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Stationary dark energy : the present universe as a global attractor
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We propose a cosmological model that makes a significant step toward solving the coincidence
problem of the near similarity at the present of the dark energy and dark matter components.
Our cosmology has the following properties: a) among flat and homogeneous spaces, the present
universe is a global attractor: all the possible initial conditions lead to the observed proportion of
dark energy and dark matter; once reached, it remains fixed forever; b) the expansion is accelerated
at the present; c) the model is consistent with the large-scale structure and microwave background
data; d) the dark energy and the dark matter densities scale similarly after equivalence and are close
to within two orders of magnitude.

Since the introduction of inflationary models the notion of attractor cosmological solutions has been regarded as a
desirable property of any successful model. Unfortunately, inflation itself has never completely solved the problem of
the initial conditions, since the subsequent decelerated era is no longer an attractor, and any fluctuation away from
flatness will be amplified in the future, unless a new accelerated era prevents it.
The search for cosmological attractors has been revived by the recent findings ( [1] [2]) according to which the

dominant component of the universe medium is in a form of energy density possessing peculiar characteristics: negative
pressure and weak clustering. This energy, dubbed dark energy or quintessence ( [3] [4] [5] [6]), should fill roughly
70% of the critical energy density and, along with another 30% in ordinary dark matter (and a minor component
of baryons), explains the SNIa observations, is consistent with the CMB data (see e.g. [7]), and other evidences like
the cluster masses. The fact that the energy densities of the dark energy and the dark matter are comparable at
the present time is indeed an enigma, since we have no reason to expect that the dark energy and the dark matter
components, which have always given a very different contribute to the total density in the past and will again give
a different one in the future, are almost equal right now. In terms of the phase-space view of the cosmological
equations, the problem is that the mixture of dark energy and dark matter we observe today is not a global attractor;
a different initial condition or, equivalently, a different instant of observation, gives a different sharing of the total
density. The problem lies in the fact that the two energy forms scale differently with time because they are assumed
to be completely unrelated. To explain the coincidence we propose to couple dark energy to dark matter.
The model we propose in this paper, denoted stationary dark energy, is based on a non-linear coupling of dark energy

to dark matter. The resulting cosmological solution has the following properties: a) among flat and homogeneous
spaces, the present universe is a global attractor: all the possible initial conditions lead to the observed percentages of
dark energy and dark matter; once reached, they remain fixed forever; b) the expansion is accelerated at the present,
as requested by the SNIa observations; c) the model is consistent with the large-scale structure and CMB data; d) the
dark energy and the dark matter densities always scale similarly after equivalence and are close to within two orders
of magnitude. Basing on the literature known to us, no other cosmological model satisfies all four requirements. For
instance, the quintessence model of ref. [6] [8] [9] [10] is accelerated and consistent with observational data but the
present universe is not a global attractor: the observed percentages of energy density will change in the future until
the cosmic medium will be dominated by quintessence alone. Notice that in all these models there is a “tracking”
solution, that can be defined as an attractor in a subspace of the phase space; in contrast, a true attractor as we have
in our model is an attractor in the full phase space. The model proposed in [11], based on an exponential potential,
satisfies a ) only if is not accelerated. With the inclusion of a linear coupling between dark energy and dark matter, as
in refs. [12] [13] [14], it can satisfy a), b) and d) but still not c) or, alternatively, can be accelerated and consistent with
observations but then the present universe is not a global attractor. In ref. [14] a model that can satisfy all criteria
is proposed, but it requires the introduction of two different forms of dark matter, only one of which is coupled to
dark energy. In ref. [15] and [16] a dark matter with an effective anti-friction can satisfy a) and d) but the effects on
structure formation and microwave background have not been tested.
In our model the final state of the universe is an accelerated expansion with a fixed ratio of dark matter and dark

