
ar
X

iv
:a

st
ro

-p
h/

00
11

31
6v

3 
 7

 M
ay

 2
00

4
Mon. Not. R. Astron. Soc.000, 1–19 (2000) Printed 27 October 2018 (MN LATEX style file v1.4)

General Relativistic Electromagnetic Fields of a Slowly Rotating
Magnetized Neutron Star. I. Formulation of the equations.

L. Rezzolla(1), B. J. Ahmedov(2), (3), and J. C. Miller(1), (4)

1SISSA, International School for Advanced Studies, Via Beirut 2-4, 34013 Trieste, Italy
2AS-ICTP, The Abdus Salam International Centre for Theoretical Physics, 34014 Trieste, Italy
3Institute of Nuclear Physics, Ulughbek, Tashkent 702132, Uzbekistan
4Nuclear and Astrophysics Laboratory, University of Oxford, Keble Road, Oxford OX1 3RH

27 October 2018

ABSTRACT
We present analytic solutions of Maxwell equations in the internal and external background
spacetime of a slowly rotating magnetized neutron star. Thestar is considered isolated and in
vacuum, with a dipolar magnetic field not aligned with the axis of rotation. With respect to a
flat spacetime solution, general relativity introduces corrections related both to the monopolar
and the dipolar parts of the gravitational field. In particular, we show that in the case of infinite
electrical conductivity general relativistic corrections due to the dragging of reference frames
are present, but only in the expression for the electric field. In the case of finite electrical
conductivity, however, corrections due both to the spacetime curvature and to the dragging of
reference frames are shown to be present in the induction equation. These corrections could
be relevant for the evolution of the magnetic fields of pulsars and magnetars. The solutions
found, while obtained through some simplifying assumption, reflect a rather general physical
configuration and could therefore be used in a variety of astrophysical situations.

Key words: relativity – (magnetohydrodynamics) MHD – stars: neutron –rotation – mag-
netic fields

1 INTRODUCTION

The investigation of the influence of strongly curved spacetimes on the properties of electromagnetic fields has an interest of its own which is
further increased when these effects could be related to a rich observable phenomenology. This coupling between general relativistic effects
and electromagnetic fields is expected to be particularly important in the vicinity of neutron stars which are among the most relativistic astro-
physical objects and are characterized by very intense magnetic fields (Lamb 1991, Glendenning 1996). A number of different observations
indicate that in young neutron stars the surface magnetic field strengths are of the order of1011 − 1013 G. In some exceptional cases, as
those of magnetars, magnetic field strengths≥ 5× 1014 G are considered responsible for the phenomenology observed in soft gamma-ray
repeaters (Duncan & Thompson 1992, Thompson & Duncan 1995).Older neutron stars, observed as recycled pulsars and low mass X-ray
binaries, show instead surface magnetic fields that are muchweaker≤ 1010 G suggesting that these are subject to a decay, even if it is still
difficult to establish whether the decay is due to accretion (Geppert & Urpin, 1994; Konar & Bhattacharya, 1997) or to other processes.

In the case of isolated neutron stars, the possibility of magnetic field decay as a result of accretion does not arise, but there are still a
number of different ways in which the energy stored in the magnetic can be lost. This can happen either through the emission of electromag-
netic (dipole) radiation, through Ohmic decay, through ambipolar diffusion, or through more complicated effects suchas “Hall cascades”
(see Goldreich and Reisenneger 1992 for a review). The investigation of these scenarios requires combined efforts. On one hand, there is
the search for a more precise description of the microphysics of the processes involved, some of which are still not well quantified. On the
other hand, attention is paid to a more realistic description of the gravitational effects on the properties of the electromagnetic fields in highly
curved spacetimes and this is also the motivation of this work.

The investigation of the general relativistic correctionsto the solution of Maxwell equations in the spacetime of a relativistic star has
a long history. The initial works of Ginzburg & Ozernoy (1964), Anderson & Cohen (1970) and of Petterson (1974) on the stationary elec-
tromagnetic fields in a Schwarzschild spacetime have revealed that the spacetime curvature produces magnetic fields which are generally
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stronger than their Newtonian counterparts (see also Wasserman & Shapiro 1983 for a subsequent derivation). Sengupta (1995) has reconsid-
ered this problem and also looked for a general relativisticexpression for the electric field in the Schwarzschild background of a neutron star.
As we will discuss in Section 3.2.2 the method used in his derivation is not entirely correct and the results obtained for the electric field are
not solutions of Maxwell equations. More recently, Sengupta has also considered the problem of the Ohmic decay rate in a Schwarzschild
spacetime (Sengupta, 1997). His approach is strictly validonly for the region of spacetime external to the star as it does not provide a correct
general relativistic description of the electromagnetic fields internal to the star. Within these approximations, however, Sengupta (1997) has
pointed out that the effects of intense gravitational field seem to decrease the overall decay rate by a couple of orders ofmagnitude. The
same problem has also been considered in more detail by Geppert, Page and Zannias (2000). Their analysis was aimed at a mathematically
consistent solution of Maxwell equations also in the spacetime region internal to the star and makes therefore use of a generic metric for a
non-rotating relativistic star. Their results, while confirming a decrease in the typical decay time for the magnetic field, also show that the
decay time is smaller but comparable with the one found in flatspacetime.

The general relativistic effects induced by the rotation ofthe star were first investigated by Muslimov & Tsygan (1992) in the slow
rotation approximation. A similar approach was also used byMuslimov and Harding (1997) for the electromagnetic fields external to a
rotating magnetized star. Their analysis refers to a chargefilled magnetosphere and represents the relativistic extension of the Goldreich-
Julian model. Using a different derivation, Prasanna and Gupta (1997) have also investigated the properties of the electromagnetic fields in
the magnetosphere of a relativistic rotating neutron star,with special attention being paid to the dynamics of chargedtest particles.

We here extend and unify all of the above investigations by considering the solution of Maxwell equations in the internaland external
background spacetime of a slowly rotating magnetized relativistic star. The star is considered isolated and in vacuum,with a dipolar magnetic
field which is not assumed aligned with the axis of rotation. The purpose of this paper is threefold. Firstly, we want to extend previous results
to the most general case of a misaligned rotator, providing for this case also the form of the electric field. Secondly, we want to discuss the
possible role played by frame dragging effects in the Ohmic decay for an isolated neutron star and estimate its importance. Thirdly, we wish
to clarify a few important aspects of the solution of Maxwellequations in the gravitational field of a relativistic star that, when overlooked,
have led to incorrect solutions (Sengupta 1995, Prasanna and Gupta 1997). Finally, by providing a rather general solution to the problem
(although truncated at the lowest order in the expansion of the angular dependence) we offer a compact reference from which all of the
previous results can be easily found in the appropriate limits and which could have practical astrophysical applications.

The paper is organized as follows: in Section 2 we write the general relativistic Maxwell equations in the metric of a slowly rotating star
and the form they assume when the electromagnetic fields are those measured in the orthonormal frame of zero angular momentum observers.
In Section 3 we find the stationary solutions (i.e. solutionsin which the infinite conductivity of the medium prevents a variation in time of
the star’s magnetic moment) to Maxwell equations outside and inside the misaligned rotating star. For this we consider first the problem in
Newtonian gravity and we then extend the results to general relativity within the slow rotation approximation. Section4 is devoted to the
equivalent problem, but in the case in which the magnetic field is not supposed stationary. There, we derive the basic induction equations for
the evolution of the inner stellar magnetic field of a misaligned rotating star. Section 5 contains our conclusions and the prospects of future
developments.

A number of appendices provide further details about some ofthe calculations carried out in the main part of the paper. Inparticular,
Appendix A summarizes the components of the electromagnetic tensor in a coordinate basis and in a locally orthonormal tetrad, while
Appendix B shows the derivation of the radial eigenfunctions for the electromagnetic fields in terms of Legendre’s equation. Appendix C
shows the explicit expressions for the surface charges and currents and, finally, Appendix D contains an alternative andequivalent derivation
of the equations for the time evolution of magnetic field in terms a vector potential. Throughout, we use a space-like signature(−,+,+,+)

and a system of units in whichG = 1 = c (However, for those expressions with an astrophysical application we have written the speed of
light explicitely.). Greek indices are taken to run from 0 to3 and Latin indices from 1 to 3; covariant derivatives are denoted with a semi-colon
and partial derivatives with a comma.

