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ABSTRACT

Unusual patterns of recombination emission from gas ionized by metal-free stars may distinguish early star-
forming galaxies from their present-day counterparts. This pattern arises from the harder ionizing spectrum ex-
pected from metal-free stars, which strongly enhances the strength of HeII recombination lines. Our calculations
indicate that line fluxes of HeII λ1640 andλ4686 are sufficiently large to be detected by narrowband and spectro-
scopic searches for high-redshift emission-line sources at z ∼ 5 using current instruments. An unknown fraction
of Lyα emitters may harbor low-metallicity or metal-free stars. As the predicted HeII λ1640 flux is comparable
to and may exceed hydrogen Lyα, searches for high-redshift galaxies should consider HeII recombination lines
as possible identifications for single emission lines in observed spectra. Spectra of metal-free stars may show
both H I and HeII emission lines, improving the constraints on their redshift and identification. We assess the
considerable uncertainties that affect our expectations for the detection and identification of true first-generation
stars with present search techniques, including the role ofstellar mass loss in spectral evolution and the confusion
of ionization by primordial stellar sources and AGN in the early universe.

Subject headings: stars: early type — intergalactic medium — cosmology: theory

1. INTRODUCTION

The first stars have long attracted interest from a cosmolog-
ical point of view, and recent detailed studies of their prop-
erties have renewed interest in their cosmological importance.
Within the constraints of big-bang nucleosynthesis, thesestars
must have been metal free, which modifies their structure in
fundamental ways: metal free stars have smaller radii, hotter
cores, and higher effective temperatures than their counterparts
of equal mass but finite metallicity (Tumlinson & Shull 2000).
These stars are leading candidates for the sources that reionized
the intergalactic medium (Gnedin 2000; Haiman & Loeb 1997),
and they produced the first heavy elements that enriched sub-
sequent stellar generations. Tumlinson & Shull (2000) found
that these stars, here called Population III or simply metal-free,
have harder spectra and emit more ionizing photons in the HeII
ionizing continuum than do stars of typical solar or sub-solar
metallicity. Thus, they may dominate HeII reionization in the
high-redshift universe.

Distinctive spectral features of their surrounding nebulae
may provide a means of detecting the first stars, during and af-
ter the epoch of reionization. Tumlinson & Shull (2000) noted
that the hard spectra of Pop III stars produce large HeIII re-
gions, which may emit detectable HeII recombination emis-
sion. Recombination lines of HeII atλ1640 (n = 3→ 2),λ3203
(n = 5→ 3), andλ4686 (n = 4→ 3) are particularly attractive
for this purpose, because they suffer minimal effects of scat-
tering by gas and decreasing attenuation by intervening dust.
Thus, an assessment of the near-term prospects for discover-
ing metal-free stellar sources is timely. However, uncertainties
about the primeval initial mass function (IMF), the importance
of stellar mass loss at zero metallicity, and the features ofstellar
evolution must be addressed.

In this Letter, we consider the possibility of detecting metal-

free stars using HeII recombination emission, and the uncer-
tainties inherent in this technique. Main-sequence mass loss,
not well understood from an evolutionary standpoint, can af-
fect the detectability of the first stars via nebular emission lines.
Emission line ratios and line profiles may discriminate between
stars and active galactic nuclei (AGN) as sources of ionization.
We address these issues in the context of existing tracks and
assess their importance to the detectability of metal-freestars.

In § 2 we derive an expression for the observed HeII
emission-line flux of a metal-free stellar population in terms
of the star formation rate and evolutionary properties. In §3 we
use evolutionary tracks and model atmospheres to assess theef-
fects of stellar evolution on the detectability of metal-free stel-
lar populations. In § 4 we compare our predictions to current
observational searches for high-redshift stellar populations, in-
cluding present-day emission-line techniques, and we discuss
the ambiguity between emission lines produced by metal-free
stars and AGN. In § 5 we summarize our results and comment
on directions for future work.

