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Abstract. Selfconsistent magnetospheres of rotating cosmic magnets (neutron

stars/pulsars) with arbitrary inclination of the magnetic against the rotation axis are

considered. Present studies concentrate on the regime dominated by the force–free

surface (FFS). A macroscopic fluid description is applied and radiation reaction is

taken into account. As in earlier work of our group, a ’standard set of parameters’ is

used. Under these conditions, the following features are found among other results:

global charge separation exists for all degrees of inclination of the magnetic against the

rotation axis; clouds of different charge are seperated by regions of vanishing particle

number density; as expected, test particles inserted into the latter regions propagate

into one of the adjacent clouds; strong polodial currents exist; locally averaged particle

energies for protons typically range up to 1016 − 1017 eV, depending on the angle of

inclination.

PACS numbers: 97.60.Jd Neutron stars, 98.70.Sa Cosmic rays, 52.60.+h Relativistic

plasma, 52.65.-y Plasma simulation 52.25.Wz Nonneutral Plasmas,
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1. Introduction

Since the discovery of pulsars in 1968 [1] and their interpretation as a rapidly rotating

magnetized neutron stars in the same year [2, 3], these compact objects are under

discussion as powerful accelerators of ultra high energy cosmic ray particles.

From the very beginning of neutron star physics, work on the dynamics of

electrically charged particles accelerated in the corresponding electromagnetic fields

proceeded on two stages: (1) test particle dynamics in the vacuum fields of rotating

magnets, e.g. [4, 5], demonstrating fundamental mechanisms and (2) self consistent

plasma dynamics, e.g. [6], reproducing certain aspects of the structure and evolution of

neutron star magnetospheres.

Since then, numerous papers have been published, investigating these matters in

great detail, which we will not be able to discuss or even just to mention in this

introduction to our present paper. Here we shall concentrate on stage (2), on relativistic

plasma dynamics in a regime governed by the force–free surface of a homogeneously

magnetized, rapidly rotating sphere with parameters typical for neutron stars.

The notation of a force–free surface (FFS) refers to the dynamic of an electrically

charged (test) particle within given electromagnetic fields. By definition the FFS is

generated by those points of configuration space at which the Lorentz–force acting on

that particle through given electromagnetic fields vanishes. While in published literature

a particle that happens to be at such a point often referred to as ’force-free’ (ff), we prefer

– in view of the presence of other types of electromagnetic forces (radiation reaction

forces) – to speak of a Lorentz–force–free (Lff) particle in that situation. If B 6= 0 and

E 6= 0 ‡, as is the case in fields considered here, a particle is Lff for E + [β,B] = 0,

i.e., for (I) (E,B) = 0 and (II) (E,β) = 0 and (III) ([E,H],β) = |E2|. E is the

electric field vector, B the vector of the magnetic induction and β is the velocity in

units of the velocity of light. For |E| ≪ |B|, as is the case under premises adopted

here, one may expect the second and the third conditions to be inherently fulfilled to

some approximation so that the FFS then is caracterized solely by the first condition,

(E,B) = 0.

From the early works of [7, 8] magnets rotating in the vacuum with the vector of

magnetic dipole moment inclined against their respective rotation axis are known to

create such FFS, of which some segments can act as particle traps and thus may have

strong bearings on the formation of a neutron star magnetosphere, at least within a

certain range of distance from its surface.

In what follow, it will be useful to distinguish the special case of aligned rotators,

i.e. rotating magnets with the magnetic axis parallel to the rotation axis (parallel

rotators) or antiparallel to the rotation axis (antiparallel rotators), from the general

case of inclined rotators and from rotating magnets with the magnetic axis orthogonal

to the rotation axis (orthogonal rotators). On stage (2), a considerable number of

‡ Boldface letters are for vectors in 3-dimensional euklidean space. (·, ·) denotes the scalar product,

[·, ·] the vector product
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investigations has been published on aligned rotators. Some of these papers will be

mentioned below. But only few are devoted to inclined or orthogonal rotators. In

the latter case, obviously, considerable formal and numerical complications arise from

the lack of rotational symmetry. Analytical approaches were used, for example, by

[8, 9, 10, 11].

In the special case of aligned rotators, due to axial symmetry, theoretical

results are achieved much easier, even on stage (2). Analytical methods have been

applied to the structure of the magnetosphere of aligned rotators for example by

[6, 7, 12, 13, 14, 15, 16, 17, 18]. Also, numerical studies on that matter have been

performed by [19, 20, 21, 22, 23, 24].

On stage (1) in an earlier work of our group [25] the authors have integrated

numerically the equation of motion for individual test particles within the regime of

the FFS and with no restrictions on the relative orientation of the rotational towards

the magnetic axis. Results confirm that velocity components orthogonal to the magnetic

field vector are efficiently damped by radiation reaction. Thus, test particles tend to

follow magnetic field lines, as suggested earlier by [7]. In a certain class of orbits they

oscillate about the FFS, while moving along magnetic field lines. The amplitude of these

oscillations decreases through radiation losses. Ultimately, in the subsequent regime of

lower energy (and on a much larger time scale) particles become subject to drift in

azimuthal direction.

On stage (2) in a second paper of our group [26] the authors have introduced

a numerical iterative approach to reproduce sequences of quasi stable plasma

configurations forming under the influence of the FFS. In iterative steps charged particles

were allowed to be ejected from surface elements of the rotating sphere in quantities

locally proportional to the magnitude of the electric vector component normal to the

respective surface element. These particles were then allowed to move freely along the

appropriate magnetic field lines and to settle down where the projection of the electric

onto the magnetic vector vanishes. Thus, without making use of the equation of motion,

co-rotating, quasi stable, charge separated clouds were reproduced, in consistency with

earlier results mentioned above.

In our present work we proceed one step further taking into account in a

selfconsistent way virtually all effects of relativistic particle dynamics, including

radiation reaction and effects of special relativity as, for example, retardation. Our

numerial approach is designed to describe the evolution of locally averaged particle

densities, since velocity dispersion is not taken into account. Again, a magnetosphere is

allowed to build up from the initial vacuum through particle ejection from the spherical

surface, similar to the procedure described above. Here particles are allowed to be

ejected from surface elements, given an appropriate direction of the electric vector,in

quantities locally proportional to the magnitude of the electric vector component

projected onto the magnetic field line.

Thereby, we intend to clearify, on stage (2), the evolution, selfconsistent structure

and stability properties of plasma configurations forming within the regime of the FFS
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of a rotating cosmic magnet with no restrictions on the relative orientation of the

rotational towards the magnetic axis. Also, we want to evaluate mean energy values

locally achieved by particles in that regime.