2 MAXWELL EQUATIONS IN A SLOWLY ROTATING SPACETIME

The difficulties of an analytic solution of the Einstein-Maxwell equations in the proximity of a rotating relativistic star inevitably force us to
the use of some approximations. The first approximation comes from neglecting the influence of the electromagnetic field on the metric and
by solving Maxwell equations on a given, fixed background⋆ . The second approximation is in the specific form of the background metric
which we choose to be that of a stationary, axially symmetricsystem truncated at the first order in the angular velocityΩ. In a coordinate
system(ct, r, θ, φ), the “slow rotation metric” for a rotating relativistic star is (see, for example, Hartle 1967, Hartle & Thorne 1968, Landau
& Lifshitz 1971)

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 − 2ω(r)r2 sin2 θdtdφ+ r2dθ2 + r2 sin2 θdφ2 , (1)

⋆ This is indeed a very good approximation since even for very highly magnetic neutron stars the electromagnetic energy density is much smaller than the
gravitational one.

c© 2000 RAS, MNRAS000, 1–19
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whereω(r) can be interpreted as the angular velocity of a free falling (inertial) frame and is also known as the Lense-Thirring angular
velocity. The radial dependence ofω in the region of spacetime internal to the star has to be foundas the solution of the differential equation

1

r3
d

dr

(

r4j̄
dω̄

dr

)

+ 4
dj̄

dr
ω̄ = 0 , (2)

where we have defined

j̄ ≡ e−(Φ+Λ) , (3)

and where

ω̄ ≡ Ω− ω , (4)

is the angular velocity of the fluid as measured from the localfree falling (inertial) frame. In the vacuum region of spacetime external to the
star, on the other hand,ω(r) is given by the simple algebraic expression

ω(r) ≡ dφ

dt
= − g0φ

gφφ
=

2J

r3
, (5)

whereJ = I(M,R)Ω is the total angular momentum of metric source as measured from infinity andI(M,R) its momentum of inertia (see
Miller 1977 for a discussion ofI and its numerical calculation). Outside the star, the metric (1) is completely known and explicit expressions
for the other metric functions are given by

e2Φ(r) ≡
(

1− 2M

r

)

= e−2Λ(r) , r > R , (6)

whereM andR are the mass and radius of the star as measured from infinity.
An important aspect, often overlooked in the literature, should now be underlined. The metric (1) is the simplest metricthat provides all

of the most important general relativistic corrections to the solution of the Maxwell equations in the gravitational field of a rotating relativistic
star. The use of a Schwarzschild metric in place of (1) (Sengupta 1995, 1997) is potentially very dangerous. Firstly, andas pointed out by
Geppert et al. (2000), a Schwarzschild metric allows for a proper treatment of the electromagnetic fields only in the spacetime region external
to the star and leaves unsolved the problem of a matching of the external electromagnetic fields with the internal ones. Secondly, and despite
different claims (Sengupta 1997), a Schwarzschild metric is intrinsically inadequate to describe physical systems such as pulsars in which
the coupling of electromagnetic fields and rotation is a key feature. Note, on the other hand, that using the slow-rotation approximation gives
rather accurate results for all pulsar periods so far observed. The metric (1) has coefficients each of which is the lowest-order term of a series
expansion in ascending powers ofΩ. Comparing the magnitude of the neglected higher order terms with that of the one retained in each case,
gives ratios of the orderR3Ω2/GM which is smaller than 10% even for the fastest-known millisecond pulsar PSR 1937+214.

The general form of the first pair of general relativistic Maxwell equations is given by

3!F[αβ,γ] = 2 (Fαβ,γ + Fγα,β + Fβγ,α) = 0 . (7)

whereFαβ is the electromagnetic field tensor expressing the strict connection between the electric and magnetic four-vector fieldsEα, Bα.
For an observer with four-velocityuα, the covariant components of the electromagnetic tensor are given by (Lichnerowicz 1967; Ellis 1973)

Fαβ ≡ 2u[αEβ] + ηαβγδu
γBδ . (8)

whereT[αβ] ≡ 1
2
(Tαβ − Tβα) andηαβγδ is the pseudo-tensorial expression for the Levi-Civita symbol ǫαβγδ (Stephani 1990)

ηαβγδ = − 1√−g
ǫαβγδ , ηαβγδ =

√−gǫαβγδ , (9)

with g ≡ det|gαβ| = −e2(Φ+Λ)r4 sin2 θ for the metric (1). A useful class of observers is represented by the “zero angular momentum
observers” or ZAMOs (Bardeen, Press & Teukolsky 1972). These are observers that are locally stationary (i.e. at fixed values ofr andθ)
but who are “dragged” into rotation with respect to a reference frame fixed with respect to distant observers. At first order in Ω they have
four-velocity components given by

(uα)
ZAMO

≡ e−Φ(r)

(

1, 0, 0, ω

)

; (uα)ZAMO
≡ eΦ(r)

(

− 1, 0, 0, 0

)

. (10)

In the coordinate system(ct, r, θ, φ) and with the definition (8) referred to the observers (10), the first pair of Maxwell equations (7)
take then the form (see Appendix A for the explicit expressions of the electromagnetic tensor)

(

eΛr2 sin θBi
)

,i
= 0 , (11)

(

eΛr2 sin θ
) ∂Br

∂t
= eΦ (Eθ,φ − Eφ,θ)−

(

ωeΛr2 sin θ
)

Br
,φ , (12)

(

eΛr2 sin θ
) ∂Bθ

∂t
=

(

Eφ eΦ
)

,r
− eΦEr,φ −

(

ωeΛr2 sin θ
)

Bθ
,φ , (13)

(

eΛr2 sin θ
) ∂Bφ

∂t
= −

(

Eθ eΦ
)

,r
+ eΦEr,θ + sin θ

(

ωeΛr2Br
)

,r
+ ωeΛr2

(

sin θBθ
)

,θ
. (14)
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The general form of the second pair of Maxwell equations is given by

Fαβ
;β = 4πJα (15)

where the four-currentJα is a sum of convection and conduction currents

Jα = ρew
α + jα , jαwα ≡ 0 , (16)

with w being the conductor four-velocity andρe the proper charge density. If the conduction currentjα is carried by the electrons† with
electrical conductivityσ, Ohm’s law can then be written as

jα = σFαβw
β , (17)

while a more general expression can be found in Ahmedov (1999). We can now rewrite the second pair of Maxwell equations as
(

eΛr2 sin θEi
)

,i
= 4πeΦ+Λr2 sin θJ0 , (18)

eΦ (Bφ ,θ −Bθ ,φ)−
(

ωeΛr2 sin θ
)

Er
,φ =

(

eΛr2 sin θ
) ∂Er

∂t
+ 4πeΦ+Λr2 sin θJr , (19)

eΦBr,φ −
(

eΦBφ

)

,r
−

(

ωeΛr2 sin θ
)

Eθ
,φ =

(

eΛr2 sin θ
) ∂Eθ

∂t
+ 4πeΦ+Λr2 sin θJθ , (20)

(

eΦBθ

)

,r
− eΦBr ,θ + sin θ

(

ωeΛr2Er
)

,r
+ ωeΛr2

(

sin θEθ
)

,θ
=

(

eΛr2 sin θ
) ∂Eφ

∂t
+ 4πeΦ+Λr2 sin θJφ . (21)

Maxwell equations assume a familiar flat-spacetime form when projected onto a locally orthonormal tetrad. In principlesuch tetrad is
arbitrary, but in the case of a relativistic rotating metricsource a “natural” choice is offered by the tetrad carried bythe ZAMOs. Using (10)
we find that the components of the tetrad{eµ̂} = (e0̂, er̂, eθ̂, eφ̂) carried by a ZAMO observer are

e
α
0̂ = e−Φ

(

1, 0, 0, ω

)

, (22)

e
α
r̂ = e−Λ

(

0, 1, 0, 0

)

, (23)

e
α
θ̂ =

1

r

(

0, 0, 1, 0

)

, (24)

e
α
φ̂
=

1

r sin θ

(

0, 0, 0, 1

)

. (25)

The 1-forms{ωµ̂} = (ω0̂,ω r̂,ω θ̂,ωφ̂), corresponding to this tetrad have instead components

ω
0̂
α = eΦ

(

1, 0, 0, 0

)

, (26)

ω
r̂
α = eΛ

(

0, 1, 0, 0

)

, (27)

ω
θ̂
α = r

(

0, 0, 1, 0

)

, (28)

ω
φ̂
α = r sin θ

(

− ω, 0, 0, 1

)

. (29)

We can now rewrite Maxwell equations (11)–(14) and (18)–(21) in the ZAMO reference frame by contracting (7) and (15) with(22)–(25)
and (26)–(29). After some lengthy but straightforward algebra, we obtain Maxwell equations in the more useful form

sin θ
(

r2Br̂
)

,r
+ eΛr

(

sin θBθ̂
)

,θ
+ eΛrBφ̂

,φ = 0 , (30)

(r sin θ)
∂Br̂

∂t
= eΦ

[

E θ̂
,φ −

(

sin θEφ̂
)

,θ

]

− (ωr sin θ)Br̂
,φ , (31)

(

eΛr sin θ
) ∂Bθ̂

∂t
= −eΦ+ΛE r̂

,φ + sin θ
(

reΦEφ̂
)

,r
−

(

ωeΛr sin θ
)

Bθ̂
,φ , (32)

(

eΛr
) ∂Bφ̂

∂t
= −

(

reΦE θ̂
)

,r
+ eΦ+ΛE r̂

,θ + sin θ
(

ωr2Br̂
)

,r
+ ωeΛr

(

sin θBθ̂
)

,θ
(33)

