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ABSTRACT

We present analytic solutions of Maxwell equations in therimal and external background
spacetime of a slowly rotating magnetized neutron star.stéeis considered isolated and in
vacuum, with a dipolar magnetic field not aligned with thesaodi rotation. With respect to a
flat spacetime solution, general relativity introducesections related both to the monopolar
and the dipolar parts of the gravitational field. In partaauve show that in the case of infinite
electrical conductivity general relativistic correctsodue to the dragging of reference frames
are present, but only in the expression for the electric figldhe case of finite electrical
conductivity, however, corrections due both to the spaseturvature and to the dragging of
reference frames are shown to be present in the inductioatiequ These corrections could
be relevant for the evolution of the magnetic fields of pudsamnd magnetars. The solutions
found, while obtained through some simplifying assumptrefiect a rather general physical
configuration and could therefore be used in a variety obaslysical situations.

Key words: relativity — (magnetohydrodynamics) MHD — stars: neutromtation — mag-
netic fields

1 INTRODUCTION

The investigation of the influence of strongly curved spaces$ on the properties of electromagnetic fields has argstef its own which is
further increased when these effects could be related thakservable phenomenology. This coupling between gereasivistic effects
and electromagnetic fields is expected to be particularpoirtant in the vicinity of neutron stars which are among tlestnelativistic astro-
physical objects and are characterized by very intense etiagields (Lamb 1991, Glendenning 1996). A number of déferobservations
indicate that in young neutron stars the surface magnetit sieengths are of the order @b'! — 10'* G. In some exceptional cases, as
those of magnetars, magnetic field strengths x 10'* G are considered responsible for the phenomenology olibénsoft gamma-ray
repeaters (Duncan & Thompson 1992, Thompson & Duncan 1@88gr neutron stars, observed as recycled pulsars and l@s Kaay
binaries, show instead surface magnetic fields that are mveelker< 10'° G suggesting that these are subject to a decay, even if itlis st
difficult to establish whether the decay is due to accreti®eppert & Urpin, 1994; Konar & Bhattacharya, 1997) or to ofhr@cesses.

In the case of isolated neutron stars, the possibility of metig field decay as a result of accretion does not arise hewe tare still a
number of different ways in which the energy stored in the megig can be lost. This can happen either through the emisdielectromag-
netic (dipole) radiation, through Ohmic decay, through guolar diffusion, or through more complicated effects sash‘Hall cascades”
(see Goldreich and Reisenneger 1992 for a review). Thetigedi®n of these scenarios requires combined efforts. @ntand, there is
the search for a more precise description of the microphyaithe processes involved, some of which are still not wadlrgified. On the
other hand, attention is paid to a more realistic descripticthe gravitational effects on the properties of the etenagnetic fields in highly
curved spacetimes and this is also the motivation of thikwor

The investigation of the general relativistic correctidaghe solution of Maxwell equations in the spacetime of atigktic star has
a long history. The initial works of Ginzburg & Ozernoy (196Anderson & Cohen (1970) and of Petterson (1974) on theostaty elec-
tromagnetic fields in a Schwarzschild spacetime have resighiat the spacetime curvature produces magnetic fieldshvene generally
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stronger than their Newtonian counterparts (see also \Waase Shapiro 1983 for a subsequent derivation). Sengd®@5) has reconsid-
ered this problem and also looked for a general relativestiression for the electric field in the Schwarzschild baskgd of a neutron star.
As we will discuss in Section 3.2.2 the method used in hisvdédn is not entirely correct and the results obtained lierelectric field are
not solutions of Maxwell equations. More recently, Sengupds also considered the problem of the Ohmic decay rate amaeBzschild
spacetime (Sengupta, 1997). His approach is strictly \aailg for the region of spacetime external to the star as isdux provide a correct
general relativistic description of the electromagnegtdf internal to the star. Within these approximations, @y, Sengupta (1997) has
pointed out that the effects of intense gravitational fieldra to decrease the overall decay rate by a couple of ordenagifitude. The
same problem has also been considered in more detail by @epPpge and Zannias (2000). Their analysis was aimed attzematically
consistent solution of Maxwell equations also in the spaeetegion internal to the star and makes therefore use oharigemetric for a
non-rotating relativistic star. Their results, while confing a decrease in the typical decay time for the magnetid, fiéso show that the
decay time is smaller but comparable with the one found irsflatetime.

The general relativistic effects induced by the rotatiorthef star were first investigated by Muslimov & Tsygan (1992}te slow
rotation approximation. A similar approach was also usedvioglimov and Harding (1997) for the electromagnetic fieldtemal to a
rotating magnetized star. Their analysis refers to a chfillgd magnetosphere and represents the relativistic sierof the Goldreich-
Julian model. Using a different derivation, Prasanna anpt&(1997) have also investigated the properties of thdreleagnetic fields in
the magnetosphere of a relativistic rotating neutron stiin, special attention being paid to the dynamics of chatgstiparticles.

We here extend and unify all of the above investigations bsittering the solution of Maxwell equations in the interaatl external
background spacetime of a slowly rotating magnetizedividét star. The star is considered isolated and in vacwwith, a dipolar magnetic
field which is not assumed aligned with the axis of rotatiome purpose of this paper is threefold. Firstly, we want teedtprevious results
to the most general case of a misaligned rotator, providinghiis case also the form of the electric field. Secondly, wetvto discuss the
possible role played by frame dragging effects in the Ohraizagt for an isolated neutron star and estimate its impaoetaftardly, we wish
to clarify a few important aspects of the solution of Maxwadjuations in the gravitational field of a relativistic staat; when overlooked,
have led to incorrect solutions (Sengupta 1995, Prasarh&apta 1997). Finally, by providing a rather general solutio the problem
(although truncated at the lowest order in the expansiom@fangular dependence) we offer a compact reference frohvetti of the
previous results can be easily found in the appropriatediamd which could have practical astrophysical applicatio

The paper is organized as follows: in Section 2 we write theega relativistic Maxwell equations in the metric of a slpwotating star
and the form they assume when the electromagnetic fieldh@se measured in the orthonormal frame of zero angular mmmesbservers.
In Section 3 we find the stationary solutions (i.e. solutiomg/hich the infinite conductivity of the medium prevents aiadon in time of
the star's magnetic moment) to Maxwell equations outsiakiaside the misaligned rotating star. For this we considst fhe problem in
Newtonian gravity and we then extend the results to genefativity within the slow rotation approximation. Sectidris devoted to the
equivalent problem, but in the case in which the magnetid fiehot supposed stationary. There, we derive the basiciimfuequations for
the evolution of the inner stellar magnetic field of a misadig rotating star. Section 5 contains our conclusions amgibspects of future
developments.

A number of appendices provide further details about sontheotalculations carried out in the main part of the papeparticular,
Appendix A summarizes the components of the electromagmetisor in a coordinate basis and in a locally orthonormtahde while
Appendix B shows the derivation of the radial eigenfundidor the electromagnetic fields in terms of Legendre’s égnaAppendix C
shows the explicit expressions for the surface chargesamdris and, finally, Appendix D contains an alternative eqdivalent derivation
of the equations for the time evolution of magnetic field imte a vector potential. Throughout, we use a space-likeasiga(—, +, +, +)
and a system of units in whio = 1 = ¢ (However, for those expressions with an astrophysicaliegipbn we have written the speed of
light explicitely.). Greek indices are taken to run from Btand Latin indices from 1 to 3; covariant derivatives areaded with a semi-colon
and partial derivatives with a comma.