As in earlier works of our group, e.g. [27, 28, 29], we apply a model represented

by a rotating, ideally conducting, homogeneously magnetized sphere with arbitrary

inclination of the magnetic against the rotation axis. A ’standard set of parameters’

representing well-known properties of typical neutron stars is attributed to this model:

the stellar mass which is taken equal to the solar mass mN = msun, the stellar radius

rN = 106cm, the angular velocity ω = 20 π s−1, and the magnetic dipole moment

µ = 1030 G cm3 §.
In order to investigate the regime of the FFS with an appropriate resolution we

concentrate on the near zone of the neutron star up to 20 rN .

From preceeding estimates as well as from subsequent simulations gravitational

forces exerted by the rotating neutron star and by the magnetosphere itself onto

individual particles, as well as effects of general relativity were found to be negligible

for the standard set of parameters. Contributions to the Lorentz–force originating from

magnetic fields created by magnetospheric particle currents can also be neglected, in

agreement with earlier conclusions of [22]. Spontaneous pair creation still turns out to

be insignificant, even within the very strong electromagnetic fields of polar regions.

In chapter 2 of what follows, we rediscuss force–free surfaces associated with

rotating magnets. Thereafter, in chapter 3, we display equations of individual as well as

of collective particle motion in terms of a non-neutral two-component fluid description,

and we then proceed to a description of appropriate tools for numerical treatment in

chapter 4. Results will be given in chapter 5 and subsequently discussed in chapter 6.

2. Vacuum Fields and Force–Free Surfaces

The vacuum solution of Maxwell’s equations for a homogeneously magnetized (ideally

conducting) sphere, rotating with its vector of angular velocity ω inclined relative to its

vector of magnetic dipol moment µ by the angle χ, as evaluated in [30], called Deutsch–

field, may be applied here in the near–field approximation. In addition, to account for

the global electric charge of the rotating sphere, an electric monopol contribution qs is

introduced. For Details about the Deutsch–field in the near–field approximation with a

global electric charge of the rotating sphere we refer to [26].

In the case of an ideally conducting sphere, the topography of the exterior field

is known to be independent of the form of interior magnetization. An interior central

magnetic point dipole, which may be chosen as an alternative model of magnetization,

§ Gaussian units are used throughout this paper. Thus, electric and magnetic field strengths are

measured in units of 1G = 300V/cm. For the standard set of parameters, the magnetic field strength

is about Bp ≃ 2 · 1012 G and the electricic field strength is approximately Ep ≃ 1010G in the polar

region. Under given parameter values, the radius of the light–cylinder (often referred to as ’light

radius’) rL = ω /c, outside of which corotation cannot exist, is rL = 5000 km, corresponding to almost

the radius of the earth, for comparison.
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Figure 1. Force–Free Surface. Left: χ = 60o, qs = 0 µ/rL. Middle: χ = 60o,

qs = 0.3 µ/rL. Right: χ = 90o, qs = 0 µ/rL. The unit of length on both axes: rN .

obviously would create the same electromagnetic vacuum field configuration. But the

electric surface charge as well as the interior charge evoked by rotation clearly depend

on the form of magnetization.

A central interior magnetic point dipole, for example, is consistent with the

total interior electric charge Qi = 2
3

µ
rL

cosχ and with the surface charge density

σ = − µ
2πrLr

2
N

[cosχ cos2 ϑ + sinχ cos θ sinϑ cos(ϕ−ω t)], corresponding to the total

surface charge Qs = − 2µ
3rL

cosχ ‖.
Alternatively, for a homogeneously magnetized sphere, as considered throughout

this paper, the surface charge density is σ = − µ
4πrLr

2
N

[cosχ(5 cos2 ϑ − 3) +

5 sinχ cosϑ sinϑ cos(ϕ−ω t)] and Qi =
4µ
3rL

cosχ = −Qs .

The discontinuity of the tangential component of the magnetic surface field creates

an electric surface current which results negligible under conditions given here.

With the projection of the electric onto the magnetic vector, written in the µ–

system,

(E,B)

B
= − µ k3

(k r)4
1√

1 + 3 cos2 ψ

[

(r/rN)
2(sinχ sinψ cosλ−2 q′s cosψ)

+ 4(cosχ cosψ − sinχ sinψ cosλ) cos
2 ψ − sinχ sinψ cosλ]

the FFS is given by
(

r

rN

)2

=
(sinχ sinψ cos λ−4(cosχ cosψ sinχ cosλ sinψ) cos2 ψ)

(sinχ sinψ cosλ−2q′s cosψ)
, (1)

where q′s := qs
rL
µ is the dimensionless form of the total electric charge of the sphere.

Some examples for the chape of the FSS are illustrated in figure 1.

‖ Here we make use of two sets of spherical coordinates: one is referred to as the ω–system (r, ϑ, ϕ),

where r is the radial coordinate, ϑ is the angle measured against the rotation axis, and ϕ is the angle

relative to the plane spanned by the x0 and y0 axis, at rest in a chosen inertial frame of reference.

The other set of spherical coordinates is referred to as the µ–system (r, ψ, λ), in which ψ is the angle

relative to the magnetic dipol axis, and λ is the angle against the plane spanned by the µ and ω axis.

As a consequence of these definitions, λ = ϕ−ω[t− (r − rN )/c].
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3. Non–Neutral Two–Component Plasma Fluid

3.1. Equations of Motion for the Plasma

We consider a two–component ideal fluid, whereby each component (identified by the

index s = 1, 2)consists of N identical (classical) particles, electrons and protons in

this case. For a relativistic macroscopic description of fluid motion in terms of the

one–particle distribution function Fs(x
µ, pµ) we start with the one–particle Liouville–

equation

dFs

dτ
= ẋµ

∂Fs

∂xµ
+ ṗµ

∂Fs

∂pµ
= 0 , (2)

where x0 = ct is the time coordinate, xi are the spatial coordinates, pµ are the four

corresponding components of momentum ¶. Using the covariant form of Hamilton’s

equations, dxµ/dτ = ∂H/∂pµ and dpµ/dτ = −∂H/∂xµ, where H is the Hamilton–

function, one may write the covariant Vlasov–equation in the form

∂

∂xµ
(Fsẋ

µ) +
∂

∂pµ
(Fsṗ

µ) = 0 . (3)

With the definition of the one–particle distribution function fs(x
µ, pk) :=

∫∞
−∞ Fs(x

µ, pν) dp0 the Vlasov–equation results (with the assumption F → 0 for

pµ → ∞) in:

∂

∂xµ
(fs ẋ

µ) +
∂

∂pi
(fs ṗ

i) = 0 . (4)

If uµ = dxµ/dτ are the four components of velocity, aµ = duµ/dτ those of the

acceleration, while γ is the Lorentz–factor and τ the proper time, the Vlasov–equation

can be represented by

∂

∂t
(γ fs) + c

∂

∂xi
(ui fs) +

∂

∂ui
(ai fs) = 0 . (5)

The distribution function fs(x
µ, ui) delivers by integration the average number density

ns(x
µ) =

∫

fs(x
µ, ui) d3u (6)

and from there the average, macroscopic (four-component) velocity vector and the

electric charge density is given by:

ūµs (x
µ) = n−1

s

∫

uµ fs(x
µ, ui) d3u , ̺(xµ) =

∑

s

es ns(x
µ). (7)

Likewise, we make use of the average, macroscopic (three-component) velocity vector

v̄is(x
µ) to define the electric current density

ji(xµ) =
∑

s

es

∫

vifsd
3u =

∑

s

esv̄
i
s(x

µ) (8)

¶ The signature of the metric tensor is (1,-1,-1,-1). Throughout this paper, Greek indices are running

from 0 to 3, latin indices from 1 to 3. As stated before effects of general relativity (including gravitation)

are left unaccounted for since, with the standard set of parameters the Schwarzschild–radius is only

about rs ≈ 0.3 rN .
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constituting thereby the four components of the electric current density vector field

jµ = (c ̺, ji).

