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ABSTRACT

Using the observed properties of our solar system, in particular the isotopic com-

positions of meteorites and the regularity of the planetary orbits, we constrain the star

formation environment of the Sun within the scenario of (external) radioactive enrich-

ment by a massive star. This calculation yields a probability distribution for the number

of stars in the solar birth aggregate. The Sun is most likely to have formed within a

stellar group containing N = 〈N〉 ≈ 2000 ± 1100 members. The a priori probability

of a star forming in this type of environment is P ≈ 0.0085, i.e., only about 1 out of

120 solar systems are expected to form under similar conditions. We discuss additional

implications of this scenario, including possible effects from the radiation fields provided

by the putative cluster environment and dynamical disruption of the Kuiper Belt. The

constraints of this paper place tight restrictions on the properties of the solar birth

aggregate for the scenario of external enrichment by a massive star; alternately, these

tight constraints slightly favor a self-enrichment scenario for the short-lived radioactive

species.

Subject headings: open clusters and associations: general – stars: formation – solar

system: formation

1. INTRODUCTION

A substantial fraction of star formation in our galaxy takes place in groups or clusters, i.e.,

associations containing many young solar systems. As a consequence, our own solar system may

have formed within such a crowded environment. This hypothesis is bolstered by observations of

meteorites, which indicate that unexpectedly large quantities of short-lived radioactive nuclei were

present at the epoch of planet formation. One traditional explanation for this set of abundance
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anomalies is that the solar nebula was enriched in radioactive species by a nearby massive star

(see, e.g., the recent review of Goswami and Vanhala 2000; Cameron et al. 1995; Cameron 1978).

Enrichment is usually envisioned to occur through a supernova explosion, although Wolf-Rayet

winds have also been invoked. In any case, this scenario requires the presence of a nearby massive

star, which in turn implies that our solar system formed within a reasonably large stellar group.

For completeness, we note that thermally pulsing asymptotic giant branch stars have also been

suggested as an enrichment source (see Brusso, Gallino, and Wasserburg 1999), but the probability

that such a star is associated with a molecular cloud is relatively low (Kastner and Myers 1994).

We also know that our solar system could not have formed within a cluster containing too

many stellar members. In a sufficiently crowded environment, the solar system would be disrupted

by gravitational scattering effects from passing stars, binary systems, and other solar systems. The

observed orbital elements of the outer planets exhibit low eccentricities and are (almost) confined to

the same orbital plane. This relatively well-ordered configuration places modestly tight restrictions

on the characteristics of the solar birth aggregate. Some previous work has addressed this issue.

The inclinations of the orbits of Uranus and Neptune are sensitive to gravitational perturbations

from passing stars in the solar birth cluster; this effect implies a bound (Gaidos 1995; see also

Tremaine 1991) on the product of the stellar number density and the residence time in the cluster:
∫

ndt < 3× 104 pc−3 Myr. In this present work, we constrain the size of the solar birth aggregate

from both directions: It must be large enough to provide a sufficiently massive star for enrichment

and small enough to allow for well-ordered planetary orbits.

We must keep in mind, however, another possible way to explain the inferred abundances

of radioactive species: The solar nebula can be self-enriched through energetic processes in its

early formative stages (e.g., Lee et al. 1998). This latter scenario allows for the solar system to

form in relative isolation. Recent evidence (McKeegan et al. 2000) provides support for the self-

enrichment scenario. This work indicates the presence of 10Be, a short-lived radioactive species

that cannot be produced in supernovae and hence must be produced by nuclear reactions from

energetic particles (as would be expected in a picture of self-enrichment). An important issue for

solar system formation is to decide between these two alternate enrichment scenarios. As we show

here, the external enrichment scenario places strong constraints on the birth environment of the

solar system. These tight constraints, in turn, imply a low probability of success for the external

enrichment scenario and thus suggest that self-enrichment may be more viable.

In this paper, we explore the compromise necessary to have the solar system formed within a

stellar group large enough to produce a nearby massive star and, simultaneously, small enough to

allow the planetary orbits to remain relatively unperturbed. We first determine the probability of a

stellar cluster containing a sufficiently massive star as a function of the numberN of cluster members

(§2.1). We then calculate the cross sections for passing stars to disrupt the orbits of the outer planets

in the solar system (§2.2), and use the results to estimate the probability of disruption as a function

of cluster size N (§2.3). Folding these results together, we find the probability distribution for the

size N of the solar system’s birth aggregate (§2.4), the corresponding expectation value 〈N〉 for the
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cluster size, and the a priori probability of a star forming in such an environment (§2.5). Next, we
use these results to reconstruct the expected ultraviolet radiation field impinging upon the solar

nebula during the epoch of planet formation (§2.6). Finally, we calculate the cross sections for the

scattering of Kuiper Belt objects through gravitational interactions with passing stars (§2.7) and

thereby place further constraints on the birth aggregate. We conclude (§3) with a summary and

discussion of our results.

2. CONSTRAINTS ON THE SOLAR BIRTH ENVIRONMENT

2.1. Isotopic Abundances and the Probability of a Massive Star

The observed isotopic abundances in solar system bodies provide strong constraints on the

material originally contained within the solar nebula. In particular, isotopic studies of meteorites

indicate that the solar nebula was enriched in many short-lived nuclides while the solar system

was still forming (for a recent review, see Goswami and Vanhala 2000). One leading explanation

for this observed enrichment is that a nearby supernova explosion detonated during the formative

stages of the solar system and thereby enriched the solar nebula. Possible enriching stellar sources

include not only a supernova by a massive star (with mass M∗ > 25M⊙; Cameron et al. 1995),

but also a non-exploding Wolf-Rayet star (with mass M∗ > 60M⊙; Arnould et al. 1997). In

either case, however, the Sun would have to be born in close proximity to a massive star. The

required distance is ∼ 2 pc (Goswami and Vanhala 2000), so the Sun would have to be contained

with the same cluster as the massive star, but would not require a particularly special location

within the cluster. As mentioned earlier, however, this massive star solution is not the only one:

Self-enrichment by cosmic rays produced by the early Sun itself remains a possibility (Lee et al.

1998), and the constraints derived in this paper may ultimately help distinguish between these two

competing scenarios.