† This is a reasonable assumption if the neutron star has a temperature such that the atomic nuclei are frozen into a latticeand the electrons form a completely
relativistic, and degenerate gas.
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and

sin θ
(

r2E r̂
)

,r
+ eΛr

(

sin θE θ̂
)

,θ
+ eΛrEφ̂

,φ = 4πeΛr2 sin θJ t̂ , (34)

eΦ
[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]

− (ωr sin θ)E r̂
,φ = (r sin θ)

∂E r̂

∂t
+ 4πeΦr sin θJ r̂ , (35)

eΦ+ΛBr̂
,φ − sin θ

(

r eΦBφ̂
)

,r
−

(

ωeΛr sin θ
)

E θ̂
,φ =

(

eΛr sin θ
) ∂E θ̂

∂t
+ 4πeΦ+Λr sin θJ θ̂ , (36)

(

eΦrBθ̂
)

,r
− eΦ+ΛBr̂

,θ + sin θ
(

ωr2E r̂
)

,r
+ ωeΛr

(

sin θE θ̂
)

,θ
=

(

eΛr
) ∂Eφ̂

∂t
+ 4πeΦ+ΛrJ φ̂ + 4πeΛωr2 sin θJ t̂ . (37)

Equations (35)–(37) can now be rewritten in a more convenient form. Taking our conductor to be the star with four-velocity components

wα ≡ e−Φ(r)

(

1, 0, 0,Ω

)

, wα ≡ eΦ(r)

(

− 1, 0, 0,
ω̄r2 sin2 θ

e2Φ(r)

)

, (38)

we can use Ohm’s law (17) to derive the following explicit components ofJ α̂ in the ZAMO frame

J t̂ = ρe + σ
ω̄r sin θ

eΦ
Eφ̂ , (39)

J r̂ = σ

(

E r̂ − ω̄r sin θ

eΦ
Bθ̂

)

, (40)

J θ̂ = σ

(

E θ̂ +
ω̄r sin θ

eΦ
Br̂

)

, (41)

J φ̂ = σEφ̂ +
ω̄r sin θ

eΦ
ρe . (42)

Next, we discuss a few assumptions that are going to be used hereafter. Firstly, we assume there is no matter outside the star so that the
conductivityσ = 0 for r > R and thatσ 6= 0 only in a shell withR

IN
≤ r ≤ R (e.g. the neutron star crust). Secondly, we considerσ to be

uniform within this shell (Note that this might be incorrectin the outermost layers of the neutron star but is a rather good approximation on
the crust as a whole.). Thirdly, we ignore the contributionscoming from displacement currents. The latter could, in principle, be relevant in
the evolution of the electromagnetic fields, but their effects are negligible on timescales that are long as compared with the electromagnetic
waves crossing time. In view of this, we will neglect in (35)–(37) all terms involving time derivatives of the electric field and use Ohm’s law
to rewrite equations (35) and (36) as

r sin θE r̂ =
1

4πσ

[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]

+O(Ω) , (43)

eΛr sin θE θ̂ =
e−Φ

4πσ

[

eΦ+ΛBr̂
,φ − sin θ

(

reΦBφ̂
)

,r

]

+O(Ω) . (44)

Substituting (43) and (44) in the left hand sides of equations (35)–(37) eliminates the dependence from the electric field and yields
[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]

− ωe−Φ

4πσ

[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]

,φ

= 4πr sin θJ r̂ , (45)

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r
− ωe−Φ

4πσ

[

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r

]

,φ

= 4πeΦ+Λr sin θJ θ̂ , (46)

(

eΦrBθ̂
)

,r
− eΦ+ΛBr̂

,θ +
1

4π

{

ωr

σ

[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]}

,r

+

ωe−Φ

4πσ

[

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r

]

,θ

= 4πeΦ+ΛrJ φ̂ + 4πeΛωr2 sin θρe . (47)

3 STATIONARY SOLUTIONS TO MAXWELL EQUATIONS

In this Section we will look for stationary solutions of the Maxwell equation, i.e. for solutions in which we assume that the magnetic
moment of the magnetic star does not vary in time as a result ofthe infinite conductivity of the medium. Note that this does not mean the
electromagnetic fields are independent of time. As a result of the misalignment between the magnetic dipoleµ and the angular velocity
vectorΩ, in fact, both the magnetic and the electric fields will posses aperiodic time dependence produced by the precession ofµ aroundΩ
(see Fig. 1).
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µ

χ

λ

e
e^

e θ̂

r

φ̂ Ω

Figure 1. Schematic representation of a misaligned rotator. Here(e0̂,er̂,eθ̂,eφ̂) is a local orthonormal frame,µ is the magnetic dipole moment of the star,
χ is the inclination angle relative to the rotation axis, andλ the instantaneous azimuthal position.

3.1 Rotating Magnetized Conductor in a Minkowski Spacetime

Before looking at the problem of a magnetized rotating conductor in a rotating spacetime, it is useful to start with a simpler analogous
configuration: that of a rotating magnetized conductor in a Minkowski (flat) spacetime. This will provide important insight for the search of
general relativistic solutions and useful limits against which match the fully relativistic solutions.

Consider therefore a conducting magnetized sphere of radiusR rotating at angular velocityΩ, and with the magnetic four-vector field
B being uniform (in radius) inside the sphere and dipolar outside (This is a simple but instructive example.). Because of discontinuities in
the fields across the surface of the sphere we will refer to asinterior solutionsthose solutions valid within the radial rangeR

IN
≤ r ≤ R,

and to asexterior solutionsthose valid in the rangeR < r ≤ ∞.

3.1.1 Interior Solution

The interior solution for the electromagnetic fields of a magnetized sphere with magnetic moment aligned with the rotation axis was found
by Ruffini and Treves in 1973 (Ruffini & Treves 1973). Extending it to the case of a misaligned rotator we obtain

Br̂ =
2µ

R3
(cosχ cos θ + sinχ sin θ cos λ) , (48)

Bθ̂ = − 2µ

R3
(cosχ sin θ − sinχ cos θ cos λ) , (49)

Bφ̂ = − 2µ

R3
sinχ sinλ , (50)

whereµ is the magnetic dipole moment of the star,χ is the inclination angle of the magnetic moment relative to the rotation axis and
λ(t) ≡ φ− Ωt is the instantaneous azimuthal position (see Fig. 1).

The expressions for the components of the electric field are very simple to derive when one assumes that the sphere is a “perfect
conductor” (i.e.σ → ∞) and there are no conduction currents inside the sphere. In this case, Ohm’s law can be used to obtain

E r̂ =
Ωr sin θ

c
Bθ̂ = −2µΩr sin θ

cR3
(cosχ sin θ − sinχ cos θ cos λ) , (51)

E θ̂ = −Ωr sin θ

c
Br̂ = −2µΩr sin θ

cR3
(cosχ cos θ + sinχ sin θ cosλ) , (52)

Eφ̂ = 0 . (53)

c© 2000 RAS, MNRAS000, 1–19
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3.1.2 Exterior Solution

The solution to this problem, i.e. to the form of the electromagnetic fields external to a misaligned rotating magnetizedsphere, was found in
1955 by Deutsch (Deutsch, 1955). The full solutions are complicated expressions involving spherical Bessel functionsof the third kind, but
they become much simpler when truncated at the lowest order.The magnetic field components, in particular, have the form

Br̂ =
2µ

r3
(cosχ cos θ + sinχ sin θ cosλ) , (54)

Bθ̂ =
µ

r3
(cosχ sin θ − sin χ cos θ cosλ) , (55)

Bφ̂ =
µ

r3
sinχ sinλ , (56)

while the corresponding electric fields are given by

E r̂ = −µΩR2

cr4
[

cosχ(3 cos2 θ − 1) + 3 sinχ cosλ sin θ cos θ
]

, (57)

E θ̂ = −µΩ

cr2

{

2R2

r2
cosχ sin θ cos θ + sinχ

[

1− R2

r2
(cos2 θ − sin2 θ)

]

cosλ

}

, (58)

Eφ̂ =
µΩ

cr2
sin χ cos θ sinλ

(

1− R2

r2

)

. (59)

Three interesting features of solutions (54)–(56) and (57)–(59) should be noticed. The first one is given by the periodictime modulation
introduced by the precession of the magnetic moment and which disappears when the dipole is aligned, i.e. forχ = 0. The second feature
is that, as one might have expected on the basis of symmetry considerations, the toroidal components of the external electromagnetic fields
are just a by-product of the misalignment between the rotation axis and the magnetic dipole and again disappear whenχ = 0. Finally, the
third relevant feature is the appearance of an electric fieldof O(Ω) introduced by the rotation of the sphere and whose quadrupolar part [i.e.
∝ (3 cos2 θ − 1)] is present also in the case of an aligned rotator. As we will see in Section 3.2.2, where we study the analogous problem in

a slowly rotating spacetime, an additional contribution ofO(ω)‡ to the form of the external electric field will be introduced by the general

relativistic frame dragging effect§.