The latter, in consistency with (5), act as source terms in Maxwell’s–equations

∂αF
αβ = 4π

c
jβ , ∂αF ⋆ αβ = 0 , where F αβ = ∂αAβ − ∂βAα is the electromagnetic field

tensor and F ⋆ αβ = 1
2
ǫαβ γδ Fγδ its dual counterpart. Aµ represents the electromagnetic

potential and ǫαβ γδ the Levi–Civita–tensor.

The average number density ns(x
µ) and velocity ūis(x

µ) fields of each of the two

constituents of the plasma serve to describe macroscopic fluid motion with the help of

the continuity equation

∂ns

∂t
+

∂

∂xi
(nsv̄

i
s) = −

∫

∂

∂ui
(aifs) d

3u = 0 , (9)

obtained from (5) through integration over velocity space, adopting |a|fs → 0 for

|u| → ∞. The energy–momentum equation

∂ūis
∂t

+ v̄js
∂

∂xj
ūis =

1

(msns)

(

−∂jpijs +Ki
)

, (10)

is obtained from (5) through multiplication with uj and integration over the velocity

space, where

pijs (x
µ)=

∫

ms(u
i − ūis)(u

j − ūjs)fsd
3u=ms

∫

uiujfsd
3u−msnsū

i
sū

j
s (11)

is the pressure tensor and ms the rest mass of particles constituting the respective

plasma component.

In what follows, we assume a collisionless, dispersionless (i.e. cold), relativistic

plasma. This assumption appears not implausible, since with a neutron star surface

temperature of about 105 − 107 K and a particle density of about ns ≈ 1012 cm−3,

as suggested by the Goldreich & Julian–model (1969), the plasma parameter Λ =

(4π/3)ns λ
3
D (where λD =

√

kBT/(4πnse2) is the Debye–length) results in Λ ≈ 107,

so that Λ ≫ 1 is given.

Thus, the right side of equation (10) reduces to the (volume) force term

Ki = ms

∫

aifsd
3u , (12)

to which the Lorentz–force is expected to deliver a major contribution Kµ
Lorentz =

η0F
µν ūν , where η0 = e/(mc).

3.2. Equations of Motion for Individual Electrically Charged Particles

In addition to the Lorentz–force the classical equation of motion for an electrically

charged relativistic particle subject to given (’external’) electromagnetic fields has to

account for radiation reaction forces. One such equation which frequently is called

’Lorentz–Dirac (LD) equation’ [31](though Abraham–Lorentz (AL) equation would be

historically more correct) may be given the form

duµ

dτ
= η0F

µνuν + τ0G
µνuν (13)
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suggested by one of us [32]. Here,

Gµν = Gµν
LD =

1

c2
(uν

d2uµ

dτ 2
− uµ

d2uν

dτ 2
) (14)

is the radiation force tensor and τ0 = 2e2/(3mc3) is the radiation constant.

Unfortunately, this equation of motion exhibits serious deficiencies which have

extensively been discussed in published literature and can be avoided through

replacement of (14) by its first iteration often referred to as ’Lorentz–Dirac–Landau

(LDL) equation’ (due to its extensive discussion in [33] well known textbook). In this

approximation +, the radiation tensor may be written

Gµν = η0uλ∂
λF µν +

1

c2
(uµLLu

ν − uµuνLL), (15)

with uµLL = η20F
µνFνλu

λ. In our numerical work presented further below we adopt

that locally (i.e. within appropriately small intervals of space and time coordinates) the

electromagnetic field is (approximately) homogenous in space and constant in time, in

which case the radiation tensor (15) further reduces to

Gµν = Gµν
const = τ0η

2
0

[

F α
νF

ν
λu

λ + F λ
̺F

ϕ
λ u̺uϕ u

α
]

. (16)

Under these premises individual particles of each of the two plasma components,

according to s = 1 or 2, inside the proper interval of space and time coordinates

(i.e. inside the corresponding ’volume element’) are subject to the same electromagnetic

forces. Consequently, the (macroscopic field) equations for the plasma fluid ∗
immediately follows from (10) and (13) with (16)

ūβ,s∂
β ūαs = η0F

αβūβ,s + τ0η
2
0

[

F α
νF

ν
λū

λ
s + F λ

̺F
ϕ

λ ū̺sūϕ,s ū
α
s

]

. (17)

3.3. Exact Solutions of the Equation of Motion for Individual Particles in Homogenous

and Constant Fields

In what follows we make use of exact analytical solutions of the equation of motion

(16) for individual electrically charged particles in locally constant and homogenous

electromagnetic fields [29]. Given a coordinate system with e3 = B, e2 = [E,B] and

e1 = [e2, e3] and excluding null fields ♯ (i.e. fields with simultaneously vanishing Lorentz–

invariants (E,B) and E2−B2) and restricting further to E1 6= 0 and B 6= 0, the solution

of (16) is given by:

uα(τ) = γ a(τ)



























C0















cosh λ τ

β λ
ΩL

sinh λ τ

− β cosh λ τ
ω
ΩL

sinh λ τ















+ C3















sinhλ τ

β λ
ΩL

coshλ τ

− β sinhλ τ
ω
ΩL

coshλ τ









































+ One of us [29] has argued that in a quantum-mechanical frame self-consistency of classical

electrodynamics suggests (15) to be the correct form of the radiadion tensor Gµν

∗ Density effects on radiation and radiation reaction remain unaccounted for. Remarkably, since in (17)

the pressure term is absent, the number density does not appear. Clearly, (17) governs the macroscopic

velocity fields ūλs .
♯ Inside the magnetosphere, |E| ≪ |B|
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+ γ b(τ)



























C1















β sinωτ
ω
ΩL

cosωτ

− sinωτ

− β λ
ΩL

cosωτ















+ C2















− β cosωτ
ω
ΩL

sinωτ

cosωτ

− β λ
ΩL

sinωτ









































(18)

with λ = sign(E3)
e
mc

√

−1
2
(B2 − E2) + 1

2

√

(B2 − E2)2 + 4 (E,B)2, ΩL = e
mc
B, β =

E2+B2−
√

(B2−E2)2+4 (E,B)2

2E1 B
, ω = e

mc

√

1
2
(B2 −E2) + 1

2

√

(B2 −E2)2 + 4(E,B)2, γ =

1√
2

√

B2+E2√
(B2−E2)2+4(E,B)2

+ 1 ,













C0

C1

C2

C3













= γ



















u0(0) + β u2(0)
ω
ΩL
u1(0)− β λ

ΩL
u3(0)

β u0(0) + u2(0)

β λ
ΩL
u1(0) + ω

ΩL
u3(0)



















and the radiation parameters a(τ) = [(C2
0 − C2

3)− (C2
1 + C2

2) exp[−2τ0(λ
2+ω2)τ ]]

− 1

2 ,

b(τ) = a(τ) exp[−τ0(λ2 +ω2) τ ], where CµC
µ = 1 .