2. EMISSION LINES FROM METAL-FREE STARS

We begin by estimating a relationship for the observed HeII
emission-line flux from metal-free stars as a function of star
formation rate (SFR) and stellar evolutionary parameters.Us-
ing the zero-age structure and atmosphere models presentedby
Tumlinson & Shull (2000), we use recombination theory to es-
timate the total luminosity in the HeII emission lines. We as-
sume that few HeII ionizing photons escape the galaxies where
they are produced (fesc ≃ 0) and that the sources themselves
contain no dust. We use the Kennicutt (1983) law to relate the
luminosity of the Hα line to the star formation rate, L(Hα) =
(1.12× 1041 erg s−1) (SFR/M⊙ yr−1). For case B recombina-
tion at T = 20,000 K (corresponding to a higher nebular tem-
perature in low-metallicity gas) andnHeIII/nHII = 0.0789, we
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find j4686/ jHα = 0.33, j1640/ jHα = 2.3, and j3203/ jHα = 0.14
(Seaton 1978). Kennicutt (1983) assumed a Salpeter-like IMF
and used stellar evolution tracks for Population I massive stars.
We assume a similar IMF and include a factor,fevol (of order
unity), designed to account for the time evolution of the stel-
lar ionizing continuum radiation, and defined to be unity if the
evolution in HeII ionizing photon rate for metal-free stars is
identical to the evolution of HI ionizing photons used by Ken-
nicutt (1983). The factorfevol can be evaluated using Pop III
evolutionary tracks coupled with model atmospheres (see § 3).
Using the results of Tumlinson & Shull (2000), we scale the
He II ionizing photon production of zero-metallicity stars to the
H I ionizing photon production implicit in the Kennicutt (1983)
relation. We find that Pop III stars produce 10−1.1 as many HeII
ionizing photons as the Pop I stars produce HI ionizing pho-
tons. Scaling the luminosity of HeII λ1640 to Hα, we find:

L1640 = (4.2×1040 erg s−1) fevol

(

SFR
M⊙yr−1

)

. (1)

For deceleration parameterq0 = 0.5, the flux of this source is:

F1640(z) =
(4.1×10−18 erg cm−2 s−1)h2

65 fevolSFR

[(1 + z) − (1+ z)
1
2 ]2

, (2)

whereh65 is the Hubble constant in units 65 km s−1 Mpc−1. The
flux of He II λ4686 is 7.1 times lower thanF1640, and the flux
of λ3203 is 16.2 times lower. (Hereafter we concentrate on the
two stronger lines.) This relation is plotted in Figure 1 forSFR
= 5 and 20M⊙ yr−1 and fevol = 0.4 and 2.0; these choices of
fevol are justified in § 3. We also plot detection limits of three
recent emission-line searches for high-redshift galaxies. Figure
1 shows that, even for conservative estimates offevol, metal-free
stellar populations may be detectable toz = 2− 5 for a reason-
able range of SFR. If a detection can be made and its redshift
accurately measured, the star formation rate can be constrained
if fevol is carefully calibrated by stellar evolution models.

3. STELLAR EVOLUTION EFFECTS

Stellar evolution at zero metallicity is uncertain and may en-
hance or diminish the detectability of metal-free stars. Tumlin-
son & Shull (2000) estimated the ionizing photon production
from zero-age main sequence (ZAMS) metal-free stars of mass
2 – 90M⊙ using static stellar structure models and NLTE model
atmospheres. The HeII ionization produced by these stars is
a direct result of their high effective temperatures. However,
published evolutionary tracks of metal-free stars (Castellani et
al. 1983; Chieffi & Tornambe 1984) show that these stars may
evolve to cooler temperatures and larger radii over their life-
times if they do not experience mass loss. Because mass loss
may play a significant role in the spectral evolution of the star,
it produces uncertainty in the interpretation of emission-line di-
agnostics.

With model atmospheres similar to those presented by Tum-
linson & Shull (2000), Hubeny, Lanz, & Heap (2000) argue
that line-blanketed, radiation pressure-driven winds arenot ini-
tiated for stars withZ ∼< 0.001, owing to the relative lack of
metal line-blanketing in their atmospheres. Kudritzki (2000)
draws similar conclusions. However, these groups have not,as
yet, extended their models to the rangeTeff ≥ 60000 K occupied
by metal-free massive stars.

Because these stars radiate near the Eddington limit, they
may drive winds with electron-scattering opacity. El Eid etal.

(1983) used an empirical mass-loss prescription from Chiosi
(1981) that scaleḋM to the Eddington luminosity with no ex-
plicit dependence on metallicity. They found typical mass loss
rates ofṀ ∼ 10−5 M⊙ yr−1 for stars of 80 - 500M⊙, with lit-
tle dependence on luminosity. At these rates, a star with initial
mass 80M⊙ will fall to 40 M⊙ by the end of hydrogen burning,
when it begins an excursion to hotterTeff in the HR diagram.
As its outer layers are lost, hotter regions below are exposed,
and the interior structure adjusts to the changing mass and pho-
tospheric conditions. At late times,Teff increases by 0.2 dex
over their ZAMS, increasing the production of He II ionizing
photons by an order of magnitude.

