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General Relativistic Modification of a Pulsar Electromagnetic Field
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We consider an exterior electromagnetic field surrounding a rotating star endowed with a
dipole magnetic field in the context of general relativity. The analytic solution for a station-
ary configuration is obtained, and the general relativistic modifications and the implications
for pulsar radiation are investigated in detail. We find that the general relativistic correc-
tions of both the electric field strength and the curvature radii of magnetic field lines tend
to enhance the curvature radiation photon energy.

§1. Introduction

In recent years, new aspects of rotating neutron stars have been revealed in
about 1000 pulsars. Eleven X-ray pulsars 1) and eight γ-ray pulsars 2) have been
detected in the past several years. Among these new objects, some exhibit quite
different behavior in their pulse periods. 3) The measurement of the period and its
time derivative yields evidence of ultra-magnetized stars, possibly representing mag-
netars. 4) Motivated by the recent observational situation, theoretical models have
been studied. As for high-energy pulsars, two general classes of models have been
proposed. One is the polar cap model 5) and the other is the outer gap model. 6) The
main difference between these two models is in the assumed region of the accelera-
tion of charged particles responsible for the radiation. Both models partially explain
some observational features of the γ-rays. They will be discriminated after including
more detailed radiation processes. Future observation may determine their validity.

An important element to be included in theoretical models is general relativistic
effects, which are in particular crucial for polar cap models, since acceleration occurs
under strong gravity near the surface of neutron stars. Gonthier and Harding 7)

considered the effects on the magnetic field configuration only. Their concern is the
curvature radiation and the attenuation of pair production in a strong magnetic field.
These processes result in a pair cascade and explain some aspects of pulsar radiation,
including high-energy pulses in the γ-ray range. In addition to the magnetic fields,
rotationally induced electric fields play an important role in the polar cap region (see,
e.g., Ref. 8)). Charged particles are ripped off the surface and accelerated along the
magnetic field lines by the electric fields. The magnetosphere is thereby eventually
filled with charges. The accelerated particles may be seeds of subsequent curvature
radiation. Muslimov and Tsygan 9) discussed general relativistic effects not only in
the case of magnetic fields but also electric fields. They derived general expressions
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including multipoles of arbitrary order using hypergeometric functions, assuming a
vacuum outside the star. Their work, however, is limited to only analytic forms,
and therefore not easy, e.g., to compare with the standard results in flat space-time.
Order estimates of general relativistic effects are also lacking. In this paper, we derive
analytic solutions again for both the electric and magnetic fields around a rotating
star endowed with an aligned dipole magnetic field. The resultant expressions are
rather cumbersome, and for this reason approximate expressions are also given. Such
forms provide an estimate of the corrections to the results in flat space-time, as well
as a concise, practical application. We also give detailed discussion concerning the
difference between our results and those in Minkowski space-time. This discussion
may become important in the future, with progress in observational technology.

As shown in Ref. 10), the deviation from spherical space-time is less than 10−3

if the rotation period is longer than 10 msec and the magnetic field at the surface is
less than 1016 gauss. Therefore, the electric and magnetic fields are determined by
solving the Maxwell equations in a fixed background space-time. The appropriate
space-time metric is that for an external field surrounding a slowly rotating star.
We can neglect the second-order rotational effects, except in the case of rapidly
rotating stars. We also restrict ourselves to a stationary configuration, that is, the
case in which the magnetic dipole moment µ is aligned with the angular velocity
Ω. This leads to the following form Aµ = (At, 0, 0, Aφ) for the four-potential (see
Ref. 11) and references therein), where At is related to the rotationally induced
electric field, and therefore At ∼ O (Ω) × Aφ. Detailed calculations to solve the
Maxwell equations are given in §2. Approximate expressions of these solutions are
discussed in §3. Implications of the general relativistic effects with regard to the
acceleration of charged particles and radiation in vacuum gaps are investigated in
§4. Finally, we give discussion in §5. Throughout the paper, we use units in which
c = G = 1.

§2. The general relativistic solution for an exterior stellar

electromagnetic field

We now derive expressions for an electromagnetic field surrounding a rotating,
magnetized star using a general relativistic treatment. We solve the Maxwell equa-
tions in a fixed metric, assuming that the field is in a vacuum. The background
metric outside the star with total mass M and angular momentum J is specified up
to first order in the slow rotation approximation as

ds2 = −e−λ(r)dt2 − 2ω(r)r2 sin2 θdtdφ+ eλ(r)dr2 + r2dθ2 + r2 sin2 θdφ2, (2.1)

where

eλ =

(

1−
2M

r

)−1

, (2.2)

ω =
2J

r3
. (2.3)