If the electric field is parallel (or antiparallel)to the magnetic one (E1 = 0) this

solution reduces to:

uα(τ) = a(τ)























u0(0)













coshλ τ

0

0

sinhλ τ













+ u1(0)













0

cosωτ

−sinωτ

0



































+ b(τ)























u2(0)













0

sinωτ

cosωτ

0













+ u3(0)













sinhλ τ

0

0

coshλ τ



































. (19)

The dynamics of a charged particle starting at rest is characterized by the following

properties: Within a regime of small proper time, τ ≪ 1/τ0(ω
2 + λ2), the radiation

parameters are about a(τ) ≈ b(τ) ≈ 1, while particle motion is a composit of gyration

around magnetic field lines, [E,B]–drift, and acceleration along magnetic field lines, due

to the projection of the electric field vector onto to the tangent to the magnetic field

line.

Within a regime of large proper time, τ → ∞, gyrations around magnetic field

lines are damped corresponding to b(τ) → 0, while acceleration along magnetic field

lines proceeds correspondig to a(τ) → 1, superimposed by [E,B]–drift and curvature

drift.

In the magnetospherical regime considered here (|E| ≪ |B|), where ω ≈ ΩL, λ ≈
ΩL

E
B
sinα and

1

τ0(ω2 + λ2)
≈

{

5 · 10−16 s for electrons

3 · 10−6 s for protons ,
(20)
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gyrations around magnetic field lines are damped.

4. Numerical Procedures on the Grid

4.1. Velocity Components

Evolution in time of the four components of the velocity vector uα(t) of individual

electrically charged particles, from uα(t0) to u
α(t1) with ∆t = t1 − t0 (with substitution

of proper time τ by the time coordinate t, involving the integration of u0(τ) over τ)

according to what was discussed before, is governed by the equation of motion (13) with

(15) (within appropriately small intervals of space and time coordinates). The same

holds for a plasma velocity field, in which, according to the dispersion-free fluid model

used here, individual particles represent co-moving fluid elements,

uα(τ1)− uα(τ0) = uα(t1)− uα(t0) =
∫ t1

t0

duα(t)

dt
dt =

∫ t1

t0

(

∂t + vj(t,x)∂
j
)

uα(t,x) dt .(21)

The first term in the last integral of (21) refers to the explicit time dependence of the

velocity field (i.e. the change with time at a fixed point x in space), whereas the second

term describes its implicit time dependence (i.e. the additional change with time of a

co-mpoving particular fluid element).

Here we are interested in the change in time of the velocity field at a fixed point

x in configuration space. Due to the given initial condition uα(τ0 = 0) ≡ uα(t0,x) in

each iteration step (where uα(t,x) denotes the velocity at a given point in configuration

space) it follows:

uα(t1,x) = uα(t1)−
∫ t1

t0
vj(t,x)∂

j uα(t,x) dt . (22)

Velocity components are required on grid points of a spherical grid, where the

components of the electric field vector are suggested to be known from electric charge

density averaged over each individual cell.

The integral in (22) can be evaluated in a first order scheme in time with

v := −(t1 − t) ⇒ ∂tv = 1,

uα(t1,x) = uα(t1)− (t1− t0)vj(t0,x)∂
j uα(t0,x)−

∫ t1

t0
(t1− t) ∂t[vj(t,x)∂

juα(t,x)] dt (23)

by neglecting the integral in this evaluation. Differentiation with respect to spatial

coordinates is performed numerically in a second order centered difference scheme

(boundaries are treated separately, also in second order). The numerical scheme results

in

uα(t1,xi) = uα(t1)− (24)

∆t

γ

(

vr,i
1

∆r
+ vϑ,i

1

r∆ϑ
+ vϕ,i

1

r sinϑ∆ϕ

)

1

2
[uα(t0,xi+1)− uα(t0,xi−1)] ,

where the index i now characterizes the ith grid point (e.g. with respect to er–direction,

etc.).



11

4.2. Electromagnetic Field Components

Numerical integration of electromagnetic field equations is performed applying a scheme

developped in our group by [34], implying a (complete and orthonormal) system of

spherical vector harmonics Pnm,Bnm,Cnm (e.g. [35]),

Pnm(ϑ, ϕ) = erXnm ,Bnm(ϑ, ϕ) = [er,Cnm(ϑ, ϕ)] =
r

√

n(n+ 1)
(∇, Xnm) ,

Cnm(ϑ, ϕ) = − [er,Bnm(ϑ, ϕ)] =
r

√

n(n+ 1)
[∇, rXnm] ,

where n ∈ {0, 1, 2, ...}, m ∈ {−n, ..., 0, ..., n} and the spherical harmonics Xnm(ϑ, ϕ) are

defined with the help of the associated Legendre–function Xnm(ϑ, ϕ) = eimϕ Pm
n (cosϑ)

permitting the expansion of the elctromagnetic vector potential

A(r, ϑ, ϕ, t) =
∑

n,m

[ pnm(r, t)Pnm(ϑ, ϕ) + bnm(r, t)Bnm(ϑ, ϕ) + cnm(r, t)Cnm(ϑ, ϕ) ] . (25)

For example, the vector potential of the Deutsch–field can be represented in the form

A(r, ϑ, ϕ) = t
r2N
r4

cosχP20 − ie−it h2(r)

H2(rN)
sinχP21

+ t
r2N
r4

cosχB20 − ie−it H2(r)

r2H2(rN)
sinχB21

+
1

r2
cosχC10 + e−it h1(r)

r2N h1(rN)
sinχC11, (26)

with h1(r) = −eir (1+i/r)
r

, h2(r) = i eir (1+3i/r2−3/r2)
r2

, H2(r) = eir (6r−r3)+i(6−3r2)
r2

.

From there the magnetic field vector is calculated from B = [∇,A]. Exploiting

the gauge invariance of the four component vector potential to eleminate A0 the electric

field vector is calculated by E = −∂tA.