For this work, we want to calculate the probability that the birth aggregate of the Sun contained

a sufficiently massive star (to either provide the supernova or Wolf-Rayet effects). And we need to

know this probability as a function of the number N of stars in the birth aggregate. The probability

P>M of a group of stars having a massive star, say with mass greater than M , is equal to 1−Pnot,

where Pnot is the probability of the group not having a massive star. We choose this approach

because the probability of not having a massive star is straightforward to calculate. Let pC be the

probability that a star is not larger than some pre-specified mass scale MC . The probability of a

star (a group containing only one star) not having a massive star is thus pC . The probability for a

group of N stars not having a massive star is thus Pnot = pNC . The probability P>M of the group

containing a massive star is then given by the expression

P>M = 1− pNC . (1)

The probability pC is determined by the stellar initial mass function (IMF). Since only the
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most massive stars enter into this present application, we need to specify the high mass tail of the

IMF (with an appropriate normalization). We let FSN denote the fraction of stars that are large

enough (M∗ > MSN ≈ 8M⊙) to explode as supernovae at the end of their nuclear burning lives;

for a standard IMF, FSN ≈ 0.003. The observed solar system enrichment requires larger stars with

mass, say, MC = 25 – 60 M⊙. For a given mass requirement MC , the fraction of stars that are

heavy enough to provide enrichment is then given by the expression FC = FSN (MSN/MC)
γ , where

γ is the power-law index of the IMF for high masses [i.e., df/d lnm ∼ m−γ , where γ = 1.35 is the

traditional Salpeter (1955) value]. Observations of high mass stars in rich clusters (e.g., Brandl et

al. 1996) indicate slightly larger indices for the high end of the IMF, γ ∼ 1.6, although the values

show some variation from cluster to cluster. Using γ = 1.6 and the required mass scale MC = 25

M⊙, we obtain FC = 4.85 ×10−4, which implies pC = 1 − FC = 0.999515. We adopt this value

for the remainder of the paper. To include other possible parameter choices, we can immediately

generalize equation [1] to obtain

P>M = 1−
[

1−FSN (MSN/M)γ
]N

. (2)

For our standard choice of parameters, we can directly find the number of stars required for a

cluster to have a 50-50 chance of containing a sufficiently massive star: N = − ln 2/ ln pC ≈ 1430.

2.2. Cross Sections for Orbital Disruption

We want to ultimately calculate the probability that a solar system will be disrupted as a

function of the number N of stars in its birth aggregate. The disruption rate of a solar system is

given by

Γ = nσv , (3)

where σ is the disruption cross section, n is the mean density of other systems, and v is the relative

velocity (typically, v ∼ 1 km/s).

Using our planet scattering code developed previously (Laughlin and Adams 1998, 2000), we

can calculate the cross sections for the disruption of our solar system. In particular, we want to

find the effective cross section 〈σ〉 for a specified change in orbital parameters resulting from scat-

tering encounters with other cluster members (which are mostly binaries). Although we should, in

principle, consider all possible encounters, no matter how distant, only sufficiently close encounters

have an appreciable contribution to the cross section. We thus define our effective cross sections

through the relation

〈σ〉 ≡
∫

∞

0
fD(a)(Bπa

2)p(a) da , (4)

where a is the semi-major axis of the binary orbit and p(a) specifies the probability of encountering

a binary system with a given value of a. For a given value of a, we thus include only those scattering

interactions within the predetermined area Bπa2, where B is a dimensionless factor of order unity.



– 5 –

The function fD(a) specifies the fraction of encounters which result in a particular outcome (for

scattering between the Solar System and a binary of semi-major axis a). Because we neglect the

contribution to the cross section from scattering interactions outside the area Bπa2, equation [4]

provides a lower limit to the true cross section.

The distribution p(a) is determined by the observed distribution of binary periods and by the

normalization condition
∫

∞

0
p(a)da = 1 . (5)

We model the observed period distribution, and hence obtain p(a), by fitting the results of Kroupa

(1995). The observed binary period distribution peaks at P = 105 days, but the distribution is

relatively broad and significant numbers of binaries have periods longer than 107 days. For this set

of scattering experiments, however, we only include binaries with a < 1000 AU because binaries

with larger values of a have little contribution to the cross sections.

The set of possible encounters which can occur between the solar system and a field binary is

described by 10 basic input parameters. These variables include the binary semi-major axis a, the

stellar masses, m∗1 and m∗2, of the binary pair, the eccentricity ǫb and the initial phase angle ℓb of

the binary orbit, the asymptotic incoming velocity vinf of the solar system with respect to the center

of mass of the binary, the angles θ, ψ, and φ which describe the impact direction and orientation,

and finally the impact parameter h of the collision. Additional (intrinsic) parameters are required

to specify the angular momentum vector and initial orbital phases of the planets within the solar

system.

To compute the fraction of disruptive encounters fD(a) and hence the corresponding cross

sections, we perform a large number of separate scattering experiments using a Monte Carlo scheme

to select the input parameters. Individual encounters are treated as N -body problems in which

the equations of motion are integrated using a Bulirsch-Stoer scheme (Press et al. 1986). During

each encounter, we require that overall energy conservation be maintained to an accuracy of at

least one part in 108. For most experiments, both energy and angular momentum are conserved to

better than one part in 1010. This high level of accuracy is needed because we are interested in the

resulting planetary orbits, which carry only a small fraction of the total angular momentum and

orbital energy of the entire system (for further detail, see Laughlin and Adams 1998, 2000).

For each scattering experiment, the initial conditions are drawn from the appropriate parameter

distributions. More specifically, the binary eccentricities are sampled from the observed distribution

(Duquennoy and Mayor 1991). The masses of the two binary components are drawn separately

from a log-normal initial mass function (IMF) which is consistent with the observed distribution of

stellar masses (as advocated by Adams and Fatuzzo 1996). For both the primary and the secondary,

we enforce a lower mass limit of 0.075M⊙ and hence our computed scattering results do not include

brown dwarfs. Observational surveys indicate that brown dwarf companions are intrinsically rare

(Henry 1991); in addition, this cutoff has only a small effect because our assumed IMF peaks in the

stellar regime. The impact velocities at infinite separation, vinf , are sampled from a Maxwellian
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distribution with dispersion σv = 1 km/sec, which is a typical value for stellar clusters (Binney and

Tremaine 1987). The initial impact parameters h are chosen randomly within a circle of radius 2a

centered on the binary center of mass (using a circular target of radius 2a implies that B=4 in

equation [4]).

Using the Monte Carlo technique outlined above, we have performed Nexp ≈ 50,000 scattering

experiments for collisions between binary star systems and the outer solar system. These 7-body

interactions involve all four giant planets, the Sun, and the two binary members. From the results

of these experiments, we compute the cross sections for orbital disruption of each outer planet

(according to equation [4]).