2 MAXWELL EQUATIONSIN A SLOWLY ROTATING SPACETIME

The difficulties of an analytic solution of the Einstein-Meedl equations in the proximity of a rotating relativisti@sinevitably force us to
the use of some approximations. The first approximation edinoen neglecting the influence of the electromagnetic fieldhe metric and
by solving Maxwell equations on a given, fixed backgrotinfihe second approximation is in the specific form of the bemkgd metric
which we choose to be that of a stationary, axially symmesdystem truncated at the first order in the angular veldeityn a coordinate
system(ct, r, 0, ¢), the “slow rotation metric” for a rotating relativistic $t& (see, for example, Hartle 1967, Hartle & Thorne 1968,dzan
& Lifshitz 1971)

ds? = —e**at? + 22 dr? — 2w (r)r? sin® Odtdd + r’df* + r? sin® 0dp? 1)

* This is indeed a very good approximation since even for végilit magnetic neutron stars the electromagnetic energgitieis much smaller than the
gravitational one.
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wherew(r) can be interpreted as the angular velocity of a free fallingr{ial) frame and is also known as the Lense-Thirring ¢egu
velocity. The radial dependence ©fin the region of spacetime internal to the star has to be fasrttie solution of the differential equation

1 d 4= dw dj _ _
where we have defined
j=e Y, ®)
and where
w=0—-w, 4)

is the angular velocity of the fluid as measured from the Ifred falling (inertial) frame. In the vacuum region of spée external to the
star, on the other handy(r) is given by the simple algebraic expression

w(r)z%:—%:i—g, ®)
whereJ = I(M, R)1 is the total angular momentum of metric source as measupetlififinity and (M, R) its momentum of inertia (see
Miller 1977 for a discussion of and its numerical calculation). Outside the star, the mét)i is completely known and explicit expressions
for the other metric functions are given by

2 = (1 - %) =AM r>R, (6)

whereM andR are the mass and radius of the star as measured from infinity.

An important aspect, often overlooked in the literatur@wti now be underlined. The metric (1) is the simplest meht provides all
of the most important general relativistic correctionsi® $olution of the Maxwell equations in the gravitationdtfief a rotating relativistic
star. The use of a Schwarzschild metric in place of (1) (Sptagi995, 1997) is potentially very dangerous. Firstly, aagointed out by
Geppert et al. (2000), a Schwarzschild metric allows foragpr treatment of the electromagnetic fields only in the sfpae region external
to the star and leaves unsolved the problem of a matchingea#tternal electromagnetic fields with the internal onesoBely, and despite
different claims (Sengupta 1997), a Schwarzschild mesriatrinsically inadequate to describe physical systensh si$ pulsars in which
the coupling of electromagnetic fields and rotation is a leatdre. Note, on the other hand, that using the slow-rotatproximation gives
rather accurate results for all pulsar periods so far oleskhe metric (1) has coefficients each of which is the lowsedér term of a series
expansion in ascending powerstef Comparing the magnitude of the neglected higher orderderith that of the one retained in each case,
gives ratios of the ordeR>Q? /G M which is smaller than 10% even for the fastest-known mitisel pulsar PSR 1937+214.

The general form of the first pair of general relativistic Meell equations is given by

3ap ) =2 (Fapy + Frap + Fpya) =0 @)

whereF, s is the electromagnetic field tensor expressing the strizhection between the electric and magnetic four-vectaidiel*, B<.
For an observer with four-velocity™, the covariant components of the electromagnetic tengagigen by (Lichnerowicz 1967; Ellis 1973)

FaB = 2U[aEﬁ] + ’r]a/g—ygu'yB(s . (8)
whereT|,5 = 3(Tap — Tsa) @ndnasys is the pseudo-tensorial expression for the Levi-Civitalsgha, s (Stephani 1990)
1
afBys — ./
n = - (SR afByé — —g€ap~s (9)
\/_—g B3 » Na By By
with g = det|gas| = —e2®Tr%sin? ¢ for the metric (1). A useful class of observers is represkbtethe “zero angular momentum

observers” or ZAMOs (Bardeen, Press & Teukolsky 1972). €rae observers that are locally stationary (i.e. at fixedesabfr and#)

but who are “dragged” into rotation with respect to a refeeeframe fixed with respect to distant observers. At first oidé they have
four-velocity components given by

() yano =€ *) (1,0,0, w) ; (ta)yano = €™ ( - 1,0,0,0) : (10)

In the coordinate systettit, r, 6, ¢) and with the definition (8) referred to the observers (103, ftrst pair of Maxwell equations (7)
take then the form (see Appendix A for the explicit expressiof the electromagnetic tensor)

(eAr2 sin 0Bi> ) =0, (11)
(eAr2 sin 0) 8(93;7“ =¢® (Eo,p — Eg0) — (weAr2 sin 0) B, (12)
<eAr2 sin 0) 88_B: = <E¢ eq)) o e By — (weAr2 sin 0) BG@ , (13)
<eAr2 sin 9) aa—Bj = — <Eg e‘b) . + 6(I>ET-,9 +sin @ (weAr2BT) i + welr? <sin 9B9> 5 (24)
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The general form of the second pair of Maxwell equationsvsmiby
FoP = drJ” (15)
where the four-currenf® is a sum of convection and conduction currents
J* = pew® + 5, jwe =0, (16)

with w being the conductor four-velocity angd the proper charge density. If the conduction currghis carried by the electromswith
electrical conductivityy, Ohm’s law can then be written as

Joo = o Fapw” (17)
while a more general expression can be found in Ahmedov (1998 can now rewrite the second pair of Maxwell equations as

(eAr2 sin QEi> = 4re® % 5in 0J° | (18)

@ A2 . A2 . OE" DA 2 . r
e (Bgo—By,g)— (we'r“sin@) E", = (e r sind T +4me” rosindJ" (19)

@ @ A2 . 0 A2 oOE"’ DA 2 . 0
e B.y—|e By) — (we'r‘sind)E’, = (e r sinf T +4me” CrosindJ” (20)

) E?

(64)39) — B, o +sind (weArzET) + welr? (sin QEQ) . = (eAr2 sin 9) % + 4me® T2 sin 0% | (21)

Maxwell equations assume a familiar flat-spacetime formmypmjected onto a locally orthonormal tetrad. In principieh tetrad is
arbitrary, but in the case of a relativistic rotating mestwrce a “natural” choice is offered by the tetrad carriedigyZAMOs. Using (10)
we find that the components of the tetiag } = (eg, e, e, e3) carried by a ZAMO observer are

el = e*‘i’(Lo,o,w) , (22)
—A
e2=e (07170,0) , (23)
1
g = (0,0, 1,0) , (24)
e =L (0,001 (25)
¢ rsing\ )"
The 1-forms{w”} = (w‘i w”, wé7 w‘z’), corresponding to this tetrad have instead components
Wl = e® (1, 0,0, 0) 7 (26)
7 A
w,=¢€ (0, 1,0, 0) , (27)
wl = 7'(0,0, 1,0) , (28)
wﬁzrsinﬁ(—wﬂ,&l). (29)

We can now rewrite Maxwell equations (11)—(14) and (18)}-{@&1the ZAMO reference frame by contracting (7) and (15) WiR)—(25)
and (26)—(29). After some lengthy but straightforward bhge we obtain Maxwell equations in the more useful form

sin 0 (rQB%) . +etr (sin OBé) . + eArB(Z:¢ =0, (30)

(rsin @) % = € {E% — <sin GE‘&) 79} — (wrsin) B" (31)
<€A7” sin 9) aa—B;é = —e‘DH\ET:d, +sin @ <req)E¢B> - (weAr sin 9) B% , (32)
(eAr> 88_3:’ = - (req’Eé> ) + e‘PJfAEﬁ,e + sin 6 (wrQBf) . + welr (sin OBé) , (33)