To evaluate the total electromagnetic field in terms of its expansion coefficients,

we add the expansion coefficients of the Deutsch (vacuum) field to the expansion

coefficients of the the plasma (different gauges are used for the two components).

The electric (scalar) potential A0(r, ψ, α) is determined from the charge density

̺(r, ϑ, ϕ): A0(r) =
∫ ̺(r′)

|r−r′|d
3r′ , assuming A0(rN) = A0(∞). Furthermore,

1
|r−r′| =

∑

n,mwnm
rn<

rn+1
>

X∗
nm(ϑ

′, ϕ′)Xnm(ϑ, ϕ), where wnm = (n−m)!/(n+m)! and, by

definition, r< (r>) refers to the lower (upper) limit of the considered range of |r| and
|r′|, respectively, so that

A0(r) =
∑

n,m

Xnm(ϑ, ϕ)
∫

wnm
rn<
rn+1
>

̺(r′)X∗
nm(ϑ

′, ϕ′)d3r′ =
∑

n,m

xnm(r)Xnm(ϑ, ϕ) (27)

with xnm(r) =
∫

wnm
rn<

rn+1
>

̺(r′)X∗
nm(ϑ

′, ϕ′)d3r′ =
∫ rn<

rn+1
>

̺nm(r
′) r′ 2 dr′ . Here ̺nm(r

′) =
∫ ∫

wnm̺(r
′)X∗

nm(ϑ
′, ϕ′) sin(ϑ′)dϑ′dϕ′ are the expansion coefficients of charge density.

For a thin spherical shell of thickness ∆r these expansion coefficients are

xnm(r) ≈
∑

j

∆r r2j
rn<
rn+1
>

̺nm(rj) =
∑

j

rn<
rn+1
>

qnm(rj) (28)
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with qnm(rj) = ∆r r2j ̺nm(rj).

The modes of image charges can be seen as additional modes of the surface charge

density. The image charge at position r1 is characterized by rsp = r2N/r1 and Q(rsp) =

−(rN/r1)Q(r1). In general, rsp = r< so that qnm(rsp) = − rN
r1
qnm(r1), xnm(rsp) =

rn
N

rn+1
>

q̄nm(rN), with q̄nm(rN) = − rn
N

rn+1

1

qnm(r1).

The total potential at grid points r = (ri, ϑj , ϕk) inside the spherical volume is

written Anm(ri) =
∑

j<i r
n
j qnm(rj) and at grid points outside the spherical volume

Bnm(ri) =
∑

j>i
1

rn+1

j

qnm(rj). From that, the potential is

A0(ri, ϕj , ϑk) =
∑

n,m

Dnm(ri)Xnm(ϑj , ϕk) ,

with Dnm = Anm r
−(n+1)
i + Bnm(ri) r

n
i , resulting in the coefficients of the electric field

pmn(r) = −∂rDnm(r), bmn(r) = −
√

n(n+1)

r
Dnm(r), cmn(r) = 0.

4.3. Continuity Equation

In order to integrate the continuity equation ∂µj
µ = 0 the method of flux corrected

transport (FCT) is used. This method bases on an algorithm developped by [36, 37, 38].

In a first step a numerical ’low-order’ scheme is applied introducing sufficient local

numerical diffusion in order the get the numerical integration of the transport equation

stable and monotonous. In a second ’high-order’ step the introduced numerical diffusion

is eliminated as far as possible. For details regarding FCT we refer to [38].

We extended this procedure to three dimensions, which is shown in Appendix A. At

the end we get a stable conservative discretisation scheme with low numerical diffusion

to integrate the continuity equation numerically.

4.4. Particle Injection

Of the three frequently discussed injection mechanisms – (1) emission from the spherical

surface (as determined by the electric field topography at the surface and surface charge

density), (2) invasion of particles from outer regions, and (3) electron–positron pair

creation from photon decay – we need to consider only (1) here. The rate of particle

injection from the surface is chosen to be proportional to the magnitude of the electric

field component projected onto the tangent to the corresponding magnetic field line

E|| = sign(cosψ)(E,B)/B, if the sign of surface charge density agrees with the sign of

E|| at the respective point on the surface.

4.5. Reproducing the Magnetospheric Configuration

All simulations carried out in order to get the results presented in this paper are started

from the vacuum case. For χ = 0 (χ = π) the electric field in vacuum allows emission

of electrons (protons) only, while emission regions of electrons and protons are equally
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large for χ = π
2
. For 0 < χ < π

2
the emission of electrons and for π

2
< χ < π the emission

of protons predominates.

We study the magnetosphere of an initially non–charged, homogenous magnetized

sphere up to 20 rN with the standard set of parameters. The following grid sizes are

used in the numerical simulation:

∆t′ = 5.0 · 10−5 if χ = 0, χ = π and ∆t′ = 2.5 · 10−5 if 0 < χ < π

∆r′ = 3.99 · 10−4

∆ϑ
′ = ∆ϕ′ = 2.06 · 10−4 ib and ∆ϑ

′ = ∆ϕ′ = 4.12 · 10−3 ob ,

where ib destigates the inner border and ob the outer border. This resolution implies

that e.g. for the (anti)parallel rotator a fluid element can cross the radial simulation

extension 50 times during simulation time, which corresponds to a 114.6◦ rotation

of the rotating oject. For the oblique rotator, the simulation time corresponds to a

rotation of 57.3◦, so that a fluid element can cross the radial simulation extension 25

times. Consequently, the simulation time is large enough to reproduce existing quasi-

stationary magnetospheres. We study the rotator exemplary for several inclination

angles: χ = 0◦, 30◦, 45◦, 60◦, 75◦, 90◦, 120◦.

5. Results

We present and discuss our results under the aspect whether the formation of quasi-

stationary magnetospheres can be verified and if so, what can be said of its structural

features. In this context we investigate the verification of the predictions of the Goldreich

& Julian–model and other authors in the special case of the aligned rotator. In the case of

the inclined and orthogonal rotators (in which little is known from published literature)

we investigate the structure of the quasi-stationary magnetospheres as well and stress

in general the question concerning the typical particle number densities, currents and

average particle energies inside the magnetospheres in the regime of the FFS.
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Figure 2. Left fig.: Sphere charge depending on the time for different inclination

angle. Right fig.: Sphere charge depending on the inclination angle in the case of

quasi-stationary magnetospheres.
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Figure 2 (left) demonstrates the development of the total electric charge of the

sphere (over time) for various values of the inclination angle χ, ranging from χ = 0

to χ = π/2. Obviously, an asymptotic value is reached in each of these cases within

time intervals well below t ≈ 0.2ω−1, corresponding to a rotation of ≈ 11.2◦. This

behaviour can be seen as a clear indication for the rapid formation of quasi-stationary

magnetospheric configurations for all inclination angles.

Furthermore, a prametrization of the electric monopole of the rotating sphere after

building quasi-stationary magnetospheres in term of the inclination angle is possible

and leads to (figure 2, right): qs =
2
3

µ
rL

cosχ.