3.2 Rotating Magnetized Conductor in a Slowly Rotating Spacetime

We now consider the general relativistic analogue of the problem in Section 3.1 and look for a solution of Maxwell equations (30)–(33) and
(34)–(37) assuming that magnetic field of the star is dipolar. To simply the search for a solution we look for separable solutions of Maxwell
equations in the form

Br̂(r, θ, φ, χ, t) = F (r)Ψ1(θ, φ, χ, t) , (60)

Bθ̂(r, θ, φ, χ, t) = G(r)Ψ2(θ, φ, χ, t) , (61)

Bφ̂(r, θ, φ, χ, t) = H(r)Ψ3(θ, φ, χ, t) , (62)

whereF (r),G(r), andH(r) will account for the relativistic corrections due to a curved background spacetime.
A considerable simplification comes from the fact that, at first order inΩ, the solutions for the electromagnetic fields will not acquire

general relativistic corrections to their angular dependence. We therefore expect that, as for the case of the Deutsch solution, the general
expressions for the angular eigenfunctionsΨi, with i = 1, . . . , 3, will have a complicated angular dependence expressed in terms of spherical
Bessel functions of the third kind. This is however over-complicated and for most of the astrophysical applications it would sufficient to know
the form at the lowest order which can be known by requiring that the solutions match the lowest order solution for a misaligned rotating

‡ Hereafter we will refer to asO(ω) any quantity that is the result of the dragging of reference frames and that is therefore∝ g0φ.
§ Note that an electric field induced by the rotation of the starmust appear also in the general relativistic case. This is not present in the solution proposed by
Prasanna and Gupta 1997, where the external electric field isonly of O(ω) and the radial dependence does not contain higher order terms inM/r.
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dipole in flat spacetime. In this case, then, we obtain

Ψ1(θ, φ, χ, t) = cosχ cos θ + sinχ sin θ cosλ(t) , (63)

Ψ2(θ, φ, χ, t) = cosχ sin θ − sinχ cos θ cosλ(t) , (64)

Ψ3(φ, χ, t) = sinχ sinλ(t) , (65)

which also satisfy the following useful relations

Ψ1,θ = −Ψ2 , Ψ1,φ = −Ψ3 sin θ , Ψ2,θ = Ψ1 , Ψ2,φ = Ψ3 cos θ . (66)

Maxwell equations (30), (45)–(47) with the ansatz (60)–(62), yield the following set of equations
[

(

r2F
)

,r
+ 2eΛrG

]

sin θ (cosχ cos θ + sinχ sin θ cosλ) + eΛr (H −G) sinχ cos λ = 0 , (67)

(H −G) cos θ sinχ

[

sinλ− ωe−Φ

4πσ
cosλ

]

= 4πr sin θJ r̂ , (68)

[

(

reΦH
)

,r
+ eΦ+ΛF

]

sin θ sinχ

[

sinλ− ωe−Φ

4πσ
cosλ

]

= −4πeΦ+Λr sin θJ θ̂ , (69)

{

[ ωr

4πσ
(H −G)

]

,r
− ωr

4πσ
Φ,r (G−H)− ωe−Φ

4πσ

[

(

reΦH
)

,r
+ eΦ+ΛF

]}

cos θ sinχ sinλ

+

[

(

reΦG
)

,r
+ eΦ+ΛF

]

(cosχ sin θ − sinχ cos θ cos λ) = 4πeΦ+ΛrJ φ̂ . (70)

Next, we will distinguish between an external vacuum solution to Maxwell equations (for which fully analytic solution can be given)
from the interior non-vacuum solution. Since we are treating the interior of the star as a perfect conductor and the exterior of the star as
vacuum, we can imposeJ r̂ = J θ̂ = J φ̂ = 0 in (67)–(70) and obtain as Maxwell equations for the radial part of the magnetic field

(

r2F
)

,r
+ 2eΛrG = 0 , (71)

(

reΦH
)

,r
+ eΦ+ΛF = 0 , (72)

H −G = 0 . (73)

Note a first important result in the system of equations (71)–(73). In the case of stationary electromagnetic fields, the general relativistic
frame dragging effect does not introduce a correction to theradial eigenfunctions of the magnetic fields. In other words, in the case of infinite
conductivity and as far as the magnetic field is concerned, the study of Maxwell equations in a slow rotation metric provides no additional
information with respect to a non-rotating metric. The frame dragging effects are therefore expected to appear atO(ω2).

3.2.1 Interior solution

Limiting the solution to an inner radiusR
IN

removes the problem of suitable boundary conditions forr → 0, and reflects the basic ignorance
of the properties of magnetic fields in the interior regions of neutron stars.

It is important to notice how the system of equations (71)–(73) combines information about the structure and physics of the star (through
the metric functionsΦ andΛ) with information about the microphysics of the magnetic field (through the radial eigenfunctionsF andG).
As a result, a relativistic solution for the interior electromagnetic field cannot be given independently of a self-consistent solution of Einstein
equations for the structure of the star. In practice, to calculate a generic solution to (71)–(73), it is necessary to start with a (realistic) equation
of state and obtain a full solution of the relativistic star.Once the latter is known, the system of equations (71)–(73) can be solved for a
magnetic field which is consistent with the star’s structureand corresponds to a magnetic configuration of some astrophysical interest. (This
is what done, for instance, by Gupta et al. 1998 in the case of an internal dipolar magnetic field).

Alternatively, one might specify a magnetic field configuration and look for a compatible equation of state for the stellar structure (This
is a less satisfactory way to proceed but one which is useful to get insight into the problem.). In this case, the simplest possible solution to
the system (71)–(73) is one in which the magnetic field is constant throughout the region of the star of interest and is therefore the general
relativistic analogue of the solution presented in 3.1.1. In this case, then

F =
C1

R3
µ , G = −e−ΛC1

R3
µ = −e−ΛF , (74)
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whereC1 is an arbitrary constant whose value can be determined afterimposing the continuity across the star surface ofBr̂.
We can now check whether the solution (74) is physically possible. Using (74) in the system of equations (71)–(73) requires that the

metric functions satisfy the condition
(

reΦ−Λ
)

,r
− eΦ+Λ = 0 . (75)

Recalling now that Einstein equations for a spherical star yield

e2Λ(r) =

(

1− 2m(r)

r

)−1

, r ≤ R , (76)

with m(r) = 4π
∫ R

0
r2ρ(r)dr, andρ(r) being the total energy density, we can rewrite (75) as

Φ,r = e2Λ
(m+ rm,r

r2

)

. (77)

On other hand, the solution of the Einstein equations for theinterior of a relativistic spherical star (i.e. the solution of the Tolmann-
Oppenheimer-Volkoff equations; Tolmann, 1939; Oppenheimer & Volkoff, 1939) requires that

Φ,r = e2Λ
(

m+ 4πr3P

r2

)

, (78)

whereP is the isotropic pressure. The comparison of (78) with (77) shows that the general relativistic uniform magnetic field solution

Br̂ =
1

R3
(cosχ cos θ + sinχ sin θ cos λ)C1µ , (79)

Bθ̂ = −e−Λ

R3
(cosχ sin θ − sinχ cos θ cos λ)C1µ , (80)

Bφ̂ = −e−Λ

R3
(sinχ sin λ)C1µ , (81)

is possible only for the (unrealistic) case of the “stiff matter” equation of stateP = ρ.
The corresponding form of the internal electric field is alsostraightforward to derive in the case of no conduction currents. In this case,

in fact, Ohm’s law (39) and (40) yield the simple expressions

E r̂ =
ω̄r sin θ

ceΦ
Bθ̂ = −e−(Φ+Λ)r sin θ

cR3
ω̄ (cosχ sin θ − sinχ cos θ cos λ)C1µ , (82)

E θ̂ = − ω̄r sin θ

ceΦ
Br̂ = −e−Φr sin θ

cR3
ω̄ (cosχ cos θ + sin χ sin θ cos λ)C1µ , (83)

Eφ̂ = 0 , (84)

where we have taken into account thatρe = O(ω) and that the contribution proportional tōωρe is therefore of higher order¶. Note that,
apart for red-shift correction proportional toe−Φ, equations (82)–(84) are the same as (51)–(53) withΩ being replaced by the effective fluid
velocity measured by a free falling observerω̄. The internal charge density corresponding to the electrical field (82)–(84) can be calculated
after imposing that [cf. eq. (34)]

ρe =
1

4π

[

e−Λ

r2

(

r2E r̂
)

,r
+

1

r sin θ

(

sin θE θ̂
)

,θ

]

. (85)

Using now expressions (82)–(84), we easily obtain

ρe =
1

4π

{

[

3e−Φω̄ − e−Λ

r2

(

e−(Φ+Λ)ω̄r3
)

,r

]

sin θ

cR3
(cosχ sin θ − sin χ cos θ cosλ)− 2e−Φ

cR3
ω̄ cosχ

}

C1µ . (86)

3.2.2 Exterior Solution

The exterior solution for the magnetic field is simplified by the knowledge of explicit analytic expressions for the metric functionsΦ and
Λ. In particular, after definingN ≡ eΦ = e−Λ = (1 − 2M/r)1/2, the system (71)–(73) can be written as a single, second-order ordinary
differential equation for the unknown functionF

d

dr

[(

1− 2M

r

)

d

dr

(

r2F
)

