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THE STRUCTURE OF THE UNIVERSE ON 100 MPC SCALES

JAAN EINASTO

Tartu Observatory, EE-61602, Estonia

Observational evidence for the presence of a preferred scale around 100 Mpc in the
distribution of high-density regions in the Universe is summarised. Toy models with
various degrees of regularity are analysed to understand better the observational
data. Predictions of models which produce a feature on the initial power spectrum
of matter are analysed and compared with new observational data on the CMB
angular spectrum, cluster mass function, and galaxy and cluster power spectrum.

1 Introduction

Until the mid-1970s the astronomical community accepted the paradigm that galax-
ies are distributed in space more or less randomly and that about 5 − 10 % of all
galaxies are located in clusters which are also randomly distributed. A paradigm
change occurred during a Symposium on Large-Scale Structure of the Universe in
1977 in Tallinn. Several teams reported results of studies of the 3-dimensional dis-
tribution of galaxies in superclusters, and demonstrated that superclusters consist
of chains (filaments) of galaxies, groups and clusters, and that the space between
galaxy systems is devoid of any visible galaxies (Jõeveer & Einasto 1978, Tarenghi
et al. 1978, Tifft & Gregory 1978, Tully & Fisher 1978).

The discovery of the filamentary character of superclusters and the presence of
large empty voids made obsolete the early theories of structure formation – the
hierarchical clustering model by Peebles (1980), and the whirl theory by Ozernoy
(1978). The first impression was that the winning theory was the pancake scenario
by Zeldovich (1978). However, a more detailed analysis has shown that the original
pancake scenario also has weak points – the structure forms too late and has no fine
structure of faint galaxy filaments in large voids (Zeldovich, Einasto & Shandarin
1982). Then the Cold Dark Matter model was suggested and generally accepted
(Blumenthal et al 1984). Recently it was replaced by a CDM model dominated by
a cosmological term (vacuum energy) – the LCDM model. However, this model
has also at least one weak point: in LCDM model superclusters are randomly
distributed, whereas observational evidence suggests that rich superclusters and
voids form a quasi-regular network of scale ∼ 100 − 130 h−1 Mpc (Einasto et

al. 1997a, 1997d). Here we use the dimensionless Hubble constant h defined as
H0 = 100 h km s−1 Mpc−1. These data raise the question: Is the regularity of
the distribution of superclusters a challenge for CDM models? My lecture tries to
answer this question. First I shall summarise the observational evidence for the
presence of the 130 h−1 Mpc scale, thereafter I shall discuss attempts to explain
the presence of this scale theoretically.

2 Evidence for the 100 – 130 Mpc Scale

The evidence for the presence of a scale in the distribution of superclusters has
accumulated slowly. Zeldovich, Einasto & Shandarin (1982) noticed that voids
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between superclusters have mean diameters about 100 h−1 Mpc. Kopylov et al.
(1988) calculated the cluster correlation function and found a secondary peak at
∼ 125 h−1 Mpc, which corresponds to superclusters on opposite sides of large
voids. Using a slightly different method Mo et al. (1992) confirmed the presence of
a feature in the cluster correlation function at ∼ 125 h−1 Mpc.

The most dramatic demonstration of the scale was made by Broadhurst, et al.
(1990) who measured redshifts of distant galaxies in a pencil beam directed toward
Northern and Southern galactic poles. Their data show that high-density regions
in this direction alternate with low-density regions with surprising regularity of a
period ∼ 128 h−1 Mpc. Finally, Einasto et al (1997a, 1997b, 1997d) calculated the
cluster correlation function and power spectrum of a 3-dimensional cluster sample
and confirmed the presence of a scale of ∼ 120 h−1 Mpc in the distribution of rich
clusters of galaxies.

A similar phenomenon is observed in the distribution of Lyman-break galaxies
(Broadhurst & Jaffe 2000) at high redshift, z ≈ 3. The correlation function of these
distant galaxies has secondary peaks. A regularity on a similar scale has been found
in the distribution of quasars by Roukema & Mamon (2000). All these data suggest
that this scale is primordial and co-moves with the expansion; it can be used as a
standard rod.