To evaluate the importance of stellar evolution and mass loss
on the production of HeII ionizing photons, we make two lim-
iting assumptions: (1) mass loss from Population III stars is
negligible, with no effect on their evolution; (2) mass lossis
important and affects the structural and spectral evolution of
the star. We use the 25M⊙ track calculated by Castellani et
al. (1983) to represent the first case, and the 80M⊙ mass-loss
track by El Eid et al. (1983) for the second. These tracks are
not intended to replace the stellar models on which our flux es-
timates are based. Rather, they represent extremes of mass loss
used to constrain the parameter space offevol. If mass loss is
unimportant to the evolution of metal-free stars, then the gen-
eral trend to lowerTeff seen in the 25M⊙ track should hold for
stars at all mass and will favor low values offevol. Conversely,
if mass loss substantially affects the later evolutionary phases of
metal-free stars, then the trends toward higherTeff at late time
will favor larger fevol.

Model atmospheres were calculated with the TLUSTY code
(Hubeny & Lanz 1995) for a set of points along the evolutionary
tracks, placed to capture the time evolution ofTeff and surface
gravityg. We define a time-averaged flux parameter,

fQi =

∫

tPSN
Qi(t)dt

Qi(0)tPSN
, (3)

whereQi=0,1,2 are the ionizing photon production rates for HI,
He I, and HeII , respectively, andtPSN is the pre-supernova life-
time of the star. The 25M⊙ star evolves to lowerTeff during
H burning and experiences a burst of He II ionizing photons
near the onset of He burning. The 80M⊙ star loses over half
of its mass during its lifetime and makes two brief excursions
to highTeff and highQ2. For the constant-mass (25M⊙) track,
we derivefQ0 = 1.3, fQ1 = 1.1, andfQ2 = 0.32. For the 80M⊙

track with mass loss, we findfQ0 = 1.2, fQ1 = 1.1, andfQ2 =
1.80. For comparison, we estimate thatfQ0 = 0.7, fQ1 = 0.4, and
fQ2 = 0.3 are characteristic of the Chiosi, Nasi, & Sreenivasan
(1978) Population I tracks used by Kennicutt (1983). Because
fevol compares the evolutionary trends in the He II ionizing flux
from metal-free stars with the time average in H I ionizing flux
from Pop I, our estimate is given byfevol = fQ2 (Pop III)/ fQ0

(Pop I). Thus, on timescales long compared to the evolution of
massive stars,fevol may range from 0.4 to 2.6. The two limiting
cases imply different behavior on short timescales. ForṀ = 0,
the HeII emission fades and H I emission brightens over time
as the stars evolve to cooler temperatures. ForṀ 6= 0 the HeII
emission from a Pop III cluster increases over time, as stars
of successively lower mass exhaust their central hydrogen and
make excursions to hotterTeff.

Our calculation illustrates a key feature of the ionizing pho-
ton production by the first stars: emission-line diagnostics
evolve with their stellar populations, and this must be con-
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FIG. 1.— Flux of He IIλ1640 line as a function of source redshift (eq. 2). The dashedand solid curves correspond tofevol = 0.4 and 2.0, respectively. The
upper and lower curves in each pair correspond to star formation rates 20 and 5M⊙ yr−1. The flux forλ4686 is 7.1 times lower thanF1640. The horizontal solid,
dotted, dash-dot, and dashed lines show the limits of current Lyα emission-line surveys, as described in the text. The flux limits have been corrected for the energy
difference between 1216 Å and 1640 Å. At the top, we mark the ranges of redshift probed by the He IIλ1640 (above) andλ4686 (below) lines for optical and
infrared searches. Optical searches forz = 1− 5 are feasible now, and infrared searches may be possible in the near future.

sidered in the planning and interpretation of observational
searches. A single snapshot of a metal-free stellar population
in its HeII recombination lines would not distinguish between
the Ṁ = 0 andṀ 6= 0 cases, because of the degeneracy in the
parametersfevol and SFR (eq. 2). Measuring the star formation
rate of metal-free stars with HeII emission requires thatfQ2 be
carefully calibrated by stellar evolution calculations.