The cross sections for the giant planets to increase their orbital eccentricities are shown in

Table 1. For each given value of eccentricity ǫ, the entries give the cross sections [in units of (AU)2]

for the eccentricity to increase to any value greater than the given ǫ; these cross sections include

events leading to either ejection of the planet or capture by another star. The listings for ǫ = 1

thus give the total cross sections for planetary escape and capture (taken together). In the two

additional lines below the main part of the table, we also present the cross sections for planetary

escapes and captures separately. For each cross section listed in Table 1, we also provide the one

standard deviation error estimate for the Monte Carlo integral; this quantity provides a rough

indication of the errors due to the statistical sampling process (Press et al. 1986). In this work, we

are mostly interested in the largest possible cross sections for disruption, which ultimately provide

the tightest constraints on the environment of the early solar system. Of the four giant planets,

Neptune is the most easily sent into an alternative orbits, as expected (see Table 1). For the

disruption of Neptune, we find a cross section 〈σ〉 ≈ 143,000 AU2 to increase its eccentricity to ǫ >

0.1 and 〈σ〉 ≈ 167,000 AU2 to double its eccentricity. For this work, we use the cross section for

Neptune to double its orbital eccentricity [about (400 AU)2] to represent the effective cross section

for solar system disruption (through eccentricity increases).

Another way for the solar system to be disrupted is by changing the planes of the planetary

orbits. Table 2 shows the cross sections for the inclination angles of the planetary orbits to increase

by varying amounts. The scattering experiments start with all four giant planets in the same

plane. After each collision, the angular momentum vectors of the planets will not, in general,

be aligned. The quantity ∆θi in the table is the largest angle (given in radians) between any

two of the angular momentum vectors for the four planets. The cross section for any one of the

planets to escape or be captured is 〈σ〉 ≈ 17100 ± 420 (in units of AU2). The second column of

Table 2 gives the cross sections for all four planets to remain bound to the Sun, but have at least

one of the relative angles exceed ∆θi. The final column gives the total disruption cross sections,

including planet escapes, planet captures, and the inclination angle increases. Notice that the cross

section for planetary escape and/or capture is larger than the cross section for scattering events

to increase the inclination angles beyond ∆θi ≈ 2.4 ≈ 3π/4. As is well known (Shu 1980), the

inclination angles for the (present-day) planetary orbits in our solar system show a small spread,

only about 3.5 degrees or 0.061 radians. The cross section for the inclination angles to increase to
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this maximum allowed value is about 〈σ〉 ≈ 158,000 AU2, which is comparable to the cross section

for the maximum allowed eccentricity increase determined earlier.

To summarize, our solar system can be disrupted within its birth aggregate by scattering events

which increase both the eccentricities and the inclination angles of the orbits of the outer planets.

But these two effects are not independent – scattering events that pump up the orbital eccentricity

also increase the inclination angles – so we cannot add the cross sections. As a rough benchmark,

the total cross section for significant disruption (large enough to be inconsistent with observations

of the present day solar system) is thus 〈σ〉 ≈ 160,000 AU2 = (400 AU)2. We use this cross section

as a representative value for the rest of this paper.

2.3. Cluster Evolution and the Probability of Solar System Disruption

In order to assess the likelihood of planetary disruption, we must fold into the calculation

considerations of the background cluster environment. The effective “optical depth” τ to disruption

can be written in the form

τ =

∫

Γdt = 〈σ〉
∫ tcl

0
vndt , (6)

where the cross section 〈σ〉 is now considered as a known quantity. The integral is taken over the

total lifetime tcl of the cluster environment. The velocity scale v, the mean stellar density n, and

the lifetime tcl are (on average) increasing functions of the number N of stars in the system. We

are implicitly assuming that the Sun stays in the birth cluster for most of the cluster lifetime.

This assumption is reasonable because the Sun is relatively heavy and will tend to sink toward the

cluster center rather than become immediately evaporated. In addition, the Sun must stay in the

cluster long enough for massive stars to evolve and die (in order to have the solar system enriched

in short-lived radioactive species). For purposes of this paper, the integral can be approximated as

follows:
∫ tcl

0
vndt ≈ 50n0v0tR0 , (7)

where the subscripts indicate that the quantities are evaluated at their initial values and where tR0

is the initial relaxation time. In making the approximation [7], we have used the result that the

typical lifetime of a cluster is about 100 times the initial dynamical relaxation time tR0 (see Binney

and Tremaine 1987), but the number density of other stellar systems (both singles and binaries)

is less than the starting value (averaged over tcl). Since n0 ≈ N/4R3 and tR ≈ (R/v)N/(10 lnN),

we find that n0v0tR0 ∼ Nµ, where the index µ ≈ 2. Assuming this power-law scaling for the

N -dependence, we can “evaluate” the optical depth integral and write it in the form

τ = (N/NC)
µ , (8)

whereNC is the number of stars in the system required to make the optical depth unity. Throughout

this work, bothN andNC refer to the number of singles and binaries, where the binaries are counted
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as one other stellar system. In other words, N and NC represent the number of primaries. For our

adopted standard value 〈σ〉 = (400 AU)2 ≈ 4× 10−6 pc2, equation [7] implies that

NC√
lnNC

≈ (1.25〈σ〉)−1/2R ≈ 447
( R

1pc

)

. (9)

For the representative value R = 2 pc, we find NC ≈ 2500, which we take as our standard value

for the remainder of this paper. For observational comparison, the Trapezium cluster in Orion has

approximately 2300 stars in its central region of size R ∼ 2 pc (Hillenbrand and Hartmann 1998);

if the cluster lives for 100 initial relaxation times tR0 (again, see Binney and Tremaine 1987), where

tR0 ≈ 15 Myr, then the effective optical depth for the Trapezium cluster will be about τ ≈ 0.9, in

reasonable agreement with the choices of parameters taken here.

The probability P (t) of the solar system surviving (i.e., not being disrupted) is given by the

solution to the simple differential equation

dP

dt
= −ΓP → P (t) = exp[−

∫ t

Γdt] , (10)

where we have used the fact that P (t = 0) = 1. Putting the above results together, we obtain the

probability Pdis for the solar system surviving disruption as a function of the cluster size N , i.e.,

Pdis(N) = exp[−(N/NC)
µ] , (11)

where we expect µ = 2 and NC ≈ 2500.

2.4. Probability Distribution for the Size of the Solar Birth Aggregate

By considering both constraints derived above, i.e., by assuming that the early solar system

experienced a supernova and that the outer planets were not severely disrupted, we obtain the

probability distribution that the Sun formed in a birth aggregate containing N members. This

probability distribution P⊙ is given by

P⊙(N) = P>MPdis = (1− pNC ) exp[−(N/NC)
µ] . (12)

The resulting joint probability distribution is shown in Figure 1. The peak of the distribution occurs

at N ≈ 1465. However, the more relevant quantity is the expectation value, 〈N〉 ≡
∫

NP⊙(N)dN

/
∫

P⊙dN , which is somewhat larger, 〈N〉 ≈ 1970. We also obtain a measure of the range of

allowed cluster sizes: The variance of the distribution 〈(∆N)2〉1/2 = 1090, so we obtain N ≈
2000 ± 1100. Alternately, the allowed range can be defined by the half-maximum points of the

probability distribution, i.e., 425 < N < 3000.