energy. We can remark that since the accelerated expansion flattens a curved space, the global attractor in our model
attracts also all open universes and all those closed universes which have not already collapsed to a singularity by
the time the final stationary state sets in (see [17] for a discussion on attractor solutions in curved spaces). It is to
be noticed, however, that although in our model the universe will always reach a final state that may represent our
present world, there is no guarantee that this state has already been reached, nor that it had done so late enough to
grow sufficient structure formation. This two requirements do limit the range of acceptable initial conditions.
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In this work we introduce the concept and derive the main constraints imposed by primordial nucleosynthesis, age of
the universe, large scale structure and SNIa results. More precise constraints from CMB observations will be derived
in another paper. The dark energy scalar field in our model is defined by two functions: the coupling to dark matter
and the potential. The coupling generalizes the linear one introduced in ref. [18] (see also [19] [14] [20]), which is in
fact the Einstein frame version of a Brans-Dicke theory: now we will adopt a non-linear coupling, as detailed below.
To avoid the strong constraints on such a coupling we adopt the species-dependent coupling proposed in Ref. [21],
leaving the baryons uncoupled (see also [22] [13] [23]). To introduce our model we first recall the main properties of the
coupled quintessence [13]: a scalar field with exponential potential and linear coupling. Consider three components, a
scalar field φ , baryons and CDM, described by the energy-momentum tensors Tµν(φ), Tµν(b)and Tµν(m), respectively.
General covariance requires the conservation of their sum, so that it is possible to consider a coupling such that

T µ
ν(φ);µ =

(

CmT(m) + CbT(b)

)

φ;ν ,

T µ
ν(m);µ = −CmT(m)φ;ν , T µ

ν(b);µ = −CbT(b)φ;ν . (1)

A similar coupling is obtained by conformally transforming a non-minimally coupled gravity theory. The radiation
field (subscript γ) remains uncoupled, since T(γ) = 0. We derive the background equations in the flat FRW metric,
assuming the exponential potential

U = Aesφ (2)

as proposed e.g. in [5] [4] [11]. As anticipated, we will couple the dark energy scalar field to the dark matter only,

putting Cb = 0. We call this choice dark-dark coupling. Introducing the variables [24] x = κ
H

φ̇√
6
, y = κ

H

√

U/3, z =
κ
H

√

ργ/3, (where H = ȧ/a , G = c = 1 and κ2 = 8π), and adopting the e-folding time α = log a, we can write the
field and radiation conservation equation as a system in the variables x, y, z that depends on the parameters µ, β

x′ = (z′/z − 1)x− µy2 + β(1− x2 − y2 − z2),

y′ = µxy + y (2 + z′/z) ,

z′ = −z
(

1− 3x2 + 3y2 − z2
)

/2, (3)

where the prime denotes derivation with respect to α, and where β = Cm

√

3/(2κ2), µ = s
√

3/(2κ2). The baryons
are here neglected, since they act on the dynamical system only as a minor perturbation. The dimensionless constant
β sets the ratio of the strength of the dark-dark interaction with respect to the gravitational interaction; β is clearly
not constrained by local experiments or by Ġ/G measurements [21]. Here we restrict the attention to β > 0, µ > 0,
without loss of generality (see [13]).
The system (3) has several different global attractors, depending on the values of the parameters β and µ, but only

two can be accelerated. One, to be denoted attractor a, exists for µ < 3 , and is accelerated for µ <
√
3. On this

attractor, the energy density is entirely in the dark energy component, and as such it cannot represent our universe.
Of course, our universe could be described by this solution if the attractor has not been reached yet (see e.g. [7]). The
other, the attractor b, exists for µ+ β > 3/2 and is accelerated for µ < 2β . On this attractor, contrary to the case a
, the energy density is shared by the dark energy and the dark matter in the following proportions

Ωφ =
4β2 + 4βµ+ 18

4(β + µ)2
, Ωm = 1− Ωφ (4)

The universe expands as a power law a ∼ tp with exponent p = 2(1+β/µ)/3 . Choosing the parameters we can ensure
that the final state is, for instance, Ωφ = 0.7 and Ωm = 0.3. Once reached, these values will remain fixed forever. The
problem with the model above is that when the radiation epoch ends, the system reaches rapidly the attractor b and
a matter dominated epoch never sets in: the inhomogeneities never grow and the model fails completely to explain
the large scale structure. What is lacking is an intermediate phase of matter domination and structure formation.
Such a phase would be present if Ωφ were very small, say less than 0.1, so that Ωm dominates. However, as can be
seen from Eq. (4), to get a small Ωφ we need a large ratio µ/β, but then this attractor would not be accelerated since
p < 1. In other words, if we want acceleration, we need a large coupling, β ≫ µ; if we want structure formation, we
need on the contrary a small coupling, β ≪ µ. To have both, we need two couplings.
To realize this we use a non-linear coupling that switches between a small (or zero) β1 and a large β2 when φ rolls

down the potential. For the numerical calculations of this paper we assume

β(φ) =
1

2

[

(β2 − β1) tanh

(

φ1 − φ

∆

)