In the non-rotating limit, a poloidal magnetic field can be described by the Aφ
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component only. In the slowly rotating case, the four-potential is given by Aµ =
(At, 0, 0, Aφ). The At component is rotationally induced as At ∼ O(Ω) × Aφ. The
Maxwell equations for At and Aφ are given as

e−λ∂
2Aφ

∂r2
− λ′e−λ∂Aφ

∂r
+

1

r2
∂2Aφ

∂θ2
−

1

r2
cot θ

∂Aφ

∂θ
= 0, (2.4a)

e−λ∂
2At

∂r2
+

2e−λ

r

∂At

∂r
+

1

r2
∂2At

∂θ2
+

1

r2
cot θ

∂At

∂θ

+

[(

λ′ +
2

r

)

ω + ω′
]

e−λ ∂Aφ

∂r
+

2

r2
ω cot θ

∂Aφ

∂θ
= 0, (2.4b)

where the prime here denotes differentiation with respect to r. Note that the last
two terms on the left-hand side of Eq. (2.4b) represent the coupling between the
frame-dragging and the stellar magnetic field, and that these terms originate from a
purely general relativistic effect.

From this point, we restrict our discussion to the case of a dipole magnetic field,
so that Eq. (2.4a) can be solved in the form

Aφ(r, θ) = −aφ(r) sin
2 θ. (2.5)

In a similar way, the potential At can be written as

At(r, θ) = at0(r) + at2(r)P2 (cos θ) , (2.6)

where P2 is the Legendre polynomial of degree 2.
The solution for aφ can easily be derived in the form 12)

aφ =
3µ

8M3
r2

[

ln

(

1−
2M

r

)

+
2M

r
+

2M2

r2

]

, (2.7)

where µ is the magnetic dipole moment with respect to an observer at infinity. The
resulting dipole magnetic field in the local frame is given by

B(r) = −
3µ

4M3

[

ln

(

1−
2M

r

)

+
2M

r
+

2M2

r2

]

cos θ, (2.8a)

B(θ) =
3µ

4M3





√

1−
2M

r
ln

(

1−
2M

r

)

+
2M(r −M)

r
√

r(r − 2M)



 sin θ. (2.8b)

Next, we discuss the electric field induced by the rigid rotation of the star. The
solution for at0 and at2 can be obtained analytically as

at0 =
c0
r

+
Jµ

2M3r2
(3r −M) +

Jµ

4M4r
(3r − 4M) ln

(

1−
2M

r

)

, (2.9a)

at2 =
c1
M2

(r −M)(r − 2M)

+c2

[

2

Mr

(

3r2 − 6Mr +M2
)

+
3

M2

(

r2 − 3Mr + 2M2
)

ln

(

1−
2M

r

)]
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−
Jµ

2M6r2

(

9r4 − 3Mr3 − 30M2r2 + 8M3r + 2M4
)

−
Jµ

2M6r

(

12r3 − 36Mr2 + 24M2r +M3
)

ln

(

1−
2M

r

)

, (2.9b)

where c0, c1 and c2 are constants of integration. Since c0 is understood as the net
charge of the star, we set c0 = 0. Furthermore, we derive

c1 =
9Jµ

2M4
, (2.10)

from the regularity condition at infinity. The constant c2 is fixed by the junction
condition at the surface of the star. If we impose the assumption of a perfectly
conducting interior, the magnetic field is frozen into the the fluid motion, i.e. uµFµν =
0, where uµ = (ut, 0, 0, Ωut) is the four-velocity of the fluid. From this condition at
the surface, we have

c2 =

{

µJ

M5R2

(

12R3 − 24MR2 + 4M2R+M3
)

+
µJ

2M6R

(

12R3 − 36MR2 + 24M2R+M3
)

log

(

1−
2M

R

)

−
µΩ

4M3

[

2MR + 2M2 +R2 log

(

1−
2M

R

)]}

/[

2

MR

(

3R2 − 6MR+M2
)

+
3

M2

(

R2 − 3MR+ 2M2
)

log

(

1−
2M

R

)]

, (2.11)

whereR denotes the radius of the star. Consequently, using the above c2, the induced
electric field in the local frame can be written as

E(r) =
1

2M6r3

{

c2
[

4M5r
(

6r2 − 3Mr −M2
)

+6M4r3 (2r − 3M) ln

(

1−
2M

r

)]

−2MJµ
(

24r3 − 12Mr2 − 4M2r − 3M3
)

−3rJµ
(

8r3 − 12Mr2 −M3
)

ln

(

1−
2M

r

)}

P2(cos θ),

(2.12a)

E(θ) = −
3

M6r3
√

r(r − 2M)

×
{

c2
[

2M5r2
(

3r2 − 6Mr +M2
)

+3M4r3
(

r2 − 3Mr + 2M2
)

ln

(

1−
2M

r

)]

−MJµ
(

12r4 − 24Mr3 + 4M2r2 −M4
)

−6r3Jµ
(

r2 − 3Mr + 2M2
)

ln

(

1−
2M

r

)}

sin θ cos θ. (2.12b)
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The discussion of the quantitative nature of the electromagnetic field strength is
given in the next section.