]

− 2F = 0 . (87)

¶ Prasanna and Gupta (1997) have used the assumption of infinite conductivity also for the matter outside the neutron star.We note that their expressions for
the electric fields do not contain the (important) contribution of O(Ω) and the radial component does not seem to satisfy Ohm’s law.
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Introducing now the new variablex ≡ 1− r/M , equation (87) can be written as

d

dx

{(

1 + x

1− x

)

d

dx

[

(1− x)2 F
]

}

+ 2F = 0 . (88)

Equation (88) is an example from a class of equations which can be solved in terms of the Legendre functions of the second kindQℓ (see
Appendix B for details on the derivation of the solution). Inthe case of equation (88) we haveℓ = 1, and (Jeffrey 1995)

Q1 =
x

2
ln

(

1 + x

1− x

)

− 1 . (89)

The radial eigenfunctionsF (r), G(r), andH(r), are then given by

F (r) = − 3

4M3

[

lnN2 +
2M

r

(

1 +
M

r

)]

µ , (90)

G(r) =
3N

4M2r

[

r

M
lnN2 +

1

N2
+ 1

]

µ , (91)

H(r) = G(r) , (92)

and satisfy the following boundary conditions:
(i) refer to a vanishing field at infinity, i.e.

lim
r→∞

F (r) = 0 , lim
r→∞

G(r) = 0 ; (93)

(ii) reduce to a flat spacetime solution for a dipole, i.e.

lim
M/r→0

F (r) =
2µ

r3
, lim

M/r→0
G(r) =

µ

r3
. (94)

(iii) coincide with the corresponding radial eigenfunctions found for a Schwarzschild spacetime (Ginzburg & Ozernoy, 1964;Anderson
& Cohen, 1970). This is what we expected since there are no first order contributions due to the rotation of the spacetime.
Using expressions (90)–(92) we can now determine the value of the matching constantC1 by requiring that the radial magnetic field is
continuous across the star surface, i.e. that[Br̂(r = R)]

IN
= [Br̂(r = R)]

EXT
. As a result, we obtain

C1 = − 3R3

4M3

[

ln

(

1− 2M

R

)

+
2M

R

(

1 +
M

R

)]

=
F (R)R3

µ
, (95)

whose flat spacetime limit is

lim
M/R→0

C1 = 2 . (96)

Collecting all the expressions for the radial eigenfunctions, the stationary vacuum magnetic field external to a misaligned magnetized
relativistic star is given by

Br̂ = − 3

4M3

[

lnN2 +
2M

r

(

1 +
M

r

)]

(cosχ cos θ + sinχ sin θ cos λ)µ , (97)

Bθ̂ =
3N

4M2r

[

r

M
lnN2 +

1

N2
+ 1

]

(cosχ sin θ − sinχ cos θ cos λ)µ , (98)

Bφ̂ =
3N

4M2r

[

r

M
lnN2 +

1

N2
+ 1

]

(sinχ sinλ)µ . (99)

The search for the form of the electric field is much more involved than for the magnetic field. However, hereafter we will make use of
the insight gained in Section 3.1.2 as a guide and start the derivation of the solution by rewriting vacuum Maxwell equations (31)–(33) and
(34) as

3ω̄r

4M3N
µ

[

lnN2 +
2M

r

(

1 +
M

r

)]

sinχ sin2 θ sinλ =
(

sin θEφ̂
)

,θ
− E θ̂

,φ , (100)

3ω̄r

4M2
µ

[

r

M
lnN2 +

1

N2
+ 1

]

sinχ sin θ cos θ sinλ = E r̂
,φ − sin θ

(

rNEφ̂
)

,r
, (101)

9ωr

4M3
µ

[

lnN2 +
2M

r

(

1 +
M

r

)]

(cosχ cos θ + sinχ sin θ cos λ) sin θ

+
3ω̄

4M2
µ

[

r

M
lnN2 +

1

N2
+ 1

]

sinχ cosλ =
(

rNE θ̂
)

,r
− E r̂

,θ , (102)

N sin θ
(

r2E r̂
)

,r
+ r

(

sin θE θ̂
)

,θ
+ rEφ̂

,φ = 0 , (103)

and which already indicate that the dragging of inertial frames with angular velocityω introduces electric fields in the surrounding space
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when magnetic fields are present. Using as a reference the solutions (57), (58), and (59) for a misaligned rotating spherein Minkowski
spacetime, we look for the simplest solutions of vacuum Maxwell equations in the form

E r̂ = (f1 + f3) cosχ(3 cos
2 θ − 1) + (g1 + g3) 3 sinχ cos λ sin θ cos θ , (104)

E θ̂ = (f2 + f4) cosχ sin θ cos θ + (g2 + g4) sinχ cosλ− (g5 + g6)
(

cos2 θ − sin2 θ
)

sinχ cosλ , (105)

Eφ̂ = [g5 + g6 − (g2 + g4)] sinχ cos θ sinλ , (106)

where the unknown eigenfunctionsf1− f4, andg1− g6 can be found as solutions to vacuum Maxwell equations and have radial dependence
only. Substituting (104)–(106) in (100)–(102) we obtain the following set of linear differential equations

N
(

r2f1
)

,r
+ rf2 = 0 , (107)

(rNf2),r + 6f1 = 0 , (108)

N
(

r2f3
)

,r
+ rf4 = 0 , (109)

(rNf4),r + 6f3 − 9ωr

4M3
µ

[

lnN2 +
2M

r

(

1 +
M

r

)]

= 0 , (110)

N
(

r2g1
)

,r
+ 2rg5 = 0 , (111)

(rNg5),r + 3g1 = 0 , (112)

N
(

r2g3
)

,r
+ 2rg6 = 0 , (113)

(rNg6),r + 3g3 − 9ωr

8M3
µ

[

lnN2 +
2M

r

(

1 +
M

r

)]

= 0 . (114)

Note that both the sets of radial eigenfunctionsf1 − f4, andg1, g3, g5, g6 are linearly independent, but that relations can be writtenbetween
the two sets. In particular, the comparison of equation (107) with (111) and of equation (109) with (113) indicates that

g1 = f1 , g3 = f3 , g5 =
f2
2

, g6 =
f4
2

. (115)

We start the search for explicit expressions for the radial eigenfunctions by combining equations (107) and (108) to obtain a single
differential equation of second order for the unknown function f1

d

dr

[(

1− 2M

r

)

d

dr

(

r2f1
)

]

− 6f1 = 0 , (116)

and which can again be recast in a form similar to equation (88). Proceeding in a way analogous to what done for the magneticfield (see
Appendix B for details) it is possible to realize that the solution should be expressed in terms of a Legendre function of the second kind and
of orderℓ = 2. Recalling now that (Jeffrey 1995)

Q2(x) =
1

4

(

3x2 − 1
)

ln

(

x+ 1

x− 1

)

− 3x

2
, (117)

we obtain, as solution to (116) at theℓ = 2 order in the expansion

f1 =
Ω

6cR2
C1C2

[(

3− 2r

M

)

lnN2 +
2M2

3r2
+

2M

r
− 4

]

µ , (118)

whereC2 is an arbitrary constant to be determined through the imposition of boundary conditions. Making now use of the equation (107) we
also obtain that

f2 = − Ω

cR2
C1C2N

[

(

1− r

M

)

lnN2 − 2− 2M2

3r2N2

]

µ . (119)
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In a similar way, the solutions to equations (109) and (110) are found to be

f3 =
15ωr3

16M5c

{

C3

[(

3− 2r

M

)

lnN2 +
2M2

3r2
+

2M

r
− 4

]

+
2M2

5r2
lnN2 +

4M3

5r3

}

µ , (120)

f4 = −45ωr3

8M5c
N

{

C3

[

(

1− r

M

)

lnN2 − 2− 2M2

3r2N2

]

+
4M4

15r4N2

}

µ , (121)

where againC3 is an arbitrary constant determined through the boundary conditions. Finally, the functionsg3 andg4 are given by

g2 =
3Ωr

8M3cN

[

lnN2 +
2M

r

(

1 +
M

r

)]

µ , (122)

g4 = −ω

Ω
g2 = − 3ωr

8M3cN

[

lnN2 +
2M

r

(

1 +
M

r

)]

µ , (123)

so thatg2 + g4 = (ω̄/Ω)g2.