+ (β2 + β1)

]

. (5)
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The precise form of the coupling function β(φ) is not really important; any step-like function that switches on the
coupling after structure formation will give qualitatively similar behavior. We choose the constants β1 and β2 and
the slope µ so that

β1 ≪ µ ≪ β2. (6)

The dynamics of the model can then be summarized as follows. When the universe leaves the radiation era, if φ > φ1,
the coupling is effectively β1, and the system falls on the attractor (4 ) with β = β1. Taking a small β1 and a large µ,
the contribution of Ωφ = 9/2µ2 is small and the matter dominated era allows the inhomogeneities to grow. Moreover,
the condition µ ≫ 1 will ensure that the primordial nucleosynthesis is not excessively altered. When φ rolls below φ1,
the coupling becomes stronger and the final global accelerated attractor (4) with β = β2 is reached. The condition
β2/µ ≫ 1 (actually β > 2µ is sufficient) ensures that the second and last power law is accelerated. The universe
will inflate forever with a constant ratio of dark energy to dark matter. The value φ1 sets the instant at which the
coupling changes strength and the universe crosses from the dark matter epoch to the dark energy epoch, while ∆
modulates the rapidity of the transition. For the model to explain the large scale structure, it is crucial that this
transition occurs late enough for the inhomogeneities to grow.
With the coupling (5) we obtain the same equations (3) where now the constant β becomes a function β(y,H) and

where an extra equation for H is needed, H ′ = − 3H
2 (1+x2 − y2+ z2/3). In Fig. 1 we present a numerical integration

of the full set of equations. As expected, there exist three distinct phases of constant energy density ratios among the
various components. First, the model passes through a radiation dominated epoch with a vanishing contribution of
matter and a small or vanishing contribution of the scalar field. After equivalence, it falls upon the saddle (4) where,
for small β1, matter dominates but there is also a finite contribution from the dark energy (y = −x = 3/2µ in the
limit of small β1): this stage is denoted plateau I. Finally, it enters the present epoch of dark energy domination,
with a 30% contribution from the dark matter: this is the plateau II. In the same Fig. 1 we plot also the effective
parameter of state weff = 1 + ptot

ρtot

: values weff < 2/3 imply acceleration.

An obvious objection to our model is that we are trading the coincidence between dark energy and dark matter for
a coincidence with the instant when the strong coupling is switched on. However, it is to be remarked that in our case
dark energy and dark matter have been similar to within one or two orders of magnitude ever after equivalence (Ωφ

goes from 9/2µ2 in plateau I to 0.7 in plateau II), so that the present coincidence is no longer particularly striking: in
other words, after equivalence, the ratio of dark matter to dark energy is never really far from unity, while in all the
other models it is so only at one particular instant, and extremely large or small at any other time. In addition, the
fact that dark energy and dark matter are allowed to reach a constant proportionality only after equivalence explains
also the “triple coincidence” noticed by Arkani-Hamed et al. [25] among radiation and the other components: in
our model, it is the end of radiation dominance that triggers dark energy and dark matter to equalize. In Fig. 2 we
contrast the behavior of the ratio ρφ/ρm in our model (for different initial conditions) with that in a inverse power-law
as in [6]. As can be seen, while in our case the ratio remains relatively close to unity at all times after equivalence, in
the inverse power-law case this coincidence occurs only today.
Let us consider now the main constraints on the model. First of all, we fix Ωφ = 0.7 ± 0.1, and weff |0 ∈ (0, 0.6)

as required by SNIa observations along with the condition of flatness. Then, we impose that the universe age be
sufficiently large. Neglecting the radiation epoch and assuming instantaneous transition from plateau I to plateau II
at a redshift zc we obtain

T =
2

3H0

[

1− (1 + zc)
− 3

2
w2

w2
+

(1 + zc)
− 3

2
w1

w1

]

, (7)

where w1 = µ/(µ + β1) and w2 = µ/(µ + β2). Because of the inequalities (6) we may approximate, if zc ≫ 1 (but

also zc ≪ 1000 in order to ensure structure formation; zc ≃ 5 would be acceptable) T = 2
3H0

(32 log zc + zc
− 3

2 ), which

is always larger than the matter dominated age 2/(3H0), so that we pass easily the age test.
We come now to the condition of sufficient structure formation. The growth of perturbations in the plateau I

has been considered in Ref. [12]. The dark matter inhomogeneity δ during the plateau I grows as am with m =
1−p1

2p1

[−1 + [1 + F (Ωφ1, p1)]
1/2

] , p1 and Ωφ1 being the scale factor exponent and the field energy density parameter

during the plateau I and where

F (Ωφ, p) =
6p(1− Ωφ)

[

−8 + 26p+ 3(Ωφ − 7)p2
]

(p− 1)2 [2 + 3p(Ωφ − 1)]
.