T Thisis a reasonable assumption if the neutron star has a@tatnpe such that the atomic nuclei are frozen into a lastiwbthe electrons form a completely
relativistic, and degenerate gas.
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and
sin 0 (rzETA’) + ety (sin OEé> . + eArE(%¢ = dretr?singJgt , (34)
P . é 0 . 7 . 8Ef' P . 7
e (sm 0B ) o B’y —(wrsin@)E", = (rsinf) ET +4me rsinfJ" (35)
e®TABT, —sing <r eéB(;) — (weAr sin 9) B, = <eAr sin 9) a—Eé 1 4me® M sin 0.7 (36)
® - ? ot ’
@, 0 DA P . 2 7 A 0 A\ OE® S+A, 16 A2 oot
(e TB) —e B79—|—sm9<er) + we r(sm@E)g = (e r)w—i—élﬂ'e rJ® 4+ 4re”wrosinfJ’ . (37)
Equations (35)—(37) can now be rewritten in a more converiggm. Taking our conductor to be the star with four-velga@ibmponents
— 2 2
w® = e~ 2" (1,0, 0, Q) , Wwo = 2™ ( ~1,0,0, %‘n% , (38)
e22(r)

we can use Ohm’s law (17) to derive the following explicit gmments of/¢ in the ZAMO frame

wr sin 0

J=peto 5%, (39)
s s r sinQBg 40

J =0 E" — = , (40)
o 6  wrsinf _a

J =c|E + =—B" ] (41)

e

3 $ , wrsind

J =ocF + e—q)pe . (42)

Next, we discuss a few assumptions that are going to be usedfter. Firstly, we assume there is no matter outside tesst that the
conductivitye = 0 for » > R and thatz # 0 only in a shell withR,,, < r < R (e.qg. the neutron star crust). Secondly, we consider be
uniform within this shell (Note that this might be incorréatthe outermost layers of the neutron star but is a rathed gpproximation on
the crust as a whole.). Thirdly, we ignore the contributioaming from displacement currents. The latter could, ingigle, be relevant in
the evolution of the electromagnetic fields, but their e€feare negligible on timescales that are long as comparddthételectromagnetic
waves crossing time. In view of this, we will neglect in (38%) all terms involving time derivatives of the electridfi@nd use Ohm’s law
to rewrite equations (35) and (36) as

ot — L A (enop®) _ gt
rsinE" = o {(sm@B )’9 3,4 +0(Q), (43)

9
. i € b P . 5
errsinE’ = —— {eq +ABT7¢ —sinf (re‘DB¢>

= } +0(9Q). (44)

T

Substituting (43) and (44) in the left hand sides of equati@5)—(37) eliminates the dependence from the electrid &intl yields

. R — R 7 A
{(sin HB‘Z’) - B’ } _we {(sin HB‘Z’) -B% = AdrrsinfJ" (45)
,0 ’ dro ,0 ’ ®
A R —e T X T R
e@JrABT'd, —sin 6 (e@rB(b) _we e¢+ABT¢ — sin @ (eq)rBd)) = Adne®rsingg? (46)
’ 7 dmo | ’ rlg
<eq)rBé) — eq”ABflg + L {ﬂ {(Sin QB(Z’> — Béd,} } +
o ’ T | o 0 ’ -
we ™ [ opn i & 5\ | S S A 2
1 e*tA B, —sin6 <e rBd)) = dne®™ % + anetwr®sinOp. . 47)
o 5T 0

3 STATIONARY SOLUTIONSTO MAXWELL EQUATIONS

In this Section we will look for stationary solutions of theabdvell equation, i.e. for solutions in which we assume that tagnetic
moment of the magnetic star does not vary in time as a restitteoinfinite conductivity of the medium. Note that this does mean the
electromagnetic fields are independent of time. As a redutie misalignment between the magnetic dipplend the angular velocity
vector(2, in fact, both the magnetic and the electric fields will pessgeriodic time dependence produced by the precessiqn afound
(see Fig. 1).
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Figure1l. Schematic representation of a misaligned rotator. egee, e;, edS) is a local orthonormal framgy is the magnetic dipole moment of the star,
x is the inclination angle relative to the rotation axis, antte instantaneous azimuthal position.

3.1 Rotating Magnetized Conductor in a Minkowski Spacetime

Before looking at the problem of a magnetized rotating cetmtuin a rotating spacetime, it is useful to start with a den@nalogous
configuration: that of a rotating magnetized conductor ininkdwski (flat) spacetime. This will provide important ight for the search of
general relativistic solutions and useful limits againkiak match the fully relativistic solutions.

Consider therefore a conducting magnetized sphere ofgdtiwtating at angular velocitf2, and with the magnetic four-vector field
B being uniform (in radius) inside the sphere and dipolaridet§This is a simple but instructive example.). Becauseisfahtinuities in
the fields across the surface of the sphere we will refer tatasior solutionghose solutions valid within the radial rangg , < r < R,
and to asexterior solutionshose valid in the rang® < r < oo.

3.1.1 Interior Solution

The interior solution for the electromagnetic fields of a metized sphere with magnetic moment aligned with the manadixis was found
by Ruffini and Treves in 1973 (Ruffini & Treves 1973). Exterglitto the case of a misaligned rotator we obtain

B = % (cos x cos @ + sin x sinf cos A) (48)

B’ = —% (cos xsin® — sin x cosf cos A) (49)

Bi’z—z—‘usinxsin)\, 50
R3

where i is the magnetic dipole moment of the stgris the inclination angle of the magnetic moment relativehte totation axis and
A(t) = ¢ — Qt is the instantaneous azimuthal position (see Fig. 1).

The expressions for the components of the electric field arg simple to derive when one assumes that the sphere is &etper
conductor” (i.,es — oo) and there are no conduction currents inside the spherkisicase, Ohm’s law can be used to obtain

E" = MBé = —MRS;HQ (cos x sin @ — sin x cos @ cos A) (51)
c c
Eé = _ {irsin er =— 2‘MQ;§H 0 (cos x cos @ + sin x sinf cos A) (52)
c c
E*=0. (53)
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3.1.2 Exterior Solution

The solution to this problem, i.e. to the form of the electegmetic fields external to a misaligned rotating magnetsg@dtere, was found in
1955 by Deutsch (Deutsch, 1955). The full solutions are dmaied expressions involving spherical Bessel functiointhe third kind, but
they become much simpler when truncated at the lowest oftiermagnetic field components, in particular, have the form

B = 2—’; (cos x cos @ + sin x sinf cos A) (54)
T

B’ = 7% (cos xsin @ — sin x cos@ cos A) (55)

B = %sinxsin/\ , (56)
r

while the corresponding electric fields are given by

G MQR2 2 . .