To further illustrate the conditions within the required birth aggregate, let’s now consider the

evolution of a stellar system with N = 2000 stars. This number of stars should be calculated after
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gas removal from the cluster. In the initial stages of cluster formation, the system will contain

some fraction of its mass in gaseous form as well as additional stars. The stars obey a distribution

of velocities. After gas removal, the high velocity stars leave the system and the low velocity stars

remain behind. As a benchmark, if the star formation efficiency is 50%, and the initial velocity

distribution of the stars is isotropic, then the cluster must initially contain about 2560 stars (Adams

2000). This value implies that the solar birth aggregate is comparable to (but somewhat larger

than) the present day Trapezium cluster in Orion (which has about 2300 stars within its central 2

pc; see Hillenbrand and Hartmann 1998).

After gas removal, our benchmark cluster contains 2000 stars and has a total mass of about

1400 M⊙. With a typical radial size of R = 1.5 pc, the velocity scale will be about 2 km/s. The

dynamical relaxation time of the system is initially tR0 ∼20 Myr, whereas the crossing time is only

tcross ∼0.75 Myr. The characteristic time scale tP for nebular disks to retain their gas and form

giant gaseous planets is ∼10 Myr (e.g., Lissauer 1993), which is roughly comparable to (but shorter

than) the dynamical relaxation time tR, but much longer than the crossing time tcross of the system.

All of these time scales are much less than the total cluster lifetime tcl, which is, in turn, much

shorter than the current age of the solar system t⊙ ≈ 4.6 Gyr. The time scales involved in the

problem thus obey the ordering

tcross ≪ tP < tR ≪ tcl ≪ t⊙ , (13)

which determines the timing of relevant events. The solar system will experience many orbits

through the birth cluster while its planets form, but the background gravitational potential and

structure of the cluster will not change appreciably. The solar system will thus randomly sample

the cluster volume during the planet forming epoch. Since the planet formation time is much

shorter than the total cluster lifetime, tP ≪ tcl, the planets are available for disruption for most of

the cluster’s life (as implicitly assumed above). Furthermore, because the planets have a relatively

small (but significant) chance of being disrupted during the entire life span of the cluster, they

have a much smaller chance of being disrupted during their early formative stages (smaller by a

factor of tP/tcl ≪ 1). In general, if the cluster is sufficiently diffuse to allow the planetary orbits

to remain unperturbed (after planet formation), then the cluster environment can have relatively

little effect on the planet formation process (via dynamical scattering processes; radiation can play

an important role as discussed in §2.6).

The initial stellar density of the cluster is about 200 pc−3 when averaged over the whole

system. As the cluster evolves, the half-mass radius of the cluster remains roughly constant, with

the central regions shrinking inwards and the outer regions expanding (Binney and Tremaine 1987).

The average density over the cluster lifetime (about 100 initial relaxation times or ∼1 Gyr), is thus

n ∼ 50 − 100 pc−3. The quantity
∫

ndt ∼ 105 pc−3 Myr, which is comparable to a previous

constraint on this quantity (derived in Gaidos 1995). Not surprisingly, the expected optical depth

to significant scattering events, τ = 〈σ〉v
∫

ndt ≈ 0.4 〈v〉 (1 km/s)−1, implies that solar system

has a reasonable but not overwhelming probability of disruption. In order for this value of the
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optical depth to agree with our approximation of equation [8], we would need an average velocity

dispersion of 〈v〉 ≈ 1.6 km/s (again, a reasonable value).

We can generalize this calculation to include other choices of parameters. One quantity that

is not well determined is the number of stars NC required for a cluster to have optical depth unity

for solar system disruption (see equations [6 – 9]). This parameter NC ultimately depends on the

degree of cluster concentration and the immediate galactic environment, which show some variation

and are not completely well known. We also might want to consider other choices for the mass

scale MC of the required massive star (e.g., the Wolf-Rayet scenario requires a larger value) or

different choices of the IMF, both of which lead to different values of pC . Fortunately, however, we

can analytically determine the expectation value 〈N〉 for the size of the solar birth aggregate (for

the standard choice of µ = 2 in equation [12]). We find

〈N〉 = βNC
eβ

2

[1− Erf(β)]

1− eβ2 [1− Erf(β)]
, (14)

where Erf(x) is the error function and where we have defined a dimensionless parameter β ≡
0.5NC(− ln pC). Equation [14] thus provides the expectation value for the size of the solar birth

aggregate for any value of NC and/or pC .

2.5. Probability of a Star Forming under Solar Conditions

Next, we can find the overall probability that a star forms in an environmental group containing

N = 〈N〉 ≈ 2000 members by using the probability distribution P⊙ given in equation [12]. This

calculation gives us a feeling for how common (or uncommon) our solar system should be, provided

that it forms according to the scenario of external radioactive enrichment. We let dPcl/dN be the

probability density for a star forming within a cluster containing N members. For the high end

of the distribution of cluster sizes N , we use the result that only about ten percent of stars form

within “big” clusters (e.g., see Roberts 1957; Elmegreen and Clemens 1985; Battinelli and Capuzzo-

Dolcetta 1991; Adams and Myers 2000; and others). Here, “big” clusters are those sampled by the

observational cluster surveys, which are complete down to some minimum cluster size N⋆ that is

not precisely specified, but lies in the range 100 < N⋆ < 500. Since the putative birth cluster for

the solar system must be much larger, with N ≈ 2000, it lies safely in the size range for which the

observational surveys are complete. Furthermore, the mass distribution for true (relatively large)

clusters can be represented by a power-law function df/dN ∼ N−2 (Elmegreen and Efremov 1997).

To obtain the probability density function dPcl/dN for a star forming in a cluster of a given size,

we must multiply by one power of N to obtain

dPcl

dN
= N

df

dN
= AclN

−1 . (15)

We specify the normalization constant Acl ≈ (40 ln 10)−1 by integrating over the allowed range of

cluster sizes (which we take to be N1 ≡ 102 ≤ N ≤ 106 ≡ N2). The probability P that star forming
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environments provide the proper conditions for solar system formation is thus given by the integral

P =

∫ N2

N1

dPcl

dN
P>MPdis dN ≈ 0.0085 . (16)

In other words, the considerations of this paper imply that 1 out of 120 solar systems in the

galaxy form in a dense enough environment to be radioactively enriched by a supernova and, at the

same time, a sufficiently diffuse environment to allow outer planetary orbits to remain relatively

unperturbed.