Collecting again all the expressions for the radial eigenfunctions, the stationary vacuum electric field external to a misaligned magnetized
relativistic star is given by

E r̂ =

{

15ωr3

16M5c

{

C3

[(

3− 2r

M

)

lnN2 +
2M2

3r2
+

2M

r
− 4

]

+
2M2

5r2
lnN2 +

4M3

5r3

}

+
Ω

6cR2
C1C2

[(

3− 2r

M

)

lnN2 +
2M2

3r2
+

2M

r
− 4

]

}

[

cosχ(3 cos2 θ − 1) + 3 sinχ cos λ sin θ cos θ
]

µ , (124)

E θ̂ = −
{

45ωr3

16M5c
N

{

C3

[

(

1− r

M

)

lnN2 − 2− 2M2

3r2N2

]

+
4M4

15r4N2

}

+
Ω

2cR2
C1C2N

[

(

1− r

M

)

lnN2 − 2− 2M2

3r2N2

]

}

[

2 cosχ sin θ cos θ −
(

cos2 θ − sin2 θ
)

sinχ cosλ
]

µ

+
3ω̄r

8M3cN

[

lnN2 +
2M

r

(

1 +
M

r

)]

(sinχ cosλ)µ , (125)

Eφ̂ = −
{

45ωr3

16M5c
N

{

C3

[

(

1− r

M

)

lnN2 − 2− 2M2

3r2N2

]

+
4M4

15r4N2

}

+
Ω

2cR2
C1C2N

[

(

1− r

M

)

lnN2 − 2− 2M2

3r2N2

]

− 3ω̄r

8M3cN

[

lnN2 +
2M

r

(

1 +
M

r

)]

}

(sinχ cos θ sinλ)µ . (126)

As anticipated in Section 3.1.2, expressions (124)–(126) confirm that the general relativistic dragging of reference frames introduces a
new contribution to the form of the electric field which does not have a flat spacetime analogue. This effect isO(ω) and therefore present
already in a slow rotation approximation. This is in contrast with what happens for the magnetic fields, where higher order approximations
of the form of the metric are necessary for frame dragging corrections to appear.

The values of the arbitrary constantsC2 andC3 can now be found after imposing the continuity of the tangential electric field across
the star surface. Using then (82)–(84) as solutions for the internal electric field and imposing that[E θ̂(r = R)]

IN
= [E θ̂(r = R)]

EXT
as

well as[Eφ̂(r = R)]
IN

= [Eφ̂(r = R)]
EXT

, yields

C2 =
1

N2
R

[(

1− R

M

)

lnN2
R
− 2− 2M2

3R2N2
R

]−1

, (127)

C3 =
2M2

15R2
C2

[

lnN2
R
+

2M

R

]

, (128)

with N2
R
≡ N2(r = R) = 1− 2M/R. It is now also possible to calculate the surface charge distributionσs resulting from the discontinuity

across the star’s surface of the radial electric field. Explicit expressions for this, as well as for the surface currentscorresponding to the
discontinuities across the surface ofBθ̂ andBφ̂, will not be given here but can be found in Appendix C.

Before concluding this Section on stationary solutions we will comment on the relevant limits of equations (124)–(126). Firstly, we

c© 2000 RAS, MNRAS000, 1–19



General Relativistic Electromagnetic Fields of a Slowly Rotating Magnetized Neutron Star 13

verify that they reduce to the Deutsch solutions (57)–(59) in the limitω = 0 andM/r, M/R → 0. In this case, in fact

lim
M/r, M/R→0

f1(r) = −µΩR2

cr4
= lim

M/r, M/R→0
g1(r) = lim

M/r, M/R→0
g5(r) , (129)

lim
M/r, M/R→0

f2(r) = −2µΩR2

cr4
, (130)

lim
M/r, M/R→0

g2(r) = −µΩ

cr2
, (131)

lim
M/r, M/R→0

g4(r) =
µω

cr2
, (132)

lim
M/r, M/R→0

f3(r) = 0 = lim
M/r, M/R→0

f4(r) = lim
M/r, M/R→0

g3(r) = lim
M/r, M/R→0

g6(r) . (133)

Secondly, in the limit of an aligned dipole in a Schwarzschild spacetime,χ = 0 = ω, and equations (124)–(126) reduce to

E r̂ = − ΩR

4M3cN2
R

[

lnN2
R
+

2M

R

(

1 +
M

R

)] [(

1− R

M

)

lnN2
R
− 2− 2M2

3R2N2
R

]−1

[(

3− 2r

M

)

lnN2 +
2M2

3r2
+

2M

r
− 4

]

(3 cos2 θ − 1)µ , (134)

E θ̂ =
3ΩR

4M3cN2
R

[

lnN2
R
+

2M

R

(

1 +
M

R

)] [(

1− R

M

)

lnN2
R
− 2− 2M2

3R2N2
R

]−1

N

[

(

1− r

M

)

lnN2 − 2− 2M2

3r2N2

]

(sin θ cos θ)µ , (135)

Eφ̂ = 0 . (136)

Note that (134)–(136) do not coincide with the corresponding expressions found by Sengupta (1995). A straightforward calculation would
show that his suggested expressions, while reducing to the Deutsch solution in the flat spacetime limit, do not satisfy Maxwell equations. A
possible explanation for the disagreement could be found inthe method followed by Sengupta in his derivation which is not based on the
explicit solution of Maxwell equations. Because of this, subsequent results obtained on the basis of Sengupta’s expressions for the external
electric field (e.g. De Paolis et al., 1999) should be revisited in terms of expressions (134)–(136).

4 NON-STATIONARY SOLUTIONS TO MAXWELL EQUATIONS

In this Section we will drop the assumption of infinite conductivity which prevented the variation of the star’s magneticmoment and led to
the stationary electromagnetic fields presented in the previous Sections. Here, on the contrary, we are interested in time evolving electromag-
netic fields and, in particular, in establishing the generalrelativistic corrections to the induction equation. A direct consequence of a finite
conductivity is, in fact, the generation of a time varying charge density and conduction currents which will be then responsible for the Ohmic
decay. Using Maxwell equations (34) and Ohm’s laws (39)–(42), we find that the space charge densityρe = ρe(t, r, θ, φ) inside the star has
a zeroth-order contribution given by

ρe =
ce−Λ

16π2σr2 sin θ

{

[

r
(

sin θBφ̂
)

,θ
− rBθ̂

,φ

]

,r

+

[

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r

]

,θ

e−Φ +

[

(

eΦrBθ̂
)

,r
− eΦ+ΛBr̂

,θ

]

,φ

e−Φ

}

+O (Ω) ; (137)

=
ce−Λ

16π2σ

(

cos θ sinχ sinλ

sin θ

)

(G −H)

r
Φ,r +O (Ω) . (138)

where the second expression is the one obtained after using the ansatz (60)–(62). It follows from equations (143) and (144) that the zero-order
term in equation (138) vanishes, so that the leading contribution is at first order inΩ. Using now equations (31), (46), (47), (137) and Ohm’s
laws (41), (42), we obtain the evolution equation for the radial component of magnetic field
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∂Br̂

∂t
=

c2e−Λ

4πσr2 sin θ

{

1

sin θ

[

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r

]

,φ

− ωe−Φ

4πσ sin θ

[

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r

]

,φφ

−
{

sin θ

[

(

eΦrBθ̂
)

,r
− eΦ+ΛBr̂

,θ

]}

,θ

−
{

sin θ

[

ωr

4πσ

[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]]

,r

}

,θ

−ωe−Φ

4πσ

{

sin θ

[

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r

]

,θ

}

,θ

+
Ωe−Φ

4πσ

{

eΦ
{

sin θ

[

r
(

sin θBφ̂
)

,θ
− rBθ̂

,φ

]

,r

}

,θ

+

{

sin θ

[

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r

]

,θ

}

,θ

+

{

sin θ

[

(

eΦrBθ̂
)

,r
− eΦ+ΛBr̂

,θ

]

,φ

}

,θ

}}

−ΩBr̂
,φ . (139)

Similarly, using equations (32), (45), (47), (137) and Ohm’s laws (40), (42), we obtain the evolution equation for the polar component
of magnetic field

∂Bθ̂

∂t
=

c2e−Λ

4πσr

{

{

e−Λ

[

(

eΦrBθ̂
)

,r
− eΦ+ΛBr̂

,θ

]}

,r

+

{

e−Λ

[

ωr

4πσ

[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]]

,r

}

,r

+
1

4πσ

{

ωe−(Φ+Λ)

[

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r

]

,θ

}

,r

− Ω

4πσ

{{

e−Λ

[

r
(

sin θBφ̂
)

,θ
− rBθ̂

,φ

]

,r

}

,r

+

{

e−(Φ+Λ)

[

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r

]

,θ

}

,r

+

{

e−(Φ+Λ)

[

(

eΦrBθ̂
)

,r
− eΦ+ΛBr̂

,θ

]

,φ

}

,r

}}

− c2eΦ

4πσr2 sin2 θ

{

[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]

,φ

− ωe−Φ

4πσ

[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]

,φφ

}

− ΩBθ̂
,φ . (140)

Finally, equations (33), (45), (46) and the Ohm’s law (40), (41) yield the evolution equation for the toroidal part of themagnetic field

∂Bφ̂

∂t
= − c2e−Λ

4πσr sin θ







{

e−Λ

[

eΦ+ΛBr̂
,φ − sin θ

(

eΦrBφ̂
)

,r

]}

,r

−
{

ωe−(Φ+Λ)

4πσ

[

eΦ+ΛBr̂
,φ − sin θ

(

reΦBφ̂
)