E" = — gt [cosx(?;cos 0 — 1) + 3sin x cos Asin 6 cos 0] , (57)
6 uQ [ 2R? ) ) R*, 2

E =-z r—2€osxs1n0c059+smx l—T—Q(cos 0 —sin”0)| cos A p (58)
. 2

E® = %sinxcosﬁsin)\(l— Jj—Q) . (59)

Three interesting features of solutions (54)—(56) and<{&8) should be noticed. The first one is given by the peritidie modulation
introduced by the precession of the magnetic moment andhwdigappears when the dipole is aligned, i.e.fo= 0. The second feature

is that, as one might have expected on the basis of symmatsidarations, the toroidal components of the externat®isagnetic fields
are just a by-product of the misalignment between the miatixis and the magnetic dipole and again disappear when0. Finally, the
third relevant feature is the appearance of an electric éild(2) introduced by the rotation of the sphere and whose quadxupalt [i.e.

o (3cos®f — 1)] is present also in the case of an aligned rotator. As we wélis Section 3.2.2, where we study the analogous problem in
a slowly rotating spacetime, an additional contributiorﬂﬁu)i to the form of the external electric field will be introduceyl the general
relativistic frame dragging effelt

3.2 Rotating Magnetized Conductor in a Slowly Rotating Spacetime

We now consider the general relativistic analogue of thélera in Section 3.1 and look for a solution of Maxwell equat@30)—(33) and
(34)—(37) assuming that magnetic field of the star is dipdlaisimply the search for a solution we look for separabletsmhs of Maxwell
equations in the form

B'(r,0,¢,x,t) = F(r)¥1(0, 6, x,1) , (60)
Bé(r797¢7X7t) = G(T)W2(07¢7X7t) ) (61)
B%(r,0,¢,x.t) = H(r)Us(0, ¢, x.1) (62)

whereF(r), G(r), and H (r) will account for the relativistic corrections due to a cuhlEckground spacetime.

A considerable simplification comes from the fact that, &t firder in(2, the solutions for the electromagnetic fields will not acqui
general relativistic corrections to their angular depewde We therefore expect that, as for the case of the Deutdatiom, the general
expressions for the angular eigenfunctidnswithi = 1, . .., 3, will have a complicated angular dependence expressethis & spherical
Bessel functions of the third kind. This is however over-pticated and for most of the astrophysical applicationsaitild sufficient to know
the form at the lowest order which can be known by requirireg the solutions match the lowest order solution for a ngs&d rotating

' Hereafter we will refer to a®(w) any quantity that is the result of the dragging of referemaenés and that is therefore go..

8 Note that an electric field induced by the rotation of the stast appear also in the general relativistic case. Thistipmsent in the solution proposed by
Prasanna and Gupta 1997, where the external electric fieltlyif O(w) and the radial dependence does not contain higher ordes tarid /r.
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dipole in flat spacetime. In this case, then, we obtain

W10, ¢, x,t) = cosx cosf + sin x sin O cos A(t) , (63)
U (0, ¢, x,t) = cos x sin @ — sin x cos 0 cos A\(t) , (64)
W3(p, x,t) = sin xsin A(t) , (65)

which also satisfy the following useful relations

\111,9 = —\IIQ 5 \111,(1, = —\I/:; sin 0 5 \112,9 = qfl 5 \112,(1, = @3 cos . (66)
Maxwell equations (30), (45)—(47) with the ansatz (60)}(§#ld the following set of equations
[(rzF) .t QeArG] sin 6 (cos x cos O + sin x sin 6 cos A) + e*r (H — G)sinycosA = 0, (67)
we™?® 7

(H — G) cosBsiny {sin A — cos )\} = d4nrsinfJ", (68)

Ao

@ DA we™® DA 4

(re H) +e TUF|sinfsiny [sin A — cos\| = —4me “rsindJ’ (69)

r 4o

[ﬂ H-6) -Lo,(G-H) - we® (req’H> + P F |} cos O sin y sin A
4o o dmo o 4o s X

+ {(re‘pG) + eq)JrAF} (cos xsinf — sin x cos@cos \) = dme® Ay g9 . (70)

Next, we will distinguish between an external vacuum solutio Maxwell equations (for which fully analytic solutiomr be given)
from the interior non-vacuum solution. Since we are treptime interior of the star as a perfect conductor and the iextef the star as
vacuum, we can imposé = J% = J® = 0 in (67)—(70) and obtain as Maxwell equations for the radéat pf the magnetic field

(7‘2F) Lt 2e8rG =0, (71)
(req)H> +e AP =0 R (72)
H-G=0. (73)

Note a first important result in the system of equations (7B)- In the case of stationary electromagnetic fields, #mecal relativistic
frame dragging effect does not introduce a correction todbel eigenfunctions of the magnetic fields. In other wpid¢he case of infinite
conductivity and as far as the magnetic field is concernadsthdy of Maxwell equations in a slow rotation metric pr@gco additional
information with respect to a non-rotating metric. The feadnagging effects are therefore expected to appe@(at).

3.21 Interior solution

Limiting the solution to an inner radiug, ,, removes the problem of suitable boundary conditions-fer 0, and reflects the basic ignorance
of the properties of magnetic fields in the interior regiohaautron stars.

Itis important to notice how the system of equations (713)-€dmbines information about the structure and physiceeétar (through
the metric functionsb and A) with information about the microphysics of the magnetitdfighrough the radial eigenfunctioris andG).
As aresult, a relativistic solution for the interior elentragnetic field cannot be given independently of a selfisterst solution of Einstein
equations for the structure of the star. In practice, towtate a generic solution to (71)—(73), it is necessary a sfigh a (realistic) equation
of state and obtain a full solution of the relativistic st@nce the latter is known, the system of equations (71)—(@8)be solved for a
magnetic field which is consistent with the star’s structumd corresponds to a magnetic configuration of some astsagattynterest. (This
is what done, for instance, by Gupta et al. 1998 in the casa oftarnal dipolar magnetic field).

Alternatively, one might specify a magnetic field configioatand look for a compatible equation of state for the staltaucture (This
is a less satisfactory way to proceed but one which is usefgét insight into the problem.). In this case, the simplestsjble solution to
the system (71)—(73) is one in which the magnetic field is momighroughout the region of the star of interest and isctfoee the general
relativistic analogue of the solution presented in 3.Inthls case, then

A
el G=- = F, (74)
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whereC is an arbitrary constant whose value can be determinediafparsing the continuity across the star surfac@6f
We can now check whether the solution (74) is physically ipbssUsing (74) in the system of equations (71)—(73) resgithat the
metric functions satisfy the condition

<re‘b7A) o e =0. (75)
Recalling now that Einstein equations for a spherical seldy ’
M = (1 - Qm—(”) - , r<R, (76)
T
with m(r) = 4m OR r2p(r)dr, andp(r) being the total energy density, we can rewrite (75) as
@, = (B (77)

On other hand, the solution of the Einstein equations foritierior of a relativistic spherical star (i.e. the solutiof the Tolmann-
Oppenheimer-Volkoff equations; Tolmann, 1939; Oppenleeié\Volkoff, 1939) requires that

op (M A+ 4mrP
@W =e (T) 5 (78)
whereP is the isotropic pressure. The comparison of (78) with (Tiowss that the general relativistic uniform magnetic fieldison
B = % (cos x cos @ + sin x sinf cos \) Ci (79)
N —A
B’ = s (cos xsin @ — sin x cos @ cos \) Ci (80)
3 e .
B? = s (sinxsin A) Cip (81)

is possible only for the (unrealistic) case of the “stiff teat equation of statd = p.
The corresponding form of the internal electric field is adtmightforward to derive in the case of no conduction aigeln this case,
in fact, Ohm’s law (39) and (40) yield the simple expressions

R _ —(®+A),.
gt =Y SgleBQ = _eiRg’sm@w (cos xsin @ — sin x cos @ cos \) Ci (82)
ce c
. N . P -
E' = wzzgl 0 B = _°¢ C;S:sm i @ (cos x cos @ + sin xsinfcos A) Cr e, (83)
E=0, (84)

where we have taken into account that= O(w) and that the contribution proportional &p. is therefore of higher orddr Note that,
apart for red-shift correction proportional €6 %, equations (82)—(84) are the same as (51)—(53) @iteing replaced by the effective fluid
velocity measured by a free falling observerThe internal charge density corresponding to the elettfield (82)—-(84) can be calculated
after imposing that [cf. eq. (34)]