The probability P depends on the parameters of the problem, in particular the size NC of

a cluster required for the solar system to have optical depth unity to scattering events and the

probability pC for the cluster to contain a sufficiently massive star. One may wish to consider

varying scales MC for the required massive star, or variations in the IMF, both of which change the

value of pC . Similarly, one may wish to consider different types of disruption events, which have

different cross sections 〈σ〉, and hence lead to different values of NC . The probability of a given

type of cluster environment, as given by equation [16], can be evaluated analytically as a power

series for the standard case of µ = 2, i.e.,

P =
Acl

2

∞
∑

k=0

(−1)k αk+1 Γ[(k + 1)/2]

Γ[k + 2]
, (17)

where Γ(x) is the gamma function and where we have defined α ≡ NC(− ln pC), which has a

“standard” value of α ≈ 1.2. Unfortunately, however, the series converges only for α ≤ 2. Because

the dependence of P on the fundamental physical quantities is somewhat opaque in equation [17],

we numerically evaluate the result and plot the resulting probability P as a function of both NC and

MC in Figure 2. As the mass scale required for enrichment increases to MC = 60 M⊙, for example,

P decreases to about 0.0025, which corresponds to odds of only 1 part in 400. The solar system

is thus much less likely to have been radioactively enriched by being born within an environment

containing a 60 M⊙ star than one containing a 25 M⊙ star.

2.6. Radiation Environment of the Early Solar System

Given the constraints on the solar birth aggregate derived above, we can place corresponding

constraints on the radiation fields that the early solar system experienced. These radiation fields

can play an important role in removing gas from the early solar nebula and can thereby strongly

influence planet formation (Shu, Johnstone, and Hollenbach 1993; Störzer and Hollenbach 1999).

If the solar system did indeed form within a large enough birth aggregate to provide external

radioactive enrichment, then the ultraviolet (UV) flux incident upon the outer solar system will be

dominated by the background radiation field of the cluster rather than by the intrinsic radiation

field of the early Sun. We substantiate this claim below.
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To determine the UV radiation field provided by the cluster environment, we first need to

estimate the distance from the solar system to the massive stars in the birth aggregate (time

averaged over the planet formation epoch). The crossing time tcross is short compared to both the

dynamical relaxation time tR and the planet formation time tP , but tP < tR, so we consider the

solar system to be on a random orbit in a fixed cluster structure (see eq. [13]). Current observations

and theoretical simulations indicate that the most massive stars may form in the cluster centers

(e.g., Bonnell and Davies 1998), so we take the massive stars to lie at the origin. We must then

calculate the expectation value for the total UV flux, averaged over a typical orbit. For a centrally

condensed cluster (like a King model), the speed is nearly constant over the orbit. For each pass

through the cluster, the solar system experiences an average flux 〈F 〉 given by

〈F 〉 ≈ 1

2R

∫ R

−R

L

4π

ds

b2 + s2
≈ L

8Rb
, (18)

where b is the impact parameter (the distance of closest approach to the center). In a collapse model

of cluster formation, the stellar orbits are nearly radial outside the core and nearly isotropic inside

(Adams 2000); we therefore expect the typical impact parameter b to be given by the core radius. In

open clusters, the core radii are about ten times smaller than the cluster sizes (Binney and Tremaine

1987), so we take b ≈ R/10. The quantity L is the total luminosity of the massive stars in the

cluster center. Since we are interested in the ionizing ultraviolet flux Fuv, we take L = Luv, which is

determined by integrating over the stellar initial mass function. As before, we let the IMF take the

form df/d lnm ∼ m−γ for high mass stars. We also assume that the ultraviolet luminosity can be

modeled as a simple power-law over the stellar mass range of interest, i.e., Luv(m) = LC(m/m1)
q.

We take m1 = MSN = 8 M⊙, the minimum stellar mass for a supernova, because smaller stars

have little contribution to the ultraviolet radiation background. We also need to impose an upper

mass scale, which we take to be m2 = 100M⊙, to keep the integrals finite. Fitting the UV fluxes

of massive stars, we find q ≈ 3.14 and LC ≈ 4.2 × 1046 sec−1 (ionizing photons per second). The

mean UV luminosity 〈Luv〉 thus becomes

〈Luv〉 =
∫ m2

m1

Amm
−(1+γ) dmLC (m/m1)

q = AmLCm
−q
1

1

q − γ
(mq−γ

2 −mq−γ
1 ) , (19)

where Am is the normalization constant of the stellar IMF. Normalizing Am to account for the total

number of stars N in the cluster, we find Am = FSNNγm
γ
1 .

Combining equations [18] and [19], we obtain the total ionizing UV flux impinging upon on

the solar system from the background cluster environment

〈〈Fuv〉〉 =
FSNNLC

8bR

γ

q − γ

[

(m2/m1)
q−γ − 1

]

. (20)

Inserting numerical values, we can evaluate this result to find

〈〈Fuv〉〉 = 1.6 × 1012cm−2sec−1
( N

2000

)( R

1pc

)−2
. (21)
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For comparison, the ionizing UV luminosity of the early Sun cannot be larger than about Luv ≈ 1041

(Gahm et al. 1979; see also the discussion given in Shu et al. 1993) and hence the corresponding

UV flux is found to be

Fuv⊙ = 3.5× 1013cm−2sec−1
( ̟

1AU

)−2
, (22)

where ̟ is the (cylindrical) radial coordinate centered on the Sun. The background flux of the

cluster exceeds the local UV flux of the Sun for radial positions ̟ > 4.7 AU, which is close to the

current value for the semi-major axis of Jupiter’s orbit. As a result, almost the entire region of the

solar nebula that participates in giant planet formation is dominated by the ionizing UV flux from

the cluster environment, rather than the Sun.

We can also compare the total number of ionizing UV photons intercepted by the solar nebula

from both the Sun and the background cluster. The disk is embedded in the UV radiation field

and both sides will be exposed; the disk thus receives UV photons from the cluster at a rate Φuv

= 2πR2
d〈〈Fuv〉〉 ≈ 2 × 1042 sec−1, where Rd ≈ 30 AU is the radial size of the disk. The disk will

also intercept a fraction of the Φ⊙ ≈ 1041 sec−1 UV photons generated by the nascent Sun. For

the limiting case of a flat disk which is optically thick but spatially thin, the fraction of directly

intercepted photons is 25% (Adams and Shu 1986); because the disk can be flared and because of

additional scattered (diffuse) photons, the actual fraction is somewhat greater, about 50% (Shu et

al. 1993). The total rate of intercepted solar UV photons is thus about 5× 1040 sec−1. As a result,

the cluster environment provides 40 times more ionizing UV photons to the solar nebula than the

Sun itself.