Likewise, diagramms on the left of figure 3 show the development of the electric

vector component parallel to the tangent to the respective magnetic field line over time

on the stellar surface. Different curves, plotted against the polar angle, correspond to

different values of the time coordinate. The three diagramms from the top to the bottom

of figure 3 are for different values of the inclination angle ranging from χ = 0◦, χ = 60◦

to χ = 90◦. In all these cases the electric vector component parallel to the tangent to the

respective magnetic field line vanishes for all inclination angles within a time interval

of about t ≈ 0.2ω−1, which indicates the formation of quasi stable magnetospheres.

Analogous conclusions can be drawn from diagramms on the right of figure 3 for the

electric charge density on the surface of the sphere.

For an analysis of spatial electric charge density inside the quasi-stationary

magnetospheric particle distributions the corresponding even modes (normalized to r2)

in terms of coefficients of charge density (see chapter 4.2) as a function of the radial

coordinate are shown in figure 4. Different curves are for different modes, while different

diagramms indicate different inclination angles. In the special case of the aligned rotator

the space charge density is described very well only by the quadropol mode n = 2, m = 0

in agreement with the predictions of the Goldreich & Julian–model as well as of the more

recent work by [24] ††. For increasing inclination angle χ other modes gain more and

more importance, especially those with m 6= 0 which are responsible for non–axially

symmetric constibutions, as shown in figure 4.

For a better vizualization of spatial electric charge distribution inside the quasi-

stationary configuration, in figure 5 the number densities of the electron fluid (on the

left) and of the proton fluid (on the right) within the plane spanned by the magnetic

and the rotation axis are shown for different inclination angles.

The structures of the resulting quasi-stationary magnetospheres are dominated

by the force–free surfaces for all inclination angle and are completly charge seperated

devided by regions of vanishing particle number density, often refer as ’vacuum gaps’.

In the case of the inclined and orthogonal rotator, 0 < χ ≤ π
2
, electrons are collected

†† In the Goldreich & Julian–model [6] a force–free magnetosphere ((E,B) = 0) and a co-rotating

plasma inside the light–cylinder are assumed. With E = −[βkoro,B] and βkoro = (r/rL) sinϑ eϕ, the

electric field outside the sphere results in: E = − µ k3

(kr)2 (− sin2 ϑ er+2 cosϑ sinϑ eϑ). This field is caused

by the charge density ̺GJ = − µ

πrL

1
r3
P2(cosϑ) and an additional sphere–monopol by qs = 2

3
µ

rL
. The

electric potential is given by A0 = Amono
0 +Aquadru

0 = 2
3

µ

rL

1
r
( 1 − P2(cosϑ) ).
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Figure 3. Electric parallel field E′
|| := sign(cosψ)(E,B)/B on the surface of the

sphere (left plots) and the surface charge density (right plots) depending on the polar–

angle relative to the rotation axis (λ = 0). From the top toword the bottom:χ = 0◦,

χ = 60◦, χ = 90◦.

between the rotation and the magnetic axis, nearby and in the plane spanned by these

axes. The fluid includes the rotation axis, except for |χ− π
2
| ≈ 0. Protons are collected

between the equator plane relative to the rotation axis and the equator plane relative

to the magnetic axis, once again nearby and in the plane spanned by these axes. Given
π
2
< χ ≤ π the sign of the particles changes.

We found corotation (relative to the surface of the sphere) for all inclination

angle. Particle number densities inside these clouds, for the standard set of parameters,

typically range up to 1012 cm−3.

For a discussion on currents and particle acceleration within these clouds normalized

velocity fields of electrons and protons are considered in figure 6 for various inclination
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Figure 4. Coeffients of the space charge density in the quasi–stationary case for

different inclination angles. Upper rows: m = 0; lower rows: m 6= 0.

angles. Furthermore the projection of the electric vector onto the tangent to the

magnetic field lines, (E,B)/|B|, is shown. The direction of the velocity field correlates



17

Figure 5. Particle density [cm−3] of the electron fluid (left fig. ) and proton fluid (right

fig. ) mapped over log10(̺ cm
3 + 1) after a rotation ≃ 57.3◦ for different inclination

angles.

monotonously with the sign of these projection of the electric vector. The averaged

Lorentz–factors for electrons and protons are shown in figure 7. Average values are

calculated for spherical shells (the radius of a given shell is mapped on the abscissa).

Different curves indicates different values of the inclination angle.
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In the case of the parallel (antiparallel) rotator, where electrons (protons) are

collected around the rotation axis and protons (electrons) around the equator plane,

a polodial (outward directed) current along the magnetic field lines exists, consisting of

electrons (protons). In the equator plane we found protons (electrons) diffuse out of the

simulation volume. In the context of the polodial current in the case of the antiparallel

rotator averaged protons energies up to 1016 eV are found.

For inclined and orthogonal rotators (0 < χ ≤ π
2
) outward directed currents

consisting of electrons along the magnetic field lines are found. The angle range

according the polar angle of these currents decreases with decreasing values of |χ− π
2
|.

With inclination angles 30◦ < χ ≤ 90◦ closed currents consisting of protons are observed

in the range of a few rN , starting and ending at the surface of the sphere. Given
π
2
< χ ≤ π the sign of the particles changes. In the case of the 120◦–rotator, investigated

as an example for inclined rotators with χ > π
2
and with currents consiting of protons,

averaged proton energies up to 1017 eV has been proven.

The influence of the [E,B]-drift on the structure of the magnetosphere is increasing

with decreasing |χ − π
2
|. Particles of both sign (electrons and protons) are streaming

due to this force back to the surface of the sphere.

6. Discussion

The resulting quasi-stationary magnetospheres are not global force-free. In regions

with vanishing particle densities the vacuum electromagnetic field is approximately

undisturbed by the non-neutral plasma. In regions with high particle number densities

the projection of the electric vector onto the tangent to the magnetic field vanishes

nearly, but not complete. Small deviations from a force–free situation leads due to the

extrem strong electromagnetic fields immediately to high particle energies. All in all,

independent of the inclination angle, highly relativistic plasmas are found, which leads

to the necessity to take the radiation reaction into account.

In the case of the parallel and antiparallel rotator, due to the fact that we did

not found particles with low oder moderate particle energies, the usage of the ultra–

relativistic approximation of the Lorentz-Dirac-Landau-equation by [22] and [23] in

their numerical calcualtion is justifiable, shown by our studies. Futhermore, we can

confirm the existence of clouds with different charges, seperated by regions of vanishing

particle number density (vacuum–gaps), also found by [21], [22], [23], [26] and [24].