The evolution of the ionizing photon production may pro-
vide a means of distinguishing between the two cases presented
above. The time evolution ofQi for the limiting cases oḟM = 0
andṀ 6= 0 illustrates a key difference between the two possi-
bilities. The 25M⊙ star at constant mass exhibits most effi-
cient HeII ionization at the beginning of its H-burning main-
sequence, givingQ2/Q0 = 10−4. The 80M⊙ star withṀ 6= 0, by
contrast, achieves the maximum valueQ2/Q0 = 0.40 at the end
of its life. This ratio is larger than the range ofQ2/Q0 = 0.05 –
0.12 for the most massive stars studied by Tumlinson & Shull
(2000) and Bromm, Kudritzki, & Loeb (2000). Thus, the two
extreme cases can be distinguished by observed HeII to H I
ionization ratios that exceed those achieved by constant-mass
stars.

4. COMPARISON WITH OTHER EMISSION-LINE DIAGNOSTICS

The relatively bright HeII emission-line fluxes predicted for
metal-free stars raise the possibility of detection with present-
day broadband and spectroscopic searches. In particular, we
examine the possibility that HeII λ1640 emitters have already
been observed and mistaken for Lyα emitters. Recent searches
for high-redshift galaxies use narrow-band imaging and spec-
troscopic techniques. These emission lines are believed tobe
Lyα because deep spectra reveal no other galactic emission
lines ([O III] λ5007, [O II] λ3727, Hα), and these identifica-
tions for the single line can be eliminated by the absence of

corresponding emission.
In Figure 1 we plot the detection limits of three current Lyα

searches for high-redshift galaxies. Hu, Cowie, and McMa-
hon (1999) quote a 5σ detection limit 1.5×10−17 erg cm−2 s−1

for narrowband imaging and 5.0×10−18 erg cm−2 s−1 (5σ) for
spectroscopic searches. In a 1.5 hour Keck exposure, Stern et
al. (2000) achieved a limiting flux 6.0×10−18 erg cm−2 s−1 in
a 1′′ slit for an unresolved line. Rhoads et al. (2000) achieved
detections ranging between 1.8− 2.6×10−17 erg cm−2 s−1 us-
ing combinations of imaging and spectroscopy. As shown in
eq. 2, such a detection of HeII lines would measure the prod-
uct of SFR andfevol. Therefore, careful calibration offevol with
stellar evolution models could break the degeneracy and inde-
pendently constrain the star formation rate.

Hu, McMahon, & Cowie (1999) reported the detection of a
single line in the spectrum of a luminous galaxy, using a combi-
nation of narrowband imaging and spectroscopic observations.
Identifying this line as Lyα, they inferz = 5.74, a total line flux
1.7×10−17 erg cm−2 s−1 at 8195 Å, and a star formation rate of
19 M⊙ yr−1. If this line is HeII λ1640 atz = 4.0, the implied
SFR would be 80, 32, and 16M⊙ yr−1 for fevol(Q2) = 0.4, 1.0,
and 2.0, respectively. Typical Lyman-break galaxies have in-
ferred SFR≃ 10− 100M⊙ yr−1 (Steidel et al. 1999). Thus, the
SFR by itself does not rule out identification as HeII λ1640 for
implied values offevol consistent with thėM 6= 0 case. The im-
plied total flux inλ4686 is 2.3×10−18 erg cm−2 s−1 at 2.34µm,
below the K-band sensitivity limits of the Hu et al. (1999) sur-
vey. The flux predictions in § 2 suggest that this line might be
He II λ1640 atz = 4.0, were it not for the presence of a spectral
break across the line produced by intergalactic Lyα absorption.
The absence of the break may provide key spectroscopic evi-
dence for identifications of HeII recombination lines. Without
a break, the U, B, and V dropout techniques commonly used
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to discover high-redshift galaxies (Steidel et al. 1999) may not
select these objects for spectroscopic followup. BecauseQ0 for
Pop III is similar to that of Pop I (Tumlinson & Shull 2000), the
observed fluxes of He IIλ1640 and HI Lyα should be compa-
rable. The predicted line fluxes and the separation of Lyα and
He II λ1640 by 424(1+z) Å suggests that some detections may
show two emission lines, confirming identification and redshift
in the rangez = 2−5. Future spaceborne missions such asNGST
may also be used to detect high-redshift AGN and metal-free
stars via associated HeII λ1640 andλ4686 nebular emission
(Oh, Haiman, & Rees 2001).