,r

]

,φ

}

,r







+
c2eΦ

4πσr2

{

{

1

sin θ

[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]}

,θ

− ωe−Φ

4πσ

{

1

sin θ

[

(

sin θBφ̂
)

,θ
−Bθ̂

,φ

]

,φ

}

,θ

}

+
Ωe−Λ sin θ

r

(

r2Br̂
)

,r
+ Ω

(

sin θBθ̂
)

,θ
. (141)

A first important feature of equations (139)–(141) is that besides the relativistic corrections due the monopolar part of the gravitational
field (proportional toM/R and already present in the non-rotating case), the rotationof spacetime introduces additional corrections related
to the dipolar part of the gravitational field (and proportional toω) to the decay of the magnetic field. A second relevant aspect of equations
(139)–(141) is that they do not show the degeneracy encountered in the time evolution of the magnetic field in a non-rotating spacetime [cf.
equation (146)]. In that case, in fact, the three induction equations for the components of the magnetic field reduce to a single evolution
equation (Sengupta, 1997; Geppert et al. 2000). Here, instead, the three equations remain distinct and a particular field component might be
favoured during the decay. Finally, equations (139)–(141)do not factor out the angular part as it is the case for a non-rotating, aligned dipole
[cf. equation (146)] and the evolution of the magnetic field has therefore properties which depend on the angular position in the star. As a
consequence of this, an initially dipolar magnetic field might not remain as such during its decay. This could be relevantfor the evolution of
the magnetic field of pulsars and more particularly of magnetars.
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Using now the ansatz (60)–(62), we can write equations (139)–(141) in the more compact form

∂F

∂t
(cos θ cosχ+ sin θ sinχ cosλ) sin θ =

c2e−Λ

4πσr2

{

[

eΦr (G−H)
]

,r
sinχ cos λ

−2

[

(

eΦrG
)

,r
+ eΦ+ΛF

]

sin θ (cos θ cosχ+ sin θ sinχ cos λ)

− 1

4πσ
sinχ sinλ

{

[ωr(H −G)],r (1− 2 sin2 θ) + 2ωe−Φ

[

(

eΦrH
)

,r
+ eΦ+ΛF

]

sin2 θ

−Ωr (G−H)Φ,r

(

1− 2 sin2 θ
)

}

}

, (142)

∂G

∂t
(sin θ cosχ− cos θ sinχ cos λ) =

c2

4πσr

{

eΦ (G−H)

r sin2 θ
cos θ sinχ

[

cosλ+
ωe−Φ

4πσ
sinλ

]

+e−Λ

[

e−Λ
(

eΦrG
)

,r
+ eΦF

]

,r

(sin θ cosχ− cos θ sinχ cosλ)

− e−Λ

4πσ
cos θ sinχ sinλ

{

e−Λ [ωr (G−H)],r + ω

[

F + e−(Λ+Φ)
(

reΦH
)

,r

]

+ Ω
[

Φ,re
−Λr (G−H)

]

}

,r

}

,

(143)

∂H

∂t
sinλ =

c2e−Λ

4πσr

{[

e−Λ
(

eΦrH
)

,r
+ eΦF

] [

sin λ− ωe−Φ

4πσ
cosλ

]}

,r

+
c2eΦ (G−H)

4πσr2 sin2 θ

[

sinλ− ωe−Φ

4πσ
cos λ

]

, (144)

whereF , G, andH satisfy the constraint equation (30)
[

(

r2F
)

,r
+ 2eΛrG

]

sin θ (cosχ cos θ + sinχ sin θ cos λ) + eΛr (H −G) sinχ cosλ = 0 , (145)

The set of equations (142)–(144) is too complicated to be solved analytically even when analytic expressions are available for the metric
functions (e.g. for a constant density stellar model). The numerical solution of (142)–(144) for a number of equations of state together
with a self-consistent evolution of the star’s angular velocity and electrical conductivity will be presented in a separate paper (Rezzolla et
al. 2000). Note that equations (142)–(144) could also be derived through a vector potentialAµ defined so that the electromagnetic tensor
Fµν = Aν,µ − Aµ,ν . Details of this derivation can be found in Appendix D.

An interesting limit of the induction equations (142), (143) is the one for a non-rotating dipole in a spherically symmetric spacetime. In
this case:Ω = 0 = ω, χ = 0, andH,H/∂t are not determined [cf. equations (62) and (65)]. As mentioned before, the induction equations
are degenerate in this case and the unique evolution equation is then

∂F

∂t
=

c2e−Λ

4πσr2

{

[

eΦ−Λ (

r2F
)

,r

]

,r
− 2eΦ+ΛF

}

, (146)

corresponding to the solution found by Geppert et al. (2000). When the metric functionsΦ andΛ refer only to the vacuum region of spacetime
external to the star, equation (146) further simplifies to

∂F

∂t
=

c2

4πσr2

√

r − 2M

r

{

[(

1− 2M

r

)

(

r2F
)

,r

]

,r

− 2F

}

, (147)

and which now corresponds to the solution found by Sengupta (1997).

5 CONCLUSION

We have presented analytic general relativistic expressions for the electromagnetic fields internal and external to a slowly-rotating magnetized
neutron star. The star is considered isolated and in vacuum,but no special assumption is made on the orientation of the dipolar magnetic
field with respect to the rotation axis. The solutions to Maxwell equations have been considered both for an infinite and for a finite electrical
conductivity.

In the first case, corresponding to stationary magnetic fields, we have shown that the general relativistic corrections due to the dragging
of reference frames are not present in the form of the magnetic fields but emerge only in the form of the electric fields. In particular, we
have shown that the frame-dragging provides an additional induced electric field which is analogous to the one introduced by the rotation of
the star in the flat spacetime limit. In the case of finite electrical conductivity, on the other hand, corresponding to decaying magnetic fields,
we have shown that corrections due both to the spacetime curvature and to the dragging of reference frames can be found in the induction
equation. An interesting result obtained in this regime is that the rotation of the star eliminates the degeneracy in thecomponents of the
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16 L. Rezzolla, B. J. Ahmedov, and J. C. Miller

induction equation which remain therefore distinct. Furthermore, rotation and dipole misalignment do not eliminate the angular dependence
in the induction equation and, as a result, an initially dipolar magnetic field might evolve towards a different configuration during its decay.

Because of their complexity, the evolution equations foundfor the magnetic field require a numerical integration whichwill discuss in
detail in a forthcoming work (Rezzolla et al. 2000). There, we will also present direct comparisons between the flat and the curved spacetime
solutions and quantify more precisely the importance of thegeneral relativistic corrections.

One of the relevant aspects of the solutions presented in this paper is that they provide a lowest order analytic form for the electromag-
netic field in the spacetime of a slowly rotating misaligned dipole subject to assumptions which, while giving simplifications, allow the major
features of a realistic solution to be seen. In this sense, they reflect a rather general physical configuration and could therefore be used in a
variety of astrophysical situations.
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APPENDIX A: THE ELECTROMAGNETIC TENSOR

For completeness, we provide below the explicit expressions for the components of the electromagnetic tensor used throughout the paper. In
a coordinate basis, and at first order inΩ, these components are given by

Fαβ =



























0 −eΦEr − ωeΛr2 sin θBθ −eΦEθ + ωeΛr2 sin θBr −eΦEφ

eΦEr + ωeΛr2 sin θBθ 0 eΛr2 sin θBφ −eΛr2 sin θBθ

eΦEθ − ωeΛr2 sin θBr −eΛr2 sin θBφ 0 eΛr2 sin θBr

eΦEφ eΛr2 sin θBθ −eΛr2 sin θBr 0



























. (A1)

The matrix (A1) can also be expressed in terms of the electromagnetic field measured by the ZAMO observers, in which case ittakes
the form

Fαβ =





























0 −eΦ+ΛE r̂ − ωeΛr sin θBθ̂ −eΦrE θ̂ + ωr2 sin θBr̂ −eΦr sin θEφ̂

eΦ+ΛE r̂ + ωeΛr sin θBθ̂ 0 eΛrBφ̂ −eΛr sin θBθ̂

eΦrE θ̂ − ωr2 sin θBr̂ −eΛrBφ̂ 0 r2 sin θBr̂

eΦr sin θEφ̂ eΛr sin θBθ̂ −r2 sin θBr̂ 0





























. (A2)

Finally, we note that the components of the electromagnetictensor in the ZAMO frame can be derived from (A1) with the transformation

Fα̂β̂ = e
µ
α̂e

ν
β̂
Fµν , (A3)

to obtain

Fα̂β̂ =





























0 −cE r̂ −cE θ̂ −cEφ̂

cE r̂ 0 Bφ̂ −Bθ̂

cE θ̂ −Bφ̂ 0 Br̂

cEφ̂ Bθ̂ −Br̂ 0





























. (A4)

APPENDIX B: RADIAL EIGENFUNCTIONS

In this Appendix we briefly sketch the procedure for the calculation of the radial eigenfunctions and that have lead to thesolutions (90)–(92),
(118)–(119), (122)–(123). In general, we look for a solution of the equation

d

dx

{(

1 + x

1− x

)

d

dx

[

(1− x)2 qℓ
]