1 67A 2 f 1 . 0
”e*ﬂ{r—z (’”E>,ﬁrsme(smw),@} - (85)
Using now expressions (82)—(84), we easily obtain
1 o e A —(®+A) - 3 sin 6 . . 2e %
pe = - { |:3€ W= <e wor ),r NE (cos xsin @ — sin x cos @ cos ) o W oS X Cip . (86)

3.22 Exterior Solution

The exterior solution for the magnetic field is simplified e tknowledge of explicit analytic expressions for the neefinctions® and
A. In particular, after definingV = e® = e ™ = (1 — 2M/r)1/2, the system (71)—(73) can be written as a single, secorel-ordinary
differential equation for the unknown functidn

% {(1 - %) % (7‘2F):| —2F=0. (87)

9 Prasanna and Gupta (1997) have used the assumption ofardomitiuctivity also for the matter outside the neutron St@rnote that their expressions for
the electric fields do not contain the (important) contiitnutof O(£2) and the radial component does not seem to satisfy Ohm’s law.

© 2000 RAS, MNRASDQ0, 1-19



10 L. Rezzolla, B. J. Ahmedov, and J. C. Miller

Introducing now the new variable= 1 — /M, equation (87) can be written as

d 1 + x d 2

— — (1 — F 2F =0. 88

dm{(l—m)d:c[( z) ]}+ 0 (88)
Equation (88) is an example from a class of equations whiahbeasolved in terms of the Legendre functions of the second &i, (see
Appendix B for details on the derivation of the solution)the case of equation (88) we hafe- 1, and (Jeffrey 1995)

T 142
Qlﬁln(l_x)_l. (89)
The radial eigenfunctions'(r), G(r), andH (r), are then given by
=3 a2 M
F(r)= e {lnN + = (1—!— . )} ", (90)
_ 3N I Ny L
G(T)74M2r {MlnN —|—N2—|—1},u, (91)
H(r) = G(r), (92)

and satisfy the following boundary conditions:
(i) refer to a vanishing field at infinity, i.e.

lim F(r)=0, lim G(r) =0; (93)
r—00 r—00
(ii) reduce to a flat spacetime solution for a dipole, i.e.
. 2 . _ M
MI/I?LOF(T) s MI/I?L()G(T) o3 (°4)

(iii) coincide with the corresponding radial eigenfunctionsnfibfor a Schwarzschild spacetime (Ginzburg & Ozernoy, 126wlerson
& Cohen, 1970). This is what we expected since there are rtofier contributions due to the rotation of the spacetime.
Using expressions (90)—(92) we can now determine the vditleeomatching constan®; by requiring that the radial magnetic field is
continuous across the star surface, i.e. tBitr = R)],, = [B"(r = R)],, - As aresult, we obtain

3R? 2M 2M M F(R)R?
= {1“(1‘7%?(”?)}*77 (39)
whose flat spacetime limit is
lim C;=2. (96)
M/R—0

Collecting all the expressions for the radial eigenfunwicthe stationary vacuum magnetic field external to a ngisati magnetized
relativistic star is given by

.3 . 2M M .
B" = YSYE {lnN + . (1—|— ”r)} (cos x cos @ + sin x sinf cos A\ , (97)
B = % {%IHNQ + % —|—1} (cos x sin @ — sin x cos @ cos A, (98)
BY = 4;2\; {% InN? + % —|—1} (sin xsin A . (99)

The search for the form of the electric field is much more imgdIthan for the magnetic field. However, hereafter we wilkenase of
the insight gained in Section 3.1.2 as a guide and start thieatien of the solution by rewriting vacuum Maxwell equats (31)-(33) and
(34) as

ﬂu In N? + M 1+ M sinysin’#sinA = (sin 9E®) — E° , (100)
4M3N r r P
Z\WJZ 1 {% InN? + % + 1} sin ysinfcosfsin A = E’i(b —sin@ <7‘NE¢B> , (101)
f]\o}?;u {lnN2 + ¥ (1 + %)} (cos x cos @ + sin x sin @ cos A) sin 6
—1—43%;1, {% InN? + % + 1} sinycosA = (rNEé) — Er:.g , (102)
Nsiné (rQEf'> +7r (sin QEé) . + TE(Z?¢ = 0, (103)

and which already indicate that the dragging of inertiairfes with angular velocityw introduces electric fields in the surrounding space
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when magnetic fields are present. Using as a reference thgossl (57), (58), and (59) for a misaligned rotating sphar®inkowski
spacetime, we look for the simplest solutions of vacuum Melkequations in the form

= (f1 4 f3)cos x(3cos> 0 — 1) + (g1 + g3) 3sin x cos Asin 0 cos 0, (104)
= (f2 + fa)cos xsinfcos + (g2 + ga) sin x cos A — (g5 + gs) (cos2 6 — sin’ 9) sin x cos A , (105)
= [g5 + g6 — (g2 + g4)] sin x cos O sin \ | (106)

where the unknown eigenfunctiofis — f1, andg: — gs can be found as solutions to vacuum Maxwell equations ane fzial dependence
only. Substituting (104)—(106) in (100)—(102) we obtaia fhllowing set of linear differential equations

N (r*fi)  +rf2=0, (107)

(rNf2)r +6f1=0, (108)

N (r*fs)  +rfs=0, (109)

(rNf1).+6fs — fj\“}s {1 N4 2M (1 + %)} =0, (110)
N (r*g1) L 2rgs =0, (111)

(rNgs), +391 =0, (112)

N (r*gs) L 2rgs =0, (113)

(rNge) . + 393 — ;Ms {1 N4 M (1 + M)} =0. (114)

Note that both the sets of radial eigenfunctighs- f4, andg1, g3, gs, ge are linearly independent, but that relations can be writetween
the two sets. In particular, the comparison of equation Y ¥@th (111) and of equation (109) with (113) indicates that

=fi, g3 =fs, 952%7 96:%. (115)

We start the search for explicit expressions for the radggrdunctions by combining equations (107) and (108) taiob& single
differential equation of second order for the unknown fiorctf;

i{(p%)dﬂi(ﬁfl)} -6f1=0, (116)

dr r

and which can again be recast in a form similar to equatioh @&ceeding in a way analogous to what done for the magfiekit(see
Appendix B for details) it is possible to realize that theusiain should be expressed in terms of a Legendre functioheo$écond kind and
of order? = 2. Recalling now that (Jeffrey 1995)

Qg(x):i(3x2—1)1n<§i_i) —37:”7 (117)

we obtain, as solution to (116) at the= 2 order in the expansion

(118)

Q 2M?  2M
fi= 6e R20102 {(S_M) InN? + 32 +——4}M7

whereC is an arbitrary constant to be determined through the intiposof boundary conditions. Making now use of the equatit®i’) we
also obtain that

Q

= (119)

fo=-

C1CoN {(1 - M) N2 o 2 }

3r2N2

© 2000 RAS, MNRASDQ0, 1-19



12 L. Rezzolla, B. J. Ahmedov, and J. C. Miller

In a similar way, the solutions to equations (109) and (1t8)aund to be

15wr? 2 2 o2M?  2M 20> 5 AM?3
L —Z )N 2y N 120
fs 16M5c {O {(3 M) " 3r2 + r 5rz + 58 1 (120)
45013 2 2M? aM*
fa= _MN{G’ {(1 )N -2 oo |+ e (121)

where agairCs is an arbitrary constant determined through the boundamgitons. Finally, the functiongs andg, are given by