This enhanced UV flux can drive an enhanced rate of photoevaporation from the disk. The

mass loss rate for the simplest models (Shu et al. 1993; Hollenbach et al. 1994) scale as Ṁ ∝ Φ
1/2
uv ,

so the mass loss rate is (at least) ∼6.3 times greater if the solar nebula lives within a large birth

aggregate. For some regimes of parameter space, the far-ultraviolet (as opposed to ionizing UV)

photons dominate the mass loss mechanism and the scalings are different (Störzer and Hollenbach

1999); one could perform an analogous calculation for mass loss due to far-UV photons. In any

case, for models of a disk immersed in the radiation field of a cluster, the mass loss rate can be large

ṀD ≈ 10−7 M⊙ yr−1 (again, see Störzer and Hollenbach 1999). For the minimum solar nebula with

disk mass MD ≈ 0.01M⊙, this mass loss rate would destroy the disk in only 105 yr, far shorter than

the time scale required for giant planet formation (Lissauer 1993). Although the details depend

on the exact orbit of the solar system through its birth environment and other undetermined

parameters, this putative cluster of N = 2000 stars comes dangerously close to preventing planet

formation from taking place.

A related question is to ask what fraction of all stars are born in sufficiently rich clusters so

that the UV flux of the background cluster dominates the intrinsic UV radiation field of the star.

In general, clusters large enough to be included in observational cluster surveys (systems with a few

hundred members or more) are large enough to dominate the UV radiation field (Adams & Myers

2000); as a result, the fraction of stars that are exposed to intense radiation fields is 8–10 percent.

About 90 percent of all solar systems thus have their UV radiation fields dominated by their central



– 14 –

stars (and can presumably form planets without interference from the background environment).

2.7. Effects on the Kuiper Belt

The large birth aggregate required to provide external radioactive enrichment will also have

a substantial impact on Kuiper Belt objects (hereafter KBOs). The population of bodies in the

Kuiper Belt is both complex and still under investigation, but enough observations have been made

to provide preliminary constraints (e.g., see the reviews of Jewitt and Luu 2000; Malhotra, Duncan,

and Levison 2000; Farinella, Davis, and Stern 2000; and references therein). Briefly, the Kuiper

Belt contains a population of KBOs in nearly circular orbits with semi-major axes in the range

30 – 50 AU, a second population of KBOs in resonances with Neptune, and a third population

of KBOs with high eccentricities and larger (a > 50 AU) semi-major axes. Although a great

deal of dynamical evolution has taken place between solar system formation and the present-day

observations, a (hypothetical) large birth cluster will nonetheless have a dramatic impact on KBOs

during the first ∼ 100 Myr of solar system evolution.

To study the interplay between the Kuiper Belt and the solar birth aggregate, the first step is

to calculate the cross sections for the scattering of KBOs by gravitational interactions with passing

stars in the birth cluster. The procedure is analogous to that described in §2.2. In this case, we start

the scattering experiments with small bodies in circular orbits. This suite of numerical experiments

uses orbital radii of a = 30, 40, 50, 60, and 70 AU. Because KBOs are small (the combined mass

of the Kuiper Belt is estimated to be less than an Earth mass), they act like test particles in the

scattering simulations. For computational convenience, we take all of the bodies to have a mass of

10−6 M⊙; this mass scale is small enough that the bodies are indistinguishable from test particles

and large enough to allow the code to conserve energy and angular momentum to good accuracy.

By including the KBO at a = 30 AU (which would clearly not survive because of Neptune), we

obtain a consistency check by comparing the results with those for Neptune scattering (Table 1).

The resulting cross sections for KBO scattering, listed here as a function of the final (post-

scattering) eccentricity, are shown in Table 3. Notice that the cross sections for the KBO at a = 30

AU are roughly comparable to those for Neptune (compare Tables 1 and 3); this finding implies

that even Neptune acts like a test body (for the most part) during scattering interactions. We

have not included the giant planets in this set of scattering calculations. These planets themselves

can be scattered during the interactions and then can lead to additional disruption of the putative

KBOs; this secondary effect is not included in this calculation and hence the cross sections listed

in Table 3 represent lower limits to possible disruption of KBO orbits.

The scattering cross sections obtained here can be used in two ways: We can assume that

the solar birth aggregate is “known” (from the previous results of this paper) and then predict

undiscovered properties of the outer Kuiper Belt. Alternately, we can use the observed KBO

populations to place further constraints on the solar birth aggregate.
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For example, if we assume that the previous sections specify the properties of the solar birth

cluster, then we know that it initially contained N ≈ 2000 members and the effective optical depth

τ to scattering events is given by

τ =
〈σ〉

(400AU)2
(
N

NC
)2=

〈σ〉
(500AU)2

, (23)

where 〈σ〉 is the cross section for the scattering event of interest. The corresponding probability

of the given event not occurring is thus exp[−τ ]. Using the cross sections in Table 3, we find that

essentially all KBOs beyond ∼ 50 AU must attain nonzero eccentricities. For example, KBOs at a

= 50 AU will typically attain eccentricities ǫ > 0.2 and KBOs at a = 70 AU will attain ǫ > 0.4.

This type of dynamical excitation (which also includes increased inclination angles of the orbits)

spreads out the KBO population and thereby lowers the apparent surface density of objects on

the sky; this reduction in surface density can appear as an apparent “edge” to the solar system as

recent observations suggest (Allen, Bernstein, and Malhotra 2000). However, we must stress once

again that the Kuiper Belt will undergo substantial dynamical evolution of its own after the solar

system leaves its birth cluster.

Although the cross sections listed in Table 3 are relatively large, as expected, it is significant

that a large portion of the table has cross sections less than the fiducial value 〈σ〉 ≈ (400 AU)2

required for solar system disruption (see §2.2 – 2.3). As a result, some fraction of the KBOs in the

range 40 AU ≤ a ≤ 70 AU will survive the birth cluster. The KBOs can be removed (in the short

term) either through direct ejection (or capture) or by attaining a large enough eccentricity to cross

the orbit of Neptune. Although KBOs with larger radii (a) have larger cross sections, they need to

be scattered to larger eccentricities to encounter Neptune. These two trends nearly compensate for

each other and yield a nearly constant cross section for KBOs to be (promptly) removed from the

solar system: 〈σ〉 ≈ (350 AU)2. This value implies that the probability of KBO survival runs at

about exp[−τ ] ≈ 0.6. In other words, about 40 percent of the KBOs will be removed from the solar

system while the Sun remains in its birth cluster (and an additional population will be removed

later through longer term dynamical interactions).