3 Power Spectrum and Correlation Function of Toy Models

The fluctuating density field can be described by the power spectrum and the cor-
relation function. The power spectrum P (k) characterises the amplitude of density
fluctuations for various wavenumbers k = 2π/l. It is determined by the power
indices on large and small scales, nl, ns, by the transition scale l0 (or wavenumber
k0 = 2π/l0) and by the amplitude σ8 on scale 8 h−1 Mpc. The correlation function
ξ(r) characterises the clustering of galaxies or clusters in space; it is defined as the
excess probability to find galaxies or clusters over a random distribution of points.

In the ideal case of data not being distorted by errors and being available over
the whole space, the power spectrum and the correlation function form mutual
pairs of Fourier transformations. In reality they complement each other. We are
interested here in the study of the regularity of the structure. To understand bet-
ter observational data we shall study first several toy models of different geometry.
These toy models are: random superclusters, Voronoi tessellation (randomly lo-
cated void centers, and clusters located between voids as far from void centers as
possible), and “regular rod models” (superclusters located randomly along regu-
larly spaced parallel rods oriented along all 3 dimensions). Details of these models
were discussed by Einasto et al. (1997c). In all three models clusters within super-
clusters are generated in an identical way; they are distributed randomly according
to an isothermal density law. Thus, on small scales correlation functions and power
spectra of all three models are identical. Only on larger scales the models differ.
The random supercluster model has no built-in scale and no regularity in the dis-
tribution of superclusters. The Voronoi tessellation model has a built-in scale – the
mean size of voids, but no regularity in the distribution of superclusters as voids
are distributed randomly. The regular rod model has a scale: the spacing of the
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Figure 1. The distribution of clusters in Voronoi and regular rod models (upper left and right
panels, respectively), respective correlation functions (middle panels) and power spectra (lower
panels). In the lower panels a wavenumber k = 1 corresponds to the size of the box in the upper
panels.
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grid of rods, and also a regularity: the rods form a regular lattice. In Figure 1 we
show the distribution of clusters in a sheet of the Voronoi and regular rod models
(upper panels), the corresponding correlation functions (middle panels) and power
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spectra (lower panels).
The analysis of these toy models allows us to make the following conclusions.

On small scales (r < 50 h−1 Mpc) the correlation function and power spectrum
characterise the distribution of clusters within superclusters, while on larger scales
they describe the distribution of superclusters themselves. If superclusters are dis-
tributed randomly, then on large scales (r > 50 h−1 Mpc) the correlation function
is almost zero, ξ(r) = 0, and the power spectrum P (k) is flat. The correlation func-
tion of the Voronoi model has one secondary minimum and maximum and is zero
thereafter, and the power spectrum P (k) has a sharp maximum. The correlation
function of the regular rod model is oscillating: it has regularly spaced minima and
maxima; the power spectrum has a well-defined sharp maximum on a scale equal to
the period of oscillation of the correlation function; it can be approximated by two
power law. The position of the maximum of P (k) and the separation of maxima of
ξ(r) correspond to the mean diameter of voids and to the separation of superclusters
across voids, respectively.

For comparison we can say that all CDM-type models have a smooth power
spectrum and a correlation function rather similar to those of the random super-
cluster model. Here the conflict between observations and model is well seen.

Figure 2. The distribution of Abell clusters (open circles) and X-ray clusters (squares) in super-
galactic coordinates. Filled squares denote members of rich superclusters and open squares –
isolated X-ray clusters and members of poor systems. In order to minimize the projection effects
we plot only Abell clusters from very rich superclusters with at least 8 members.
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4 Distribution of Superclusters

4.1 Abell Clusters

We shall use Abell clusters of galaxies as indicators of the distribution of high-
density regions in the Universe. The distribution of Abell clusters in rich super-
clusters is shown in Figure 2 (open circles). We use clusters within a distance limit
350 h−1 Mpc; the Northern galactic hemisphere is at right, the Southern one at
left.

Power spectra of various galaxy and cluster samples are shown in the left panel
of Figure 3; the correlation function of Abell clusters in rich superclusters is plotted
in the right panel. We see that the correlation function of rich clusters is oscillating
with a period 120 h−1 Mpc. The mean power spectrum of clusters and deep galaxy
samples has a sharp maximum on the same wavelength. These properties are similar
to properties of the regular rod model.

