at 90 – 120, and a valley at 75 – 90. This 

pattern is clearer in the combined data shown in Figure 1(c) than in either Figure 1(a) or 

Figure 1(b). It appears therefore, from this comparison, that the solar neutrino flux 

distribution is bimodal. In Figure 2 (a), (b) and (c), we show higher-resolution histograms 

for the combined GALLEX-GNO and SAGE data, with 30, 45 and 60 bins, respectively. 

We see that, as the resolution increases, the evidence for bimodality becomes stronger.  

 

4. FURTHER ANALYSIS OF THE FLUX HISTOGRAM 

In this section, we make a preliminary assessment of the statistical significance of the 

apparent bimodal structure of the solar neutrino flux histogram.  In order to cover all 

values of the flux estimate, we adopt zl = −100, zu = 500 . We apply the same Bayesian 

procedure as in Section 2, with the difference that we now represent the PDF’s for the 

data P z | r( ) by delta functions. The functional form of the probability distribution 

function for each hypothesis will be expressed as f(z) for integer values of z in the range 

zl to zu. It is understood that the distribution is to be normalized so that its integral is 

unity. Hence we may fix the height of any part of the curve arbitrarily, and we have 

chosen f = 100 for z < 0. 

 

With these conventions, the ignorance hypothesis H0, previously introduced in Section 2, 

is specified by 

f = 100 for zl ≤ z ≤ zu.      (4.1) 

The unimodal hypothesis H1 is here represented by 
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f = 100 for zl ≤ z < z1a,

f = f1a for z1a ≤ z < z1b,
f = f1b for z1b ≤ z ≤ zu.

     (4.2) 

This model then has the four adjustable parameters z1a, z1b , f1a, f1b.  The bimodal 

hypothesis H2 is represented by 

f = 100 for zl ≤ z < z2a ,

f = f2a for z2a ≤ z < z2b ,

f = f2b for z2b ≤ z < z2c,
f = f2c for z2c ≤ z < z2d,

f = f2d for z2d ≤ z ≤ zu.

     (4.3) 

This model has eight adjustable parameters z2a , z2b ,z2c, z2 d, f2 a, f2b , f2c , f2d . 

 

We have evaluated these three hypotheses by the Bayesian method used in Section 2. We 

find that the post-probability of H1 is a maximum for the following values of the 

parameters:z1a =17, z1b = 155, f1a = 900, f1b = 24 . We assign the same values to the 

corresponding parameters in H2: z2a = 17, z2 d = 155, f2 a = 900, f2c = 900, f2 d = 24. Then 

we find that the ratio of the post-probability of H2 over that for H1 is a maximum for the 

following values of the remaining three parameters: z2 b = 71, z2c = 94, f2 b = 300. For this 

choice of the adjustable parameters, we find that P H0 | D( )= 1.2 10−51 , 

P H1 | D( )= 2.9 10−10 , and P H 2 | D( ) ≈ 1. We see that, in contrast with the situation in 

Section 2, the ignorance hypothesis now fares very poorly.  We also see that the bimodal 

hypothesis is favored over the unimodal hypothesis by an odds ratio of approximately 3 

109. 

 

The above odds value cannot be interpreted directly as the odds that the distribution of 

the solar neutrino flux measurements is bimodal rather than unimodal, since we have 

adjusted several parameters to maximize the post probabilities. Nevertheless, it seems 

unlikely that the flexibility in our choice of parameters is sufficiently great to reverse the 

weight of evidence in favor of H2 over H1. Suppose for instance, as a worst-case 

scenario, that we consider 100 values of each parameter, and that, for each parameter, the 

post-probabilities are comparable with the above values for only one choice out of 100. 
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Since H2 has three more adjustable parameters than H1, this would reduce the odds in 

favor of H2 over H1 by a factor of 106. Even in this overly pessimistic case, the odds in 

favor of the bimodal hypothesis are of order 3000.  