As an alternate approach, we can use our results from KBO scattering to place further con-

straints on the solar birth aggregate. We first note that we could use the survival of the Kuiper Belt

as the criterion for solar system to not be disrupted. We then repeat the analysis of §2.3 – 2.5 using

the cross section for KBO removal 〈σ〉 ≈ (350 AU)2. Because this cross section is somewhat lower

than that used previously (that for disruption of the giant planet orbits), the derived constraints

on the solar birth cluster are correspondingly weaker: 〈N〉 = 2250 ± 1250 and P = 0.0095. Using

only the survival of the Kuiper Belt, we thus obtain a (1 σ) upper limit on the size of the birth

cluster: N ≤ 3500.

We can also repeat the probability analysis by requiring that the solar system survive with

both its giant planet orbits and its Kuiper Belt intact. In this case, the joint probability distribution
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P⊙ for solar system survival takes the form

P⊙(N) = P>MPdis = (1− pNC ) exp[−(N/NC)
µ] exp[−(N/NCK)µ] , (24)

where the second exponential factor represents the survival of the Kuiper Belt (and where we

consider the two processes to be independent). The quantity NCK ≈ 2860 is the number of stars in

the cluster required to make the scattering optical depth unity for scattering interactions leading

to KBO removal. In this case, because we have an added constraint, the resulting bounds are

somewhat more restrictive than before: 〈N〉 = 1520 ± 827 and P = 0.0067 (which corresponds to

odds of one part in 150).

Before leaving this section, we note that the Oort cloud of comets may be even easier to disrupt

than the Kuiper Belt. For a given model of comet formation, one could thus find the corresponding

constraints on the birth aggregate of the solar system. We leave this issue for future work.

3. CONCLUSIONS and DISCUSSION

In this paper, we have explored the consequences of the solar system being formed within

a group environment that is large enough to contain a massive star that enriches the early solar

system in radioactive species and is also sufficiently diffuse to allow the planetary orbits to remain

unperturbed. In particular, we have obtained the following results:

[1] We have calculated the cross sections for the outer planets in our solar system to experience

orbital changes due to scattering interactions with binary systems in a cluster environment. We find

the cross sections for eccentricity increases (see Table 1) and for increases in the relative inclination

angles of the planetary orbits (see Table 2). The cross section for the scattering events to increase

either the eccentricities or the inclination angles beyond the currently observed values is 〈σ〉 ≈ (400

AU)2. The cross section for planetary ejection and/or capture is somewhat lower, about 〈σ〉 ≈ (130

AU)2. However, all of these cross sections are substantially larger than the area subtended by the

solar system, Area ≈ π (30 AU)2.

[2] We have estimated the probability distribution for the number N of stars in the birth

aggregate for our solar system (see Figure 1). Using the coupled constraints that the group was

large enough to contain a massive star (to enrich the solar system in radioactive elements) and

small enough so that the outer planetary orbits are not severely disrupted, we find that N = 〈N〉 ≈
2000±1100. The expectation value 〈N〉 varies relatively slowly with the parameters of the problem

and has the analytic solution given by equation [14].

[3] The a priori probability for a star being born in the type of environment required for the

external enrichment scenario for our solar system (i.e., subject to the probability distribution de-

picted in Figure 1) is P ≈ 0.0085. The odds of the solar system forming in this type of environment

are thus about 1 in 120. This result can be readily generalized to accommodate other choices of

parameters (see eq. [17] and Figure 2).
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[4] The time scales for the cluster environment obey a particular ordering (see equation [13]):

The crossing time tcross of the cluster is much shorter than the time tP required to form giant

planets, so the solar system randomly samples the cluster environment over that epoch. The

dynamical relaxation time tR is somewhat longer than tP , and the total cluster lifetime tcl ≫ tP ,

so the cluster does not change its structure appreciably while the planets form.

[5] Within the scope of this external enrichment scenario, we have reconstructed the radiation

field provided by the birth aggregate of the solar system. The early solar nebula receives about

40 times more ionizing UV photons from the background cluster environment than from the early

Sun. Only the inner portion of the nebula, at radii r < 5 AU, has its ionizing UV flux dominated

by the Sun. This intense flux of UV radiation can severely ablate the early solar nebula and greatly

compromise giant planet formation.

[6] Objects forming in the Kuiper Belt will also be scattered due to interactions in the birth

cluster. We have calculated the scattering cross sections for KBOs on initially circular orbits with

radii in the range 30 AU ≤ a ≤ 70 AU (Table 3). The cross sections for prompt removal are 〈σ〉 ≈
(350 AU)2 over the outer part of this radial range. If we include the required survival of the Kuiper

Belt in the probability analysis, we obtain slightly tighter constraints on the solar birth aggregate:

〈N〉 = 1520 ± 827, P = 0.0067, and a priori odds of one part in 150.

Some authors have suggested that the formation of our solar system must be triggered by the

same supernova that is postulated to provide the radioactive enrichment (e.g., Boss and Foster

1998). We stress here that external enrichment does not necessarily imply a triggered collapse.

The time scale for cluster formation is relatively short (a few Myr; e.g., Elmegreen 2000) and the

time scale for the collapse of an individual star forming site is much shorter (about 105 yr; e.g.,

Myers and Fuller 1993, Adams and Fatuzzo 1996). Thus, the solar system could be formed within

a cluster and yet be formed through a spontaneous (un-triggered) collapse. Another motivation

for the collapse being triggered is that the ambipolar diffusion time scale is generally long (about

107 years), too long for the survival of the necessary radioactive nuclei. However, observational

evidence shows that the time scale for molecular cloud cores to shed their magnetic support and

begin dynamic collapse is much shorter (about 1 Myr) for all cores (e.g., Jijina et al. 1999; Myers

and Lazarian 1998); the ambipolar diffusion time scale is thus not an insurmountable obstacle for

star formation in clusters.

The results of this paper have important ramifications for the ongoing debate concerning

radioactive enrichment of the early solar system. The meteoritic data strongly indicate that such

enrichment took place. However, both the external scenario of enrichment by a massive star and the

internal scenario of self-enrichment have some difficulty reproducing all of the short-lived radioactive

species (e.g., see Goswami and Vanhala 2000; Lee et al. 1998; and references therein). Although the

results are not definitive, this paper tends to favor the self-enrichment scenario for two reasons: (1)

A star forming environment that is simultaneously large enough to provide external enrichment and

diffuse enough to not disrupt the planetary orbits is a priori an unlikely event (at the level of 1 part
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in 120). (2) If the solar system formed in the large birth aggregate required for external enrichment,

the corresponding radiation fields are likely to have compromised giant planet formation.