All these works including ours found no global force-free magnetosphere. Force-free

magnetospheres are often used as an assumption in analytical works. The structure

of the quasi-stationary magnetospheres predicted by [7] with analytical models can be

confirmed with our studies, especially the importance of the FFS. Nevertheless, the

closed polodial currents proposed by [7] can not be proven by our studies due to the

limited simulation volumen of 20 rN . The density distribution of the plasma is described

very well by only one quadrupole mode, confirming with [6] in their amplitude and power

law.
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Figure 6. Fig. left: Normalized velocity field of the electron fluid. Fig. middle:

Normalized velocity field of the proton fluid. Fig. right: Electric parallel field

E|| = (E,B)/B. |E||| > 10 is mapped to ±10 in order to show the change in the

sign. From top to bottom: χ = 0◦, χ = 60◦, χ = 90◦

In the case of the inclined and orthogonal rotator only few literature is published.

The by [9] proposed approach solving the stationary Valsov-equation and the Maxwell-

equations selfconsistently led to an inside the light-cylinder corotating, charge seperated

magnetosphere. The charge separation independent of the inclination angle was also

found by [26], which can be confirmed by our present studies. Basicly, the structure of

the quasi-stationary magnetospheres in our calculations confirms with those found by

[8] analytically. Furthermore, we can attest the dependency of the electric monopole of

the rotating sphere of the declination angle, first proposed by [8]. Beside this, for the

first time with our work statements on particle engeries, currents and drifts based on

numerical, full dynamical studies are possible. Due to the limited simulation volume
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Figure 7. Averaged Lorentz–factors per radial sphere depending on the radius for

different inclination angles.

we can not prove if outside the light-cylinder closed currents are formed (starting and

ending on the surface of the sphere). The knowledge of the global current system is

important due to the fact that the [E,B]-drift is important at long time scales. As a

consequence of these force charged particles move back to the surface and may change

the electric monopol of the sphere. The structure of the FFS and resulting from this

the structure of the magenetosphere is depending on the electric monopol of the sphere.

The high particle energies in the existing polodial currents are relevant for induced

pair production. In the present paper we were able to ignore the resulting e±–plasma.

Nevertheless, relativistic currents in these plasmas may cause microscopic instabilities

which could explain the non–thermal radiation in real pulsar magnetospheres.

Analytical studies on this topic (e.g. [39]) assume Lorentz–factors in these currents

of γ ≈ 107 and particle densities in the scale of the Goldreich & Julian–density, as were

confirmed by our studies.

Regarding the discussion about neutron stars as cosmic accelerators for ultra high

energy cosmic ray particles the very high particle energies proven by our studies are

remarkably. I.e., in the case of the 120◦–rotator we found averaged proton energies

up to 1017 eV. In the case of higher magnetic fields, than given by the ’standard set

of parameters’ higher particle energies are possible. But, investigating these cases one

schould prove whether a classical approach is applicable. It is important to note, that

due to the limited simulation volume used in our work we can not predict if these

high energy particle are able to leave the neutron star magnetoshphere and if, at which

particle energies.

7. Summary

In this paper we studied relativistic magnetospheres of rotating cosmic magnets (neutron

stars/pulsars) with arbitrary inclination of the magnetic against the rotation axis.

Concentrating on the regime dominated by the force–free surface (FFS) we developed

a macroscopic description of a cold, collisionless two-component fluid, consisting of
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electrons and protons, taken into account the radiation reaction and carried out

selfconsistent numerical calculation of relativistic magnetospheres of neutron stars.

According the first two moments of the relativistic Vlasov–equation the equation of

motion of the fluid components are derived. Under the assumption of a cold, collisionless

plasma considering the radiation reaction is possible. Due to missing velocity dispersion

of the fluid components the radiation reaction term of the equation of motion for a single,

charged particle can be added to the equation of motion of the fluids in the macroscopic

description. Dealing with near zone of rotating cosmic objects up 20 sphere radii the

influence of existing currents to the vaccum magnetic dipol field can be neglected.

Beside the investigations regarding the parallel and antiparallel rotator, where we

are able to confirm with our present studies many analytical predictions given by other

authors in the past, in this paper for the first time the magnetospheres of the more

general and complex system of inclinded and orthogonal rotators are investigated in

the regime of the force–free surfaces (FFS) by the numerical calculation, using a full

dynamical approach and taken into account radiation reaction. As in earlier work of

our group, a ’standard set of parameters’ is used.

Under these conditions, the following results are found: Global charge separation

exists for all degrees of inclination of the magnetic against the rotation axis with

highest particle densities of 1012cm−3. Clouds of different charge are seperated by

regions of vanishing particle number density. As expected, test particles inserted

into the latter regions propagate into one of the adjacent clouds. The dependency

of the electric monopole of the rotating sphere on the inclination angle is given by

qs =
2
3

µ
rL

cosχ. Furthermore strong polodial currents exist and locally averaged particle

energies typically range up to 1016 − 1017 eV, depending on the inclination angle.

The results given by the presented work can be used as a starting point for an

analytical description of neutron star magnetospheres in the near zone. A suitable

approach have to consider a relativistic, non-neutral, charge seperated plasma. Although

we prove corotation, an analytical approach should used a splitting in a corotational

and non-corotational part of the description. In general, it is not usefull to assume a

global force-free magnetosphere. The radiation reaction has to be taken into account,

while using the ultra–relativistic approximation of the Lorentz-Dirac-Landau-equation

is appropriate.

Appendix A. Integration of the Continuity Equation

This appendix describes the numerical integration of the continuity equation ∂µj
µ = 0

in detail. The used method is called flux corrected transport (FCT), and for details

regarding general aspects of this method we refer to [38].

What follow we introduce a ’low-order’ and a ’high-order’ scheme in three spatial

coordinates in order to construct a conservative FCT scheme. A spherical coordinate

system is used and i, j, k denote the grid points to the er, eϑ and eϕ–direction.

The flux which flows from the cell i− 1 to cell i is called Fi− 1

2
,j,k and the flux from
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cell i to cell i+1 Fi+ 1

2
,j,k. G and H are the corresponding fluxes in eϑ– and eϕ–direction.

With this notation a conservative discretisation is given by:

̺n+1
i,j,k = ̺n

i,j,k −Fi+ 1

2
,j,k+Fi− 1

2
,j,k−Gi,j+ 1

2
,k+Gi,j− 1

2
,k−Hi,j,k+ 1

2

+Hi,j,k− 1

2

.(A.1)

As the ’low-order’ scheme we use the Donor-Cell method in three dimensions

̺n+1
i,j,k = ̺n

i,j,k − 0.5(ξ1 − |ξ1|) ̺ni+1,j,k +0.5(ξ1 + |ξ1|) ̺ni−1,j,k

− 0.5(ξ2 − |ξ2|) ̺ni,j+1,k +0.5(ξ2 + |ξ2|) ̺ni,j−1,k (A.2)

− 0.5(ξ3 − |ξ3|) ̺ni,j,k+1 +0.5(ξ3 + |ξ3|) ̺ni,j,k−1 ,

with the Courant-numbers ξ concerning the three spatial coordinates which are indicated

by the indices 1, 2, 3. The stability condition regarding this ’low-order’ scheme is given

by: |ξ1|+ |ξ2|+ |ξ3| ≤ 1.