§3. Comparison with results in flat space-time

In the previous section, we obtained expressions for the electromagnetic field
in the general relativistic framework. However, these expressions are somewhat
cumbersome. They are reduced to standard expressions given in textbooks 8) when
the gravitational terms are neglected, i.e. when we take the limits M,J → 0. It is
important to compare our expressions with the standard expressions and to examine
the differences. From this point of view, we now derive the simpler approximate
expressions by expanding in powers of 1/r. The lowest-order forms give the standard
results, and the next terms give their corrections. As an approximation, we use the
radius r in the Schwarzschild coordinates as the radius in the flat space-time. The
magnetic and electric fields can be expanded in the forms

B(r) ≃
2µ

r3

[

1 +
3M

2r

]

cos θ, (3.1a)

B(θ) ≃
µ

r3

[

1 +
2M

r

]

sin θ, (3.1b)

E(r) ≃ −
2µR2Ω

r4

[

1−

(

1

2
−

8R

3r

)

M

R
+

(

1−
2R

r

)

I

R3

]

P2 (cos θ) , (3.2a)

E(θ) ≃ −
2µR2Ω

r4

[

1−

(

1

6
−

R

r

)

M

R
+

(

1−
3R

r

)

I

R3

]

sin θ cos θ, (3.2b)

where the terms following the first ones in each of the square brackets are the first-
order corrections due to the curved space-time. In Eq.(3.2), the moment of the inertia
I = J/Ω is used. These corrections can be estimated easily for stars with uniform
density, in which I ∼ 2MR2/5 and M/R ≤ 4/9. The correction terms become larger
with the relativistic factor M/R, but they are less than 1. Thus we see that the
expressions obtained in the flat space-time are accurate to within a factor of 2.

In Figs. 1 and 2, we explicitly display the results in the flat and curved space-
times as functions of the radius. These figures display the normalized values of the
radial parts of the magnetic and electric fields, respectively. We have adopted a
polytropic stellar model with M/R = 0.2, which is a plausible value for neutron
stars. The solid curves here denote the exact values in the curved space-time, while
the dashed curves correspond to the standard results in the flat space-time. From
these figures, we find that the standard expressions in the flat space-time give values
deviating from the curved space-time values by 50% at most. The maximum error
is roughly estimated as 2M/r. Therefore, the standard expressions are useful for
arguments within this order of the magnitude.
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Fig. 1. Radial parts of the magnetic field components B(r) and B(θ) are plotted as functions of the

radius. The field strength is normalized by the typical value µ/R3. The solid, dashed and dotted

curves denote the curved space-time, flat space-time and approximate expressions, respectively.

§4. Implications for the acceleration of charged particles and the

radiation in vacuum gaps

In this section, the results for the electromagnetic field in curved space-time are
applied to analysis of the pulsar emission mechanism, that is, quantities relevant to
the acceleration of charged particles and radiation in vacuum gaps above the polar
caps. The gravitational force is much less than the electrostatic force, but gravity
affects space-time, whose effects on the electromagnetic field are considered here. We
explicitly derive the electric field along the magnetic field lines, curvature radii of the
field lines, and size of polar cap regions. They are important to evaluate the available
potential energy, curvature radiation, and so on. They significantly depend on the
global shape of magnetic field lines, so that deviation from the standard results in
flat space-time is not estimated using some local positions, although the overall error
is not expected to be large.

First, we investigate the electric field component along the magnetic field lines.
This plays a direct, important role in the acceleration of charged particles. The
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Fig. 2. Radial parts of the magnetic field components E(r) and E(θ) are plotted as functions of

the radius. The field strength is normalized by the typical value µΩ/R2. The solid, dashed

and dotted curves denote the curved space-time, flat space-time and approximate expressions,

respectively.
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Fig. 3. The electric field component along a magnetic field line that flows from the stellar surface

with θ = 1◦. The field strength, which is normalized by the typical value µΩ/R2, is calculated

for the Minkowskian case M/R = 0 (dashed) and the relativistic case M/R = 0.2 (solid). The

proper distance l from the stellar surface is normalized by R.
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component is derived from Eqs. (2.8) and (2.12) as

E|| =
E(r)B(r) +E(θ)B(θ)

√

B2
(r) +B2

(θ)

. (4.1)

Figure 3 displays E|| normalized by the typical value µΩ/R2 as a function of the
proper distance l from the stellar surface along a field line. The dashed curve denotes
the Minkowskian case, and the solid curve denotes the general relativistic case of
M/R = 0.2. This figure shows that the electric field component is strengthened
by the general relativistic effect with respect to the same value of µΩ/R2. The
result in the curved case is about 1.5 times as large as that in the flat case near the
surface. A similar kind of enhancement can be seen in the stellar interior due to
the general relativistic effect. 10) These enhancements may be regarded as having a
common origin.