Nevertheless, the external enrichment scenario is not conclusively ruled out. Events with long

odds (100:1) do indeed sometimes happen. If one adopts the external enrichment scenario, a con-

sistent solution exists and the results of this paper place tight constraints on the birth environment

of our solar system: The birth cluster contained N ≈ 2000 other stars and subjected the early solar

nebula to an intense UV radiation field. Scattering interactions in the birth cluster would then

be responsible (at least in part) for the observed nonzero (but small) inclination angles and eccen-

tricities of the giant planet orbits. Furthermore, objects in the Kuiper Belt would be dynamically

excited by these scattering interactions. This highly disruptive environment must be accounted for

in a complete description of solar system formation.

During the preparation of this paper, we have greatly benefited from discussions with Gary

Bernstein, Pat Cassen, Gus Evrard, Dave Hollenbach, Nathan Schwadron, Frank Shu, and Kevin

Zahnle. This work was supported by NASA Grant No. 5-2869 and the University of Michigan.



– 19 –

Table 1

Cross Sections for Planet Scattering: Eccentricity Increase

[all cross sections in units of (AU)2]

ǫ Jupiter Saturn Uranus Neptune

0.05 54300 ± 707 67700 ± 775 126000 ± 1030 167000 ± 1150

0.10 40700 ± 611 55000 ± 700 106000 ± 958 143000 ± 1080

0.20 29200 ± 521 42900 ± 621 83300 ± 860 113000 ± 983

0.30 22800 ± 458 36700 ± 576 69500 ± 794 95600 ± 915

0.40 18600 ± 410 32400 ± 544 59300 ± 738 82900 ± 861

0.50 15500 ± 374 28800 ± 517 52300 ± 697 73300 ± 816

0.60 13700 ± 351 25800 ± 491 46600 ± 661 64900 ± 774

0.70 11900 ± 327 22700 ± 462 41500 ± 626 58700 ± 740

0.80 10500 ± 306 19800 ± 432 36700 ± 592 53200 ± 710

0.90 9120 ± 286 17500 ± 407 32300 ± 558 47700 ± 678

0.95 8520 ± 276 16400 ± 393 30400 ± 542 45100 ± 662

1.00 7970 ± 267 15300 ± 381 28400 ± 526 41900 ± 640

escape 7290 ± 255 14000 ± 365 25000 ± 492 35400 ± 584

capture 684 ± 81.4 1300 ± 115 3320 ± 194 6640 ± 280
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Table 2

Cross Sections for Planet Scattering: Inclination Increase

[all cross sections in units of (AU)2]

∆θi angle increase total

0.06 140900 ±1100 158000 ±1130

0.10 114600 ±1010 132000 ±1050

0.20 85000 ± 880 102000 ± 943

0.30 71800 ± 815 89000 ± 888

0.40 63600 ± 770 80800 ± 850

0.50 57600 ± 736 74800 ± 822

0.60 53100 ± 707 70300 ± 798

0.70 49500 ± 684 66700 ± 780

0.80 46400 ± 663 63600 ± 763

0.90 43900 ± 647 61000 ± 750

1.00 41400 ± 629 58500 ± 736

1.10 39500 ± 616 56600 ± 726

1.20 37700 ± 602 54800 ± 715

1.30 35700 ± 585 52800 ± 702

1.40 33700 ± 570 50900 ± 690

1.50 32400 ± 559 49500 ± 682

1.60 30900 ± 546 48000 ± 672

1.70 29400 ± 534 46500 ± 663

1.80 27700 ± 518 44900 ± 652

2.00 24600 ± 488 41700 ± 630

2.20 21400 ± 459 38500 ± 609

2.40 17100 ± 411 34300 ± 576

2.60 12300 ± 349 29400 ± 537

2.80 6870 ± 263 24000 ± 490

3.00 2020 ± 143 19100 ± 441
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Table 3

Cross Sections for KBO Scattering

[all cross sections in units of (AU)2]

ǫ a = 30 AU a = 40 AU a = 50 AU a = 60 AU a = 70 AU

0.05 172000 ± 1670 206000 ± 1780 236000 ± 1860 263000 ± 1780 286000 ± 1820

0.10 147000 ± 1580 179000 ± 1700 206000 ± 1780 229000 ± 1720 251000 ± 1770

0.20 119000 ± 1450 145000 ± 1570 169000 ± 1670 189000 ± 1630 209000 ± 1680

0.30 99600 ± 1350 123000 ± 1480 143000 ± 1570 161000 ± 1540 179000 ± 1600

0.40 86700 ± 1270 106000 ± 1390 126000 ± 1500 140000 ± 1460 156000 ± 1530

0.50 76100 ± 1200 92800 ± 1310 110000 ± 1420 123000 ± 1390 138000 ± 1460

0.60 66700 ± 1120 82900 ± 1250 98600 ± 1350 109000 ± 1320 123000 ± 1400

0.70 59600 ± 1070 74100 ± 1190 88300 ± 1300 97800 ± 1270 111000 ± 1350

0.80 52000 ± 1000 66400 ± 1130 78800 ± 1240 87300 ± 1210 99400 ± 1290

0.90 46000 ± 947 59100 ± 1080 70400 ± 1180 77800 ± 1160 88900 ± 1230

1.00 39800 ± 889 52700 ± 1030 61800 ± 1110 67700 ± 1090 78000 ± 1170
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FIGURE CAPTIONS

Fig. 1.— Probability distributions for the number of stars in the solar birth aggregate. The dashed

curves show the probability P>M (N) of a cluster containing a sufficiently massive star for radioactive

enrichment (the increasing function of N) and the probability Pdis(N) of the solar system remaining

undisrupted (the decreasing function of N). The solid curve shows the joint probability P⊙(N) of

the solar birth aggregate being simultaneously large enough to contain a massive star (with mass

M∗ > MC = 25 M⊙) and small enough to allow the planetary orbits to not be disrupted.

Fig. 2.— Probability of the solar system being born in a cluster environment that is rich enough to

contain a massive star (with mass greater than MC) and diffuse enough to not disrupt the orbits

of the giant planets. The solid line shows the probability P as a function of the number NC of

stars required to make the birth aggregate optically thick to scattering events. The dashed curve

shows the probability P as a function of the required mass scale MC (where the numbers on the

horizontal axis must be divided by 100 to express the mass MC in units of M⊙).