}

+ ℓ (ℓ+ 1) qℓ = 0 , (B1)

for the functionqℓ. Equation (B1) can also be written as
(

1− x2
)

q′′ℓ − 2(1 + 2x)q′ℓ + [ℓ (ℓ+ 1) − 2] qℓ = 0 , (B2)

with the dash representing a total derivative with respect to x. The solution of (B1) has then form

qℓ =
d

dx

[

(1 + x)
d

dx
Qℓ

]

, (B3)

whereQℓ are Legendre functions of second kind (Jeffrey 1995). A proof of this comes from substituting (B3) into (B2) to obtain

(1 + x)
[

(1− x2)q′′′′ℓ + (1− 7x)q′′′ℓ + [ℓ (ℓ+ 1)− 2] q′′ℓ
]

− 4(1 + 2x)q′′ℓ + [ℓ (ℓ+ 1)− 2] q′ℓ = 0 , (B4)

and which can be rewritten as

(1 + x)
[

(1− x2)q′′′′ℓ − 6xq′′′ℓ + [ℓ (ℓ+ 1) − 6] q′′ℓ
]

+ (1− x2)q′′′ℓ − 4xq′′ℓ + [ℓ (ℓ+ 1)− 2] q′ℓ = 0 . (B5)

c© 2000 RAS, MNRAS000, 1–19



18 L. Rezzolla, B. J. Ahmedov, and J. C. Miller

It is now easy to realize that (B5) is identically satisfied since the content of the square brackets is, in fact, the secondderivative of
Legendre’s equation

(1− x2)q′′ℓ − 2xq′ℓ + ℓ (ℓ+ 1) qℓ = 0 , (B6)

while all the remainder of (B5) is the first derivative of Legendre’s equation (B6).

APPENDIX C: SURFACE CHARGES AND CURRENTS

We here give explicit expressions for the surface charge distributionσs and surface currentsik̂ resulting from the discontinuities across the
star’s surface of ther−component of the electric field and ofθ, φ−components of the magnetic field.

Defining now[A]± ≡ [A(r = R)]
EXT

− [A(r = R)]
IN

, the surface charge densityσs can be found as

σs =
1

4π
[E r̂]± , (C1)

and is given by

σs =
1

4π

{

15ωRR
3

8M5c

{

C3

[(

3− 2R

M

)

lnN2
R +

2M2

3R2
+

2M

R
− 4

]

+
2M2

5R2
lnN2

R +
4M3

5R3

}

+
Ω

3cR2
C1C2

[(

3− 2R

M

)

lnN2
R +

2M2

3R2
+

2M

R
− 4

]

}

(cosχ)µ

− 1

4π

{

45ωRR
3

16M5c

{

C3

[(

3− 2R

M

)

lnN2
R +

2M2

3R2
+

2M

R
− 4

]

+
2M2

5R2
lnN2

R +
4M3

5R3

}

+
Ω

2cR2
C1C2

[(

3− 2R

M

)

lnN2
R +

2M2

3R2
+

2M

R
− 4

]

− ω̄R

cR2
C1

}

sin θ(cosχ sin θ − sinχ cosλ cos θ)µ , (C2)

whereωR ≡ ω(r = R) andω̄R ≡ ω̄(r = R)

In a similar way, imposing that

iφ̂ =
c

4π
[Bθ̂ ]± , iθ̂ =

c

4π
[Bφ̂]± , (C3)

we obtain

iθ̂ =
3c

16π

NR

M2R

[

R

M
lnN2

R +
1

N2
R

+ 1 +
4M2

3R2
C1

]

(sinχ sinλ)µ , (C4)

iφ̂ =
3c

16π

NR

M2R

[

R

M
lnN2

R +
1

N2
R

+ 1 +
4M2

3R2
C1

]

(cosχ sin θ − sinχ cos θ cos λ)µ . (C5)

APPENDIX D: AN ALTERNATIVE DERIVATION OF THE INDUCTION EQUATION

To confirm the results presented in Section 4 and to compare with the results presented in the literature in the case of Schwarzschild back-
ground spacetime (Sengupta, 1997) we here present a derivation of equations (142), (143), (144) in terms of a vector potential Aα defined
as

Fαβ ≡ Aβ,α −Aα,β . (D1)

The use of a vector potential is sometimes looked at with skepticism (Geppert, Page and Zannias, 2000) in view of the non-commutativity of
the covariant derivative, which could lead to ambiguities if Maxwell equations are expressed through double covariantderivatives of a vector
potential. All of these ambiguities, however, are easily removed if the vector potential is introduced only when Maxwell equations (15) are
recast in a form not involving covariant derivatives

1√−g

(√−gFαβ
)

,β
= 4πJα (D2)

In our derivation we start by using equations (7), (15), (17), neglecting the displacement current and taking the four-velocity of the
conductoruα in the form (38) [i.e. neglecting terms proportional toga0F0bu

b ≈ O(ω2)] we get

1

4πσ
√−gu0

(√
−gF ab

)

,b
= ρeu

a + σgab
(

Fbcu
c + Fb0u

0
)

, (D3)

which can be written as

Fa0 =
gab

4πσ
√−gu0

(√−gF bc
)

,c
− Fabu

b

u0
− ρegabu

b

σu0
. (D4)
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Using now (D2) we can write the general expression for the evolution of the vector potentialAi as

Ai,0 = −Fi0 = − gij
4πσ

√−gu0

(√−gF jk
)

,k
+

Fiju
j

u0
+

ρegiju
j

σu0
. (D5)

Using (D5), the induction equation for the evolution of theφ component of vector potential can be written as

∂Aφ

∂t
= − c2e−Λ

4πσ
sin θ

{

1

sin θ

(

eΦ−ΛFφr

)

,r
+

(

eΦ+ΛFφθ

r2 sin θ

)

,θ

+
ωe−Φ

4πσ

[

sin θ
(

eΦ−ΛFθr

)

,r
+

eΦ+Λ

r2 sin θ
Fθφ,φ

]

,θ

+
1

4πσ

{

ωe−Λ

[

(sin θFrθ),θ +
1

sin θ
Frφ,φ

]}

,r

}

+
c2Ωe−2Λ

16π2σ2
Φ,r

[

1

sin θ
Fφr,φ + (sin θFθr),θ

]

sin θ , (D6)

which coincides with equation (11) of Sengupta’s 1998 paperwhenχ = 0 = ω ande2Φ = N2 = 1 − 2M/r. Similarly, the evolution
equations for the other components of the vector potential are given by

∂Aθ

∂t
= − c2e−Λ

4πσ sin θ

{

sin θ
(

eΦ−ΛFθr

)

,r
+

eΦ+Λ

r2 sin θ
Fθφ,φ − ωe−Φ

4πσ

[

sin θ
(

eΦ−ΛFθr

)

,rφ
+

eΦ+Λ

r2 sin θ
Fθφ,φφ

]

}

+ΩFθφ , (D7)

∂Ar

∂t
= − c2eΛ

4πσr2 sin θ

{

eΦ−Λ (sin θFrθ),θ +
eΦ−Λ

sin θ
Frφ,φ − ωe−Λ

4πσ

[

(sin θFrθ),θφ +
1

sin θ
Frφ,φφ

]

}

+ ΩFrφ . (D8)

In the case of a misaligned rotator, the explicit expressions for the “magnetic” components of the electromagnetic tensor are

Frθ = eΛrH sinχ sinλ , (D9)

Fφr = GeΛr sin θ (sin θ cosχ− sinχ cosλ cos θ) , (D10)

Fθφ = Fr2 sin θ (cos θ cosχ+ sinχ cosλ sin θ) , (D11)

using which the induction equations (D6)–(D8) assume the form

∂Aφ

∂t
=

c2e−Λ sin θ

4πσ

{

−
[

(

eΦrG
)

,r
+ eΦ+ΛF

]

(sin θ cosχ− sinχ cos λ cos θ)

+
1

4πσ

{[

(

eΦrH
)

,r
+ eΦ+ΛF

]

ωe−Φ + [ωr(G−H)],r + Ωr (G−H)Φ,r

}

cos θ sinχ sinλ

}

, (D12)

∂Aθ

∂t
=

c2

4πσ

[

e−Λ
(

eΦrH
)

,r
+ eΦF

] [

sinχ sinλ− ωe−Φ

4πσ
sinχ cosλ

]

+ΩFr2 sin θ (cos θ cosχ+ sinχ cos λ sin θ) , (D13)

∂Ar

∂t
=

c2eΦ+Λ (G−H)

4πσr sin θ
sinχ cos θ

[

sinλ− ωe−Φ

4πσ
cos λ

]

− ΩGeΛr sin θ (sin θ cosχ− sinχ cos λ cos θ) . (D14)

Using now the definition (D1) it is possible to show that equations (D12), (D13), (D14) are equivalent to equations (142),(143) and
(144) derived in the main text.
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