Figure 3. Left: power spectra of galaxies and clusters of galaxies normalized to the amplitude of
the 2-D APM galaxy power spectrum (references are given by Einasto et al. 1999a). For clarity
error bars are not indicated and spectra are shown as smooth curves rather than discrete data
points. Bold lines show spectra for cluster data. Points with error bars show the spectrum of
Abell clusters by Miller & Batuski (2000) adjusted to the galaxy spectrum amplitude by a relative
bias factor b = 3.2. Right: correlation function of Abell clusters located in superclusters with at
least 8 clusters (Einasto et al. 1997b).
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4.2 APM and X-ray Clusters

The largest weight in the mean power spectrum plotted in Figure 3 has the Abell
cluster sample as it is the deepest and the largest in volume. However, Abell clusters
were selected by visual inspection of Palomar survey plates and can be influenced
by unknown selection effects. Thus an independent check of the power spectrum
and correlation function is needed. We have used A(utomated) P(late) M(easuring)
survey clusters and X-ray selected clusters and active galaxies for comparison.

In Figure 2 we show both optically and X-ray selected clusters, demonstrating
that rich superclusters are well seen in both cluster samples. The richest Abell
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Figure 4. Correlation functions of clusters in rich superclusters: the left panel shows superclus-
ters of richness Ncl ≥ 3 of X-ray selected clusters and active galaxies; the right panel shows
superclusters of APM clusters of richness Ncl ≥ 8.
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cluster superclusters are also rich in X-ray clusters. There exist differences in detail:
not all Abell clusters are strong X-ray emitters, and some X-ray luminous clusters
are not included in the Abell catalogue. Similarly, APM clusters do not coincide
always with Abell clusters in the same volume. However, the comparison of spatial
distributions of cluster samples shows that APM and X-ray selected clusters form
rich superclusters very close to rich superclusters of Abell clusters.

Correlation functions of APM and X-ray selected clusters in rich superclusters
are also rather similar to the correlation function of Abell clusters in rich super-
clusters: compare Figures 3 and 4. Again, there are differences in details: the
correlation functions of APM and X-ray clusters have a secondary maximum at
a separation of r ∼ 190 h−1 Mpc which is absent in the correlation function of
the Abell cluster sample. This feature is due to the fact that the APM sample
(and partly the X-ray selected sample) is dominated by two very rich superclusters
surrounding an exceptionally large void between Horologium-Reticulum and Sculp-
tor superclusters (Einasto et al. 1997d), such that the maximum of the correlation
function is shifted. On the other hand, the Abell sample contains a dozen very
rich superclusters and differences in void diameters cancel each other out. Due to
the smaller volume covered, the APM cluster sample is less suitable for large-scale
studies.

The observational evidence can be summarised as follows:

• Rich superclusters and voids form a quasi-regular lattice;

• The mean diameter of cells (the mean separation of rich superclusters across
voids) is 120− 130 h−1 Mpc.

5 Theoretical Implications

5.1 Evolutionary Toy Models

To investigate the formation of a quasiregular cellular structure we have performed
numerical simulations of the evolution of a toy model with two-power-law spectrum
of index nl = 1 on large scales and ns = −2 on small scales, and a sharp transition at
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wavenumber k = 0.05 h Mpc−1 (Frisch et al. 1995). This power spectrum is rather
similar to the observed power spectrum. The two-power-law model reproduces well
the distribution of rich clusters of galaxies. Clusters form long filamentary super-
clusters and a quasiregular supercluster-void network. The correlation function and
the power spectrum of the two-power-law model approximates well the observed
functions. However, this model is phenomenological. Physically motivated models
based on Dark Matter and inflation properties are needed for comparison.

5.2 Cold Dark Matter Models with a Bump

The standard high-density CDM model (Ωm = 1) has a power spectrum very
different from observations. On small scales the COBE normalised CDM model
has an amplitude of the spectrum which is much higher than the amplitude of the
observed power spectrum of galaxies. As discussed above, this is difficult to explain.
LCDM models with cosmological term have better agreement with the observed
power spectrum, but they lack the feature at the dominant observed scale. The
Low-density Mixed Dark Matter model fits better the observed power spectrum,
but no feature is present either.