This reduces to the usual linear growth m = 1 for p1 = 2/3 and Ωφ1 = 0, that is in the standard case without
scalar field. In all the other cases, m < 1. Therefore, in order for the perturbation to grow not much less than
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in the usual matter dominated era, we need to be close to the standard case. For instance, if m = 0.9, then the
fluctuations grow from z ≃ 1000 down to z ≃ 1 by half the standard case. Considering the present uncertainty on the
amplitude of fluctuations at the present, we may take this as the lower limit for the fluctuation growth. Requiring
also β > 0,m > 0.9 implies µ > 28.1. Finally, the nucleosynthesis constraint reduces to the request that during the
radiation era the contribution of the dark energy is sufficiently low, e.g. less than 15%. During the radiation era the
system passes through one of two saddles, depending on the initial conditions. In one, labelled bR in Ref. [13], there
is a constant contribution from the scalar field, corresponding to Ωφ = 6/µ2: nucleosynthesis requires Ωφ ≤ 0.15 ( see
e.g. [11]) or µ > 7. In the second saddle the contribution from the field vanishes, so there are no additional constraints
from it. In Fig. 3 we summarize the constraints derived so far. Every coupling function, or potential, that moves the
effective parameters µ, β from region I (the gray region on the left) to region II (the gray region on the right) after
structure formation produces an acceptable model.
In conclusion, we have shown that it is possible to construct a relatively simple model in which the present universe

has already reached the global attractor. This offers two advantages over the previous dark energy models with tracking
solutions. The first is that the presently observed ratio of dark matter to dark energy density has been close to within
two orders of magnitude ever after equivalence, thereby reducing the impact of the cosmic coincidence problem. The
second is that all the initial conditions will lead sooner or later to this state, while in all the other models only a
finite fraction of the phase space lead to our universe (see e.g. the discussion in [8]). The near coincidence of dark
energy and dark matter energy densities does not longer depend on the initial conditions but only on the coupling
constants, and will be the same at any future epoch. We believe this is a significant step toward the solution of the
cosmic coincidence problem. Of course, current observations do delimit the range of acceptable initial conditions: in
fact, many initial conditions will give trajectories that fall onto the final attractor either too soon, so that not enough
structure forms, or too late, so that we are still short of the attractor. In other words, although the phase-space
trajectory that the universe follows from some point onward is unique and independent of the initial conditions, the
current position on the trajectory do depend on them, as in all cosmological models.
Aknowledgments. L.A. thanks David Wands for useful discussions and for the hospitality at the University of
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FIG. 1. Top panel. Trends of Ωγ (dashed line), Ωm (dotted), and Ωφ (continuous) versus log a. The three regimes mentioned
in the text are evident: first, radiation dominates, then matter dominates (plateau I), and then finally the system falls on the
final accelerated attractor (plateau II) with 30% of dark matter and 70% of dark energy. The constants have been chosen here
as µ = 30 , β1 = 0 and β2 = 70. Bottom panel. The effective parameter of state weff during the three regimes: first equals
4/3, then goes down to 1, and finally becomes accelerated, weff = 0.3.
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FIG. 2. The plot shows the behavior of ρφ/ρm in our model (continuous lines) for different initial conditions, and in an
inverse power-law model without coupling (dotted line). The vertical line is the present time. In the coupled model the ratio
is close to unity ever after equivalence.
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FIG. 3. Parameter space of the model. To the right of the short-dashed line the expansion is accelerated; above the
long-dashed line the nucleosynthesis constraint is passed. The parameters within the gray region on the left produce enough
structure formation. Those inside the gray region on the right yield an accelerated expansion with Ωφ between 0.6 and 0.8 (the
continuous line is Ωφ = 0.7). Any coupling function that switches from the first region to the second after structure formation
gives an acceptable model. The two asterisks mark the effective parameters we employed in the numerical calculations.
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