 

We have also evaluated the optimum parameters for H2, independently of the values 

derived for H1. In this case, the optimum choice is found to be z2a = 17, z2b = 71,  

z2c = 94, z2d =155, f2 a = 900, f2 b = 310, f2c = 440, f2d = 17. From these values of the 

parameters for H2 and the previous values of the parameters for H1, we obtain the 

following post-probabilities: P H 0 | D( ) = 5.2 10−52 , P H1 | D( ) =1.3 10−14 , and 

P H 2 | D( ) ≈ 1. This appears to strengthen the case for bimodality, but H2 now has one 

further adjustable parameter. A more thorough analysis of this question requires us to 

consider the post probability for a range of values of each parameter, and then to integrate 

over those parameters with weighting functions corresponding to the prior probabilities 

of the parameters. We plan to present the results of this calculation in a later article.  

 

5. DISCUSSION 

Unless there is some previously unrecognized systematic effect that leads to the same 

bimodal distribution for both the GALLEX-GNO and the SAGE experiments, it is 

difficult to avoid the conclusion that the bimodal structure of the histograms is due to 

variability of the solar neutrino flux. As we mentioned in Section 1, there is already 

independent evidence that the flux is indeed variable. Hence any attempt to understand 

the bimodal structure of the histograms should be coupled with an attempt to understand 

the nature and cause of the variability. This variability may be periodic but one should 

not rule out the possibility that it is stochastic.  

 

Although the timing of runs does not enter explicitly into our calculations, we may infer 

that the time scale of the variation is not short compared with the half-life of the 71Ge 

products (11.43 days), since if it were the variation would be washed out, and the 

histogram would be unimodal. We have also evaluated the histogram of a time series in 

which each element is the mean of the flux measurements of two consecutive runs, and 

find that the resulting histogram is almost unimodal. We may infer from this fact that the 
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time scale of variation is not long compared with the typical run duration (about 30 days). 

These considerations imply that the variation responsible for the bimodal structure has a 

time scale in the range 10 to 60 days, which encompasses the range of periods of internal 

solar rotation (Schou et al. 1999). We have found that when we correct for the rotational 

modulation of the GALLEX-GNO flux measurements, the histogram becomes 

approximately unimodal.  

 

We may infer, from the location of the peaks in the histogram (approximately 65 SNU 

and 105 SNU) that the minimum to maximum ratio of the variation related to the bimodal 

histogram of flux measurements is approximately 0.6.  This corresponds to a “depth of 

modulation” of approximately 25%. Since the flux measurements correspond to weighted 

integrals of the 71Ge production rate, we should expect that the actual depth of 

modulation of the solar neutrino flux will be found to exceed 25%. The upper shoulder of 

the histogram (90 – 120 SNU) is indistinguishable from the expected range (120 – 140 

SNU; Hampel et al. 1999, Kirsten 1995). Hence the upper limit of measured values may 

correspond to the actual flux emitted by the solar core. 

 

The search for an explanation of the bimodal nature of the solar neutrino flux 

distribution, coupled with an analysis of the variability of that flux, will require 

reconsideration of a number of assumptions concerning the solar interior, as well as 

reconsideration of some assumptions concerning neutrinos. At this stage of our research, 

it seems most likely that the variability is due to the interplay of a nonzero neutrino 

magnetic moment with the Sun’s internal magnetic field, due either to the VVO effect or 

to the RSFP effect. Hence this line of research, if fruitful, may lead to information 

concerning the neutrino magnetic moment and possibly also the neutrino mass or masses. 
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   Figure 1c 

Figure 1 (a), (b) and (c): Histograms for GALLEX-GNO, SAGE, and combined 

GALLEX-GNO and SAGE data, respectively, all with 20-bin resolution. 
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   Figure 2c 

 

Figure 2 (a), (b) and (c): Histograms for combined GALLEX-GNO and SAGE data with 

30, 45 and 60-bin resolution, respectively. 