In some variants of the inflation scenario primordial power spectra have a bump
or peak. The model suggested by Lesgourgues, Polarski & Starobinsky (1998) has
a break in amplitude and peak; the model by Chung et al. (1999) has a bump.
Parameters of the model are the position and height of the bump (peak). Power
spectra of the Starobinsky model are plotted in the upper left panel of Figure 5.
Spectra are based on an LCDM model with shape parameter Γ = Ωmh = 0.2,
and bump parameters p = 1 (no bump) and p = 0.7. The upper right panel
shows power spectra of an MDM model with cosmological parameters: baryon
density Ωb = 0.06, CDM density Ωc = 0.29, HDM (neutrino) density Ωn = 0.05,
vacuum energy density Ωl = 0.60, and Hubble parameter h = 0.65. This set of
parameters is rather close to the model suggested by Ostriker & Steinhardt (1995)
and confirmed by new data by Burles et al. (1999), Riess et al. (1998), Perlmutter
et al. (1998), and Parodi et al. (2000) among others. One spectrum corresponds
to the conventional MDM model, the other to the model with Chung peak of
amplitude a = 0.3. Calculations were made with the CMBFAST package by Seljak
& Zaldarriaga (1996).

This Figure shows that a Starobinsky model with a bump is in good agreement
with earlier observational data on the galaxy and cluster power spectrum but not
with the new data by Miller & Batuski (2000). A mixed dark matter model with
Chung peak of amplitude a = 0.3 is in good agreement with all observational data.

Finally we have checked the Chung model with other independent data. The
lower left panel of Figure 5 shows the cluster mass function calculated using the
Press & Schechter (1974) algorithm. These calculations show that the model with
a bump produces more clusters of high mass. However within observational errors
of the cluster mass functions of both models are in agreement with observations. A
similar comparison with new CMB measurements is given in the lower right panel
of Figure 5. To improve the agreement with CMB data we have used a tilted MDM
model with spectral index nl = 0.90 on large scales, keeping all other cosmological
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Figure 5. Upper left: power spectra of an LCDM model with and without Starobinsky modifica-
tion. Upper right: power spectra of MDM models with and without Chung modification. Lower
left: cluster mass distributions for MDM models with and without Chung modification. Observed
cluster mass functions are shown according to Bahcall & Cen (1993) and Girardi et al. (1998).
Lower right: angular power spectra of tilted MDM models with and without Chung modification
(amplitude parameter a = 0.3), compared with BOOMERANG (de Bernardis et al. 2000) and
MAXIMA I (Hanani et al. 2000) data.
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parameters as in the model shown in the lower left panel. These calculations show
that models with and without the Chung modification are in satisfactory agreement
with the CMB angular spectrum. Thus we conclude that this model represents well
all available observational data.

However, there are several problems not solved yet. First, the observational
question: How large is the region of the regular supercluster-void network? Then
the question concerning the interpretation of models: How are spectral features
(bump) and regularity related? We hope that this question can be answered with
numerical simulations of LCDM models with and without a bump in the power
spectrum, and such simulations are under way. Finally, the theoretical questions:
Why is there a preferred scale and why does it have a value of ∼ 130 h−1 Mpc?
What does the presence of a scale and a regularity tell us on the inflation?
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6 Conclusions

• There exists good evidence on the presence of a scale of ∼ 130 h−1 Mpc: it
measures the mean distance between rich superclusters across voids.

• There are variants of the inflation scenario suggesting the presence of a char-
acteristic scale (bump) in the power spectrum.

• Models with a bump in the power spectrum are in agreement with other cos-
mological data using sets of parameters within acceptable ranges.

• Cellular large-scale structure may be the end of the fractal structure of the
Universe, as suggested by Ruffini, Song & Taraglio (1988).

We should note that models neither predict the position of the bump, nor the
presence and extent of the regularity of the supercluster-void network. We should
remember the maxim by Eddington: no experimental result can be taken seriously

if not explained theoretically. Thus larger surveys are needed to clarify properties
of the supercluster-void network. Also a further theoretical analysis are needed to
find the physical origin of the scale and the extent of the regularity.
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