30 . 2M M
92 = SABeN {mN + = (1+ . )} TR (122)
ga=—q9="— 8M3 N {1 N (1+ )};u (123)

so thatgz + g4 = (w/Q)ga.
Collecting again all the expressions for the radial eigeafions, the stationary vacuum electric field external tasafigned magnetized
relativistic star is given by

7 15wr 2 2M?  2M 2M°* 2 4M°
E = —— | InN — -4 In N
{16M5 { {(3 M) " 32 T, }+ 512 t 5
2
C’ng {(3 M) InN? + 2;:[2 -l-m —4} } [cosx(ScosQQ—1)+3sinxcos)\sin00059];1,7 (124)

5 45wr3 r 2 2M? 4M*
EY=— N 1— — 1 N%—2—
{16M5c { {( M " 3282 | T I5riNe
N

Q r 2 2M? . 2 T
2 R20102 {(1 — M) InN® —2— W} } [2cosxs1n0€os€ — (cos 6 — sin 0) smxcos)\] s
3ar 2, 2M M .
SN {1 N . (1+ —)} (sinx cos A, (125)
[ I CIa N FO) (1——)1nN2 2M° )M C1CoN (1——)11\72—2—%
) 16M5¢ M 3N | TNt [ T e R2 12 M 3r2N?2
8]\:22 N {l N?+ M (1—!— M)} }(sinxcos&sin)\)u. (126)
c

As anticipated in Section 3.1.2, expressions (124)—(126jian that the general relativistic dragging of referemaarfes introduces a
new contribution to the form of the electric field which doexs have a flat spacetime analogue. This effed@{ss) and therefore present
already in a slow rotation approximation. This is in contraith what happens for the magnetic fields, where higherraageroximations
of the form of the metric are necessary for frame draggingeotions to appear.

The values of the arbitrary constarits andC's can now be found after imposing the continuity of the tanigéelectric field across

the star surface. Using then (82)—(84) as solutions forrternal electric field and imposing thﬁfe(r = R)],~ [Ee(r = R)] @S
wellas[E*(r = R)], = [E®(r = R)] .., yields
1 R 2 oM? 177
=—|ll-—=)InN_, —-2— ——— 127
©=7 K M) B n 3R2N§} ’ (127)
2M? 2 | 2M
C3 = 15R2 ——C> |:hl N + ?:| s (128)

with Nﬁ = N%(r = R) = 1—-2M/R. Itis now also possible to calculate the surface chargeiblision o resulting from the discontinuity
across the star's surface of the radial electric field. Expéxpressions for this, as well as for the surface curreatsesponding to the
discontinuities across the surface®f and B?, will not be given here but can be found in Appendix C.

Before concluding this Section on stationary solutions vilks@mment on the relevant limits of equations (124)—(12&iystly, we
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verify that they reduce to the Deutsch solutions (57)—(89pe limitw = 0 andM/r, M/R — 0. In this case, in fact

]M/r,l}&l{l}RﬁO hir) = —M;ZEQ - A{/T,I}VIII}R%O g(r) = Nl/r,l}&III}RﬁO 5(r) (129)
o ) = =2 (130)
A{/r,l}\?}l’cﬁo 92(r) = _fjr_gz ’ (131)
g o) = 5 (132)
A{/r,l}\?}l’cﬁo () =0= Mf/r,lgvrfr}RHO Jalr) = A{/r,l}\?}l’cﬁo 95(r) = IVI/T-,IEVIII}RHO 95(r) (133)

Secondly, in the limit of an aligned dipole in a Schwarzatsppacetimey = 0 = w, and equations (124)—(126) reduce to

. QR .  2M M R ) oM? 17!
E" = Vi {lnNR-&- = (1+ R)} {(1 M)lnNR 2 N
2
{(3—%)lnN2+23]\i +¥—4} (3cos’ 0 —1)u, (134)
i 3QR 2 2M M R ) am? 17!
E = TNz {1nNR+ = (1+ R)} Kl M)lnNR 2 SN
2
N {(1— %) InN?—2— %} (sinfcosO) (135)
B =0. (136)

Note that (134)—(136) do not coincide with the correspogdirpressions found by Sengupta (1995). A straightforwatcutation would

show that his suggested expressions, while reducing to ¢husbh solution in the flat spacetime limit, do not satisfyxiall equations. A
possible explanation for the disagreement could be fourtdermethod followed by Sengupta in his derivation which islmased on the
explicit solution of Maxwell equations. Because of thishsequent results obtained on the basis of Sengupta’s eigmedgor the external
electric field (e.g. De Paolis et al., 1999) should be restikin terms of expressions (134)—(136).

4 NON-STATIONARY SOLUTIONSTO MAXWELL EQUATIONS

In this Section we will drop the assumption of infinite contilvity which prevented the variation of the star’s magnetioment and led to

the stationary electromagnetic fields presented in theégue\Sections. Here, on the contrary, we are interestedia ¢volving electromag-
netic fields and, in particular, in establishing the geneghdtivistic corrections to the induction equation. A direonsequence of a finite
conductivity is, in fact, the generation of a time varyinguae density and conduction currents which will be thenaesible for the Ohmic

decay. Using Maxwell equations (34) and Ohm’s laws (39));(42 find that the space charge dengity= p.(t,r, 8, ¢) inside the star has
a zeroth-order contribution given by

= 7667/\ r (sin QB(Z’> — rBé
pe = 16720712 sin 0 ®

+ {eq)+ABf;¢ —sinf (e@rBd;> }
3T 0

T

e+ {(eq)rBé> - 6¢+AB%} eq’} +O(Q); (137)
3T b

ce ™ [cos@sinxsin\\ (G — H)
" 16720 ( sin 6 ) r e +0(Q) . (138)

where the second expression is the one obtained after uramsatz (60)—(62). It follows from equations (143) andj14at the zero-order
term in equation (138) vanishes, so that the leading cartidb is at first order if2. Using now equations (31), (46), (47), (137) and Ohm’s
laws (41), (42), we obtain the evolution equation for théabcomponent of magnetic field
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p

oB" e A 1 SHA oF 5 5 we—& LA
= = — Br_-9< Bd’) __we = | etAph 9< B¢>
ot Amor? sin9{sin9 {e ¢ —SIMULE T N 4o sin O ¢ —sinf (e .

) & 0 _ _®+ApP ) wr . é b
{sm@{(e rB >,r e B79:|}9 {sm@hﬁg {(sm@B )’9 B7¢H T}e
_we“b sin@ |e®tAB", —sin6 (e TB¢> + Qe ® e?{sind |r <sin GB‘&) — *rBé
4o ® el , 4o 0 ® )y
+ {sin0 {e‘b+AB’i¢ —sin@ <eq)rBd;> } } + {sinﬁ {(e‘eré) — eq)JrABf’g} } }} — QB’A: . (139)
T10) " %) 0

Similarly, using equations (32), (45), (47), (137) and Ohfaws (40), (42), we obtain the evolution equation for thxpoomponent
of magnetic field