The configurations of the magnetic field lines are also modified by the general
relativistic effect. In general, a magnetic field line is described by an ordinary differ-
ential equation: 13)

dr

dθ
=

Br

Bθ

. (4.2)

The solution of this equation is

Aφ = const (≡ c̃) . (4.3)

Each field line is labeled by a constant c̃. Figure 4 displays the magnetic field lines
embedded in the z-x plane, where (z, x) = (r cos θ, r sin θ), both in the Minkowskian
case and in the general relativistic case. As easily seen from this figure, the magnetic
field lines are moderately modified by the general relativistic effect. Owing to this
change, curvature radii of the field lines are also modified by the general relativistic
effect.

Mathematically, the radius is defined as

ρ̃ =

(

dθ

dl

)−1

, (4.4)

where l denotes the proper distance along a field line. In the Minkowskian case, the
field line is simply specified as c̃r = sin2 θ, so that the curvature radius along the
line labeled by c̃ is given by

ρ̃ =
sin θ

c̃

√

1 + 3 cos2 θ. (4.5)

The general relativistic counterpart should be obtained numerically. Figure 5 dis-
plays the curvature radii ρ̃ of magnetic field lines which start from the stellar surface
with an angle of θ = 1◦. From Fig. 5, we find that the general relativistic effect
causes the curvature radius to become smaller for a fixed magnetic moment. The
curvature radiation is produced by charged particles moving along the magnetic field
lines. The resulting curvature radiation photon energy is proportional to ρ̃−1. The
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Fig. 4. Magnetic field lines for the Minkowskian case (M/R = 0) (a) and the general relativistic

case with M/R = 0.2 (b), plotted in the z-x plane, where (z, x) = (r sin θ, r cos θ). Both cases

have the same magnetic moment. The surface of the star is denoted by the circle of radius 1.
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Fig. 6. Polar cap angles plotted as functions of the general relativistic factor M/R for RL ≃ 5 ×

103R.

correct treatment in curved space-time implies an increase of the photon energy.
Although we have displayed only one comparison between the flat and curved cases,
almost the same results were obtained for all small values of θ.

A modification of the field lines, further, leads to a change of the polar cap
radius. The polar cap angle θp is given by

θp = sin−1

√

aφ(RL)

aφ(R)
, (4.6)

where RL is the radius of the light cylinder. To derive the polar cap angle explicitly,
we have assumed

RL =
c

Ω
≃ 5× 103R (4.7)

for any value of M/R. Figure 6 displays the dependence of the polar cap angle θp
on the general relativistic factor M/R. From this figure, we see that the polar cap
angle is reduced by about 15% due to the curved nature.

§5. Discussion

Recent observations of compact stars have given remarkable results that demand
the refinement of theoretical models. Inspired by this, we have reconsidered an exte-
rior electromagnetic field surrounding a rotating star endowed with an aligned dipole
magnetic field in the context of general relativity. The electromagnetic fields were
derived in analytic and approximate forms. We found that the expressions calculated
in the flat space-time are accurate within a factor of approximately 2. We have not
calculated the emission and propagation of radiation from polar caps of pulsars, but
rather have discussed the implications for the underlining physical processes. We
have found that the general relativistic effects increase the strength of electric fields
and decrease the curvature radii of the magnetic field lines. Both of these factors
contribute to increase the photon energy emitted from charged particles. The magni-
tude of the correction is of order M/R. Another important general relativistic effect,
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which has not been considered here, is the redshift factor. The observed energy is
shifted to a lower value by a factor of M/R. It is not clear whether or not all these
general relativistic effects are canceled. It is important to construct detailed models
of pulsar radiation, taking these factors into account.

Although we have restricted our investigation to a rotating star in a vacuum, it
seems that actual neutron stars are surrounded by plasma. Hence, it is important to
investigate the acceleration of charged particles and the radiation taking into account
the plasma distributions around stars. A general relativistic analysis using a certain
pulsar model which specifies the plasma distribution has been given by Muslimov
and Tsygan. 14) The general relativistic effects in pulsar models are not yet clear,
since the magnitude of the effects significantly depends on the plasma distribution.
It is necessary to discuss the effects in a more general framework. This will be the
subject of future investigation.
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