A stable ’high-order’ scheme (in three spatial coordinates) is developed by [40]:

̺n+1 = ̺n−∆t (∇, (̺v − 0.5∆tv(∇, nv)) ) . (A.3)

Now we are able to write down the discretisation schemes. Using dimensionless

units ∆t′ = ω∆t and ∆r′ = r−1
L ∆r and supressing the primes. The continuity equation

is now given by ∂tN + ∂iN βi = 0 , where N is the particle density in the inertial frame

of reference.

The currents regarding the Donor-Cell method are given by

(N βr)i+ 1

2
,j,k =

1

2
[ (βr)i+1,j,k − |(βr)i+1,j,k|)Ni+1,j,k +

1

2
((βr)i,j,k + |(βr)i,j,k| ]Ni,j,k ,

(N βϑ)i,j+ 1

2
,j =

1

2
[ (βϑ)i,j+1,k − |(βϑ)i,j+1,k|)Ni,j+1,k +

1

2
((βϑ)i,j,k + |(βϑ)i,j,k| ]Ni,j,k ,

(N βϕ)i,j,k+ 1

2

=
1

2
[ (βϕ)i,j,k+1 − |(βϕ)i,j,k+1|)Ni,j,k+1 +

1

2
((βϕ)i,j,k + |(βϕ)i,j,k| ]Ni,j,k .

Using the following abbreviations for the surface elements Flr, (i,j,k) = 2 r2i sinϑj sin
∆ϑj

2
∆ϕk ,

Flϑ, (i,j,k) = 1
2
(r2

i+ 1

2

− r2
i− 1

2

) sin ϑj ∆ϕk , Flϕ, (i,j,k) = 1
2
(r2

i+ 1

2

− r2
i− 1

2

)∆ϑj the fluxes are

given by:

Fi+ 1

2
,j,k = ∆tFlr, (i+ 1

2
,j,k) [min( 0, (βr)i+1,j,k )Ni+1,j,k +max( 0, (βr)i,j,k )Ni,j,k] ,

Gi,j+ 1

2
,k = ∆tFlϑ, (i,j+ 1

2
,k) [min( 0, (βϑ)i,j+1,k )Ni,j+1,k +max( 0, (βϑ)i,j,k )Ni,j,k] ,

Hi,j,k+ 1

2

= ∆tFlϕ, (i,j,k+ 1

2
)[min( 0, (βϕ)i,j,j,k+1 )Ni,j,k+1 +max( 0, (βϕ)i,j,k )Ni,j,k] .

With these fluxes the ’low-order’ scheme is given by

Nn+1
i,j,k = Nn

i,j,k +
1

∆Vi,j,k

[

−Fi+ 1

2
,j,k + Fi− 1

2
,j,k −Gi,j+ 1

2
,k +Gi,j− 1

2
,k −Hi,j,k+ 1

2

+Hi,j,k− 1

2

]

.

Referring to (A.3) the ’high-order’ scheme is given by

Nn+1 = Nn −∆t
[

1

r2
∂r

(

r2
(

N βr −
1

2
∆t βr g

))

+
1

r sinϑ
∂ϑ

(

sinϑ

(

N βϑ −
1

2
∆t βϑ g

))

+
1

r sinϑ
∂ϕ

(

N βϕ −
1

2
∆t βϕ g

)]

,
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with g := ∂i(N βi) = 1
r2
∂r(r

2N βr) +
1

r sinϑ
∂ϑ(sin ϑN βϑ) +

1
r sinϑ

∂ϕ(N βϕ) . The fluxes

regarding the ’high-order’ scheme result in:

Fi+ 1

2
,j,k = ∆tFl̺, (i+ 1

2
,j,k)

[

(N βr)i+ 1

2
,j,k −

1

2
∆t (βr)i+ 1

2
,j,k

[

1

r2
i+ 1

2

∆r

(

(r2N βr)i+1,j,k − (r2N βr)i,j,k
)

+
1

4 ri+ 1

2

sinϑj ∆ϑ
[ sinϑj+1( (N βϑ)i,j+1,k + (N βϑ)i+1,j+1,k)

− sinϑj−1( (N βϑ)i,j−1,k + (N βϑ)i+1,j−1,k)]

+
1

4 ri+ 1

2

sinϑ∆ϕ
[ (N βϕ)i,j,k+1 + (N βϕ)i+1,j,k+1

− ( (N βϕ)i,j,k−1 + (N βϕ)i+1,j,k−1 ) ]
]]

,

Gi,j+ 1

2
,k = ∆tFlϑ, (i,j+ 1

2
,k)

[

(sin ϑ N βϑ)i,j+ 1

2
,k−

1

2
∆t (sin ϑ βϑ)i,j+ 1

2
,k

[

1

r sinϑj+ 1

2

∆ϑ
[(sinϑ N βϑ)i,j+1,k − (sin ϑ N βϑ)i,j,k]

+
1

4 r2∆r

[

r2i+1((N βr)i+1,j,k + (N βr)i+1,j+1,k)

−r2i−1((N βr)i−1,j,k + (N βr)i−1,j+1,k)
]

+
1

4 r sinϑj+ 1

2

∆ϕ
[ (N βϕ)i,j,k+1 + (N βϕ)i,j+1,k+1

−( (N βϕ)i,j,k−1 + (N βϕ)i,j+1,k−1 ) ]
]]

,

Hi,j,k+ 1

2

= ∆tFlϕ, (i,j,k)

[

(N βϕ)i,j,k+ 1

2

− 1

2
∆t (βϕ)i,j,k+ 1

2

[

1

r sinϑ∆ϕ
[ (N βϕ)i,j,k+1 − (N βϕ)i,j,k ]

+
1

4 r2∆r

[

r2i+1((N βr)i+1,j,k + (N βr)i+1,j,k+1)

−r2i−1 ((N βr)i−1,j,k + (N βr)i−1,j,k+1 )
]

+
1

4 r sinϑ∆ϑ
[ sin ϑj+1( (N βϑ)i,j+1,k + (N βϑ)i,j+1,k+1)

− sinϑj−1( (N βϑ)i,j−1,k + (N βϑ)i,j−1,k+1 )]
]]

.

Using the mentioned fluxes for the ’low-’ and the ’high-order’ scheme the

construction of a full FCT scheme is straightforward (for details we refer to [38]). This

FCT scheme is stable if the following conditions are fulfilled: |ξ1|
2

3 + |ξ2|
2

3 + |ξ3|
2

3 ≤

1 ,∆t ≤
[

(

|βr|
∆r

) 2

3 +
(

|βϑ|
r∆ϑ

) 2

3 +
(

|βϕ|
r sinϑ∆ϕ

) 2

3

]− 3

2

.
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