P

oB? cte™h A o b B+A F —A | WT : é 6
A L G GO I I {m {<smw )=
—|—L we ™ (BN {e‘b+AB’i¢ —sin 6 <e‘er$) } — —A { sin GB¢ — rBé,(b}
Ao vl e . o),
+ {e(q)+A) {eq”AB% —sinf (eq)rBd;) } } +{ —(@+8) {(eq)rBe) @JrABT } } }}
o) 6) .
2e® 3 d we™® 5 § o
¢ (sin 9B¢> -B,| - (sm 934’) - B, —aB’,. (140)
4dmor2sin? 0 0 ’ Admo 0 ’ b ’

b

Finally, equations (33), (45), (46) and the Ohm'’s law (4@},)(yield the evolution equation for the toroidal part of thagnetic field

aB® ce A Y . & we™ (BFY) DA HF . @ e
5 = Irorsind {e {e B' 4 —sinf (e rB )J }’T N i {e B4 —sinf (re B )J ,
2e® 1 3 d we™® 1 5 5
infB°) — B - in6B°) — B’
+471'(n“2 {sinﬁ {(sm ),9 ’ }}’0 47o | sin6 {(sm ),e Tl .
A . . R
+ e "sind (ﬁB*) 10 (sin 0B9> . (141)
T - 0

A first important feature of equations (139)—(141) is thatides the relativistic corrections due the monopolar plthegravitational
field (proportional toM /R and already present in the non-rotating case), the rotafispacetime introduces additional corrections related
to the dipolar part of the gravitational field (and propanibtow) to the decay of the magnetic field. A second relevant asgearjumtions
(139)—(141) is that they do not show the degeneracy encathie the time evolution of the magnetic field in a non-ratgtspacetime [cf.
equation (146)]. In that case, in fact, the three inductiqnagions for the components of the magnetic field reduce iogiesevolution
equation (Sengupta, 1997; Geppert et al. 2000). Here aidstke three equations remain distinct and a particulat é@nponent might be
favoured during the decay. Finally, equations (139)—(B#lhot factor out the angular part as it is the case for a ntating, aligned dipole
[cf. equation (146)] and the evolution of the magnetic fiedd therefore properties which depend on the angular positithe star. As a
consequence of this, an initially dipolar magnetic field imigot remain as such during its decay. This could be reldearhe evolution of
the magnetic field of pulsars and more particularly of maarset
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Using now the ansatz (60)—(62), we can write equations (A3@}1) in the more compact form

OF 2 —A
—— (cos O cos x + sin @ sin y cos A) sin§ = cc
dmwor?

ot

{ [eq)r (G- H)] sin x cos A
-2 {(e%’G) + eq)JrAF} sin 0 (cos @ cos x + sin fsin x cos )

_ sin x sin )\{[wr(H -G)], (1~ 2sin” 0) + 2we™® {(eq)rH) + eq)H\F} sin® 0

dmo r
—Qr (G- H)®, (1-2sin’0) }} , (142)
2 P _ —P
88_6; (sin @ cos x — cos@sin x cos \) = 47(;07" { ¢ r(sfHQ OH) cos 6 sin x {cos A+ uj;m sin )\}

+e {eiA (eq)rG> + eq)F} (sin @ cos x — cos 0sin x cos \)

T
’ o

—A
_e . . —A _ —(A+D) @ —A o
47mc059s1nxs1n)\{e [wr (G H)]7T+w{F+e <re H)J —|—Q[<I>’Te r (G H)] }T},

(143)

OH . e A Al > ® . we 2e? (G-H) | . we™?®
Esm)\— yy— {{e (e TH)J—i—e F| [sin A — - cos \ ’T—&—m sin \ — - cos | , (144)

whereF', G, andH satisfy the constraint equation (30)

[(rzF) .t 2eArG] sin 6 (cos x cos 0 + sin x sin 6 cos \) + e*r (H — G) sin y cos A = 0, (145)

The set of equations (142)—(144) is too complicated to beesloanalytically even when analytic expressions are availtor the metric
functions (e.g. for a constant density stellar model). Thmerical solution of (142)—(144) for a number of equatiofstate together
with a self-consistent evolution of the star’s angular e@joand electrical conductivity will be presented in a sgpa paper (Rezzolla et
al. 2000). Note that equations (142)—(144) could also bavef#ithrough a vector potential,, defined so that the electromagnetic tensor
F.. = Ay, — A,,.. Details of this derivation can be found in Appendix D.

An interesting limit of the induction equations (142), (J48the one for a non-rotating dipole in a spherically synmuetpacetime. In
this case2 = 0 = w, x = 0, andH, H/Jt are not determined [cf. equations (62) and (65)]. As meetidpefore, the induction equations
are degenerate in this case and the unique evolution equatiben

g (o en |

D+A
W = pp— — 2e F} 5 (146)

\T

corresponding to the solution found by Geppert et al. (2000)en the metric function® andA refer only to the vacuum region of spacetime
external to the star, equation (146) further simplifies to

oF ¢ [r—2M 2M Y [ 2
W = prp—) r {I:(l— T) (7' F),'r“:| . —2F} , (147)

and which now corresponds to the solution found by Sengu®a).

5 CONCLUSION

We have presented analytic general relativistic exprasdiar the electromagnetic fields internal and external towalg-rotating magnetized
neutron star. The star is considered isolated and in vacbutmo special assumption is made on the orientation of thelali magnetic
field with respect to the rotation axis. The solutions to Makwquations have been considered both for an infinite and fimite electrical
conductivity.

In the first case, corresponding to stationary magneticdjel@ have shown that the general relativistic correctiargstd the dragging
of reference frames are not present in the form of the magfietds but emerge only in the form of the electric fields. Imtisalar, we
have shown that the frame-dragging provides an additiowhided electric field which is analogous to the one introdumethe rotation of
the star in the flat spacetime limit. In the case of finite eleat conductivity, on the other hand, corresponding toagéty magnetic fields,
we have shown that corrections due both to the spacetimatcuevand to the dragging of reference frames can be fourteimtluction
equation. An interesting result obtained in this regimehit the rotation of the star eliminates the degeneracy irctineponents of the
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16 L. Rezzolla, B. J. Ahmedov, and J. C. Miller

induction equation which remain therefore distinct. Farthore, rotation and dipole misalignment do not elimina&geangular dependence
in the induction equation and, as a result, an initially thponagnetic field might evolve towards a different configiaraduring its decay.

Because of their complexity, the evolution equations fofardhe magnetic field require a numerical integration whigh discuss in
detail in a forthcoming work (Rezzolla et al. 2000). There,will also present direct comparisons between the flat amduhved spacetime
solutions and quantify more precisely the importance ofghreeral relativistic corrections.

One of the relevant aspects of the solutions presentedsmpéper is that they provide a lowest order analytic formlierdlectromag-
netic field in the spacetime of a slowly rotating misaligngsbte subject to assumptions which, while giving simplifioas, allow the major
features of a realistic solution to be seen. In this sengy, ribflect a rather general physical configuration and cdwédefore be used in a
variety of astrophysical situations.
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APPENDIX A: THE ELECTROMAGNETIC TENSOR

For completeness, we provide below the explicit expressionthe components of the electromagnetic tensor useddhout the paper. In
a coordinate basis, and at first ordefinthese components are given by

0 —e®E, — werr?sin0B? —e®Ey + welr?sin B” —eq)E¢
e®E, + welr?sin0B? 0 e*r?sin 0 B? —eMr?sin9B?
Fap = e®Ep — welr?sin0B" —er?sin 0B 0 err? sinB" (A1)
e?E, e*r? sin 0 BY —e*r?singB" 0

The matrix (A1) can also be expressed in terms of the electgmetic field measured by the ZAMO observers, in which caskés
the form

0 AR et rsingB® —etrE? +wr’sindB”  —e®rsin oE?
ePAET 4 welrsin 0B° 0 ArB? —eMrsin0B°
Fap = e*rE? — wr’singB’ —eMrB? 0 r?sin B" (A2)
e®rsin 0E¢ rsin B? —r?sin@B" 0

Finally, we note that the components of the electromagetisor in the ZAMO frame can be derived from (A1) with the sfanmation