It remains an issue, however, how the detection of a single
nebular line would permit one to discriminate between stellar
and AGN sources of ionizing radiation. Intrinsic line widths
may not be sufficient to resolve the confusion. Recent surveys
of Wolf-Rayet galaxies (Schaerer et al. 1999 and references
therein) show broad HeII λ4686 emission from stellar winds
and narrow nebular emission. These lines are usually detected
at fluxes of 1 – 4% of the observed Hβ fluxes from these galax-
ies, and the broad wind features are generally brighter thanthe
nebular emission. Spectroscopic Lyα surveys (Hu et al. 1999)
typically use low resolution, R∼ 1000, to achieve their required
sensitivity. Identifying stellar and AGN ionization may require
resolution of∼100 km s−1 to distinguish broad, cuspy line pro-
files of AGN lines from narrow nebular emission due to massive
stars. The HeII to H I line ratios for metal-free stars may pro-
vide a further discriminant. ThėM 6= 0 case (§ 3) gives a maxi-
mum value ofQ2/Q0 = 0.40. For a power-law AGN spectrum,
f ∼ v−α, this ratio isQ2/Q0 = 4−α. For the composite radio-
quiet AGN spectrum (α = 1.8) from Zheng et al. (1997), this
ratio isQ2/Q0 = 0.08. However, distinguishing metal-free stars
from AGN with harder spectra than the power-law composite
may be more difficult. If mass loss is important to the evo-
lution of metal-free stars, this maximum ratio technique may
provide a convenient means of distinguishing them from AGN
in the early universe. The prospects for distinguishing stellar
and AGN ionization improve for cases where lines of both HI
and HeII are observed.

As a potential discriminant between AGN and metal-free
stars, IGM ionization ratios of HeII to H I may show dif-
ferent signatures of AGN or stellar ionization. However, the
hard AGN-like ionizing continuum of metal-free stars may con-
fuse the issue. Fardal, Giroux, & Shull (1998) define the col-
umn density ratioη = NHeII/NHI . Ultraviolet studies of the
He II Gunn-Peterson absorption toward quasars atz = 2.7− 3.3
(Davidsen, Kriss, & Zheng 1996; Reimers et al. 1997; Hogan,

Anderson, & Rugers 1997) suggest that the IGM reionizes in
He II at z ≈ 3. The ionizing spectrum required to match the
optical depths,τHI and τHeII, at z ≤ 3 is relatively soft, with
η = 100− 200, in contrast to the harder spectra from unfiltered
AGN and metal-free stars, which yieldη ≈ 30. If metal-free
stars are implicated in the HeII reionization, then observational
searches for the characteristic HeII emission lines (λ1640 and
λ4686) from starburst galaxies atz = 3− 5 would be extremely
helpful. These lines should be measured together with high-
ionization metal absorption lines (CIV , S IV), to assess any
shift in the quality of the ionizing spectrum atz ≈ 3 (Songaila
& Cowie 1996). Discriminating stellar from AGN sources may
depend on detailed line ratio predictions from accretion models
(Hubeny et al. 2000) and stellar population synthesis. The max-
imum line ratio technique sketched above must be extended to
account for IMF and evolution effects, but it holds promise if
complete HI and HeII recombination spectra are observed.

5. SUMMARY

In summary, our main conclusions are the following:

1. Predicted fluxes for HeII emission lines from nebulae
ionized by metal-free stars are comparable to the de-
tection limits of present-day narrowband and spectro-
scopic searches for high-redshift galaxies. Observational
searches for these stars atz ∼ 3− 5 are feasible now at
optical wavelengths. Higher redshift surveys may need
to await space-based infrared instruments.

2. Mass loss by metal-free stars may restrict or enhance
their detectability with emission-line techniques. Careful
calibration with detailed evolutionary tracks and theoreti-
cal work on mass loss from metal-free stars are necessary
to refine this program.

3. If multiple line detections are made for a single object,
He II and HI emission lines may provide important di-
agnostics of the stellar parameters. These line ratios
may provide a means of distinguishing stellar and AGN
sources even if the line profiles are unresolved.

We are grateful to Peter Conti for suggesting HeII λ1640 as
a signature of hot star ionization, and to John Stocke for help-
ful comments about the manuscript. This work was supported
in part by astrophysical theory grants to the University of Col-
orado from NASA (NAG5-7262) and NSF (AST96-17073).
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