Fop= egeEFMu , (A3)
to obtain

0 —cE" —cE° —cE‘zg

cE" 0 B* B’
Fo.= A . ) . A4
of cE° —-B* 0 B’ (A9)
cE® B _B° 0

APPENDIX B: RADIAL EIGENFUNCTIONS

In this Appendix we briefly sketch the procedure for the claltan of the radial eigenfunctions and that have lead testietions (90)—(92),
(118)—(119), (122)—(123). In general, we look for a solntid the equation

d%{(i“_‘i)%[(1—@2%]}“(“1)%:07 (B1)
for the functiong,. Equation (B1) can also be written as
(1—-a%) g7 —2(1+22)g; + [( (L +1) — 2] ge = 0, (B2)
with the dash representing a total derivative with respeet The solution of (B1) has then form
o= |04 20 (83)
whereQ, are Legendre functions of second kind (Jeffrey 1995). A pobthis comes from substituting (B3) into (B2) to obtain
(I42) [(1—a®)g)” + (1 —Ta)g) +[L(E+1) —2]q/] —4(1 +22)q/ + [£(L+1) =2 g, =0, (B4)
and which can be rewritten as
(1+2) [(1—2")¢" —6zq)" +[((€+1) —6]q/] + (1 —2”)g)" —daq/ +[£(L+1) — 2] g, =0. (B5)

© 2000 RAS, MNRASDQ0, 1-19



18 L. Rezzolla, B. J. Ahmedov, and J. C. Miller

It is now easy to realize that (B5) is identically satisfiedcsi the content of the square brackets is, in fact, the sederidative of
Legendre’s equation

(1—2*)q/ —2eq; +£({+1)qe =0, (B6)
while all the remainder of (B5) is the first derivative of Legiee’s equation (B6).

APPENDIX C: SURFACE CHARGESAND CURRENTS

We here give explicit expressions for the surface chargeildision o5 and surface currentd resulting from the discontinuities across the
star’s surface of the—component of the electric field and &f ¢—components of the magnetic field.
Defining now[A]* = [A(r = R)],x, — |A(r = R)],, the surface charge density can be found as

= L Cc1
o= BT, (N
and is given by
1 | 15wRR? 2R 2 2M?  2M 2M2 4M°
7 = 47r{ 8Msc {CSKB’ M)lnNR+3R2 TR At B Vet Sh
2R s 2M?  2M
—|—3 R201C’2 {(3— ﬁ) In N; + 3R2 + = —4} }(cosx),u
1 | 45wpR® 2R 2M?  2M 2M? 4M°3
_E{ 16M5¢ {Cf’{(z)’_ﬁ)l Nt Zgr + T 4| T 5 m Vet 55w
Q 2R 2M?  2M R . . .
2 R20102 {(3— M)l Nz +=— SR? + = —4} — @Cﬁ}slnﬁ(cosxsm@—smxcos)\cosﬁ)u7 (C2)
wherewr = w(r = R) andor = &(r = R)
In a similar way, imposing that
b Coph 6 C o pénk
i —471_[B] , i 471_[B] , (C3)
we obtain
4 3¢ Nr [R 4M? L
U = 16 2R { In N3 + N2 +1+ SR? C1| (sinxsin ) p (C49)
3 3¢ Nr [R 4M3
b _ r | R o
i 6= M2R { In Nz + N2 +1+ 3R? Cl} (cos xsinf — sin x cos @ cos \) s . (C5)

APPENDIX D: AN ALTERNATIVE DERIVATION OF THE INDUCTION EQUATION

To confirm the results presented in Section 4 and to compdtethe results presented in the literature in the case of Stsehild back-
ground spacetime (Sengupta, 1997) we here present a dmmiwdtequations (142), (143), (144) in terms of a vector ptéé A, defined
as

FaB = Alg@ — Aa”@' . (Dl)

The use of a vector potential is sometimes looked at withtekism (Geppert, Page and Zannias, 2000) in view of the riomrsutativity of
the covariant derivative, which could lead to ambiguitfddaxwell equations are expressed through double covadiartatives of a vector
potential. All of these ambiguities, however, are easilpoged if the vector potential is introduced only when Maxvegjuations (15) are
recast in a form not involving covariant derivatives
1 af o o
= <\/_gF )’ﬁ = dnJ (D2)

In our derivation we start by using equations (7), (15), (Xi8glecting the displacement current and taking the felweity of the

conductoru® in the form (38) [i.e. neglecting terms proportionalg® Foyu® ~ O(w?)] we get

1 a a
Ty (VTP , = o+ g™ (Foeu + Fan) (D3)
which can be written as
b b
_ Gab ( bc) Fau PeFablU
Fpo=—2% _ (/=gF®) — =2 _ [fedabl D4
0 dro/—gul g . u? oud ©4)
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Using now (D2) we can write the general expression for théutiam of the vector potentiall; as

Gij ik Fiju’ | pegiju’
Moo= Fa= I () B g
0 0 Ao/ —gul 9 k + uf + ou?

Using (D5), the induction equation for the evolution of theomponent of vector potential can be written as

0Ay e N 1 DA e¢+AF¢9 we ® [ DA e® A
24y _ of L (e0,,) () + <
ot aro D77\ sin6 \° ) * rsing ) , * dro |PTO\C ) + r2sing '9? 0

—|—L we ™ |(sin OFg) +LF +@<I> LF + (sin@Fy,) 4| siné
dro 70" sing "? - 167202 " |sing 077,60 ’

19

(BS)

(D6)

which coincides with equation (11) of Sengupta’s 1998 pagieeny = 0 = w ande®® = N? = 1 — 2M/r. Similarly, the evolution

equations for the other components of the vector potertgagizen by

aAe 6267[\ ) SA €<I>+A wef‘b ) SoA D+A

5t = drosnd 9( F) = F06.0 — 9( F) ————F QFpy
ot Irosng ) Y e o), t o agmaloee — o |sinfle ") . t o agmgloece| o T QFs

0A, e e-A —A

SN\, . e we . 1
= —-— OF. ——Frgpp — OF, —F, QF .
ot 4dwor?sin 6 {e (sin6Fy0) 4 + sing """ Tdno {(sm ?) .00 T sin 0 ¢>,¢>¢} } N ’
In the case of a misaligned rotator, the explicit expressfonthe “magnetic” components of the electromagneticdease

Fro = errH sin y sin A ,
Fy = Ge™rsin 0 (sin 0 cos y — sin x cos Acos6) |

Fpy = Fr?sin @ (cos 6 cos x + sin x cos Asin 6) ,
using which the induction equations (D6)—(D8) assume tha fo

2,—A
% = 064781119{ — {(eq)rG) —|—eq)+AF} (sin @ cos x — sin x cos A cos 6)
yi¥ea \T

)

—&-ﬁ { {(e%«H) + 6<1>+AF} we ™ + [wr(G — H)|, +Qr (G- H) <I>,T} cos 0 sin  sin )\} ,

P

A 2
044 ¢ |:67A (e@rH) + e‘PF} {sinxsin)\ _we
e Ao

at

o sin x cos )\} + QFr?sing (cos 6 cos x + sin x cos Asin6)

2 A (v —®
04, _ et (G- H) sin x cos {sin A— LS
Ao

A . .
5 Trorsm cos )\} QGe"rsin b (sin 6 cos x — sin x cos Acos ) .

(B7)

(D8)

(D9)

(D10)

(D11)

(D12)

(D13)

(D14)

Using now the definition (D1) it is possible to show that egqua (D12), (D13), (D14) are equivalent to equations (14233) and

(144) derived in the main text.
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