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Abstract. We combine AAVSO and VSS/RASNZ optical and Extreme
Ultraviolet Explorer EUV light curves of dwarf novae in outburst to place
constraints on the nature of dwarf nova outbursts. From the observed
optical–EUV time delays of ≈ 0.75–1.5 days, we show that the propaga-
tion velocity of the dwarf nova instability heating wave is ≈ 3 km s−1.

1. Introduction

Dwarf nova outbursts are understood to be the result of an instability in the rate
of mass transfer through the accretion disk surrounding the white dwarf in these
semidetached binaries. The instability can be triggered at large or small disk
radii, resulting in normal, fast-rise outbursts or anomalous, slow-rise outbursts,
respectively. In either case, the beginning of the outburst is signaled by a rise of
the optical flux, followed by a rise of the UV flux as material sinks through the
disk, converting gravitational potential energy into rotational kinetic energy and
radiation. This is followed by a rise in the EUV flux as material passes through
the boundary layer between the disk and the surface of the white dwarf, where
it converts its prodigious rotational kinetic energy into radiation.

Because the optical and EUV flux of dwarf novae is produced in physically
distinct regions of the accretion disk, light curves in these wavebands provide
important diagnostics of the nature of dwarf nova outbursts. Toward this end,
we present optical and EUV light curves of dwarf novae observed by the Extreme
Ultraviolet Explorer (EUVE ) satellite.

2. EUVE Observations

During the past seven years, EUVE was used to observe four dwarf novae in
outburst: SS Cyg in narrow and wide, normal and anomalous outbursts; U Gem
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in normal outburst (twice); VW Hyi in normal and superoutburst (twice); and
OY Car in superoutburst (twice). These eleven observations were originally
obtained for varying reasons, and on a couple of occasions they were coordinated
with other satellites (RXTE , Voyager , HST ) sensitive in other wavebands (hard
X-rays, FUV, UV). Details of the EUVE observations are provided in Table 1.
Note that the exposures are 55–274 ks, and because the satellite takes data for

∼
< one third of its orbit, the EUV light curves span intervals of 2–13 days.

Table 1. Journal of EUVE Observations
Date Interval Exp. Type

Star (M/Y) (JD−2400000) (ks) of Outburst Comment
SS Cyg 08/93 49216.58–222.86 179.4 Anom. Wide
U Gem 12/93 49350.00–361.15 249.0 Normal
VW Hyi 06/94 49505.46–507.66 89.4 Super
SS Cyg 06/94 49526.67–536.69 147.8 Normal Wide
VW Hyi 07/95 49906.70–917.29 183.8 Normal + Voyager
VW Hyi 05/96 50210.58–218.47 55.4 Super + RXTE
SS Cyg 10/96 50366.40–379.45 208.1 Normal Narrow + RXTE
OY Car 03/97 50534.46–537.64 94.8 Super
U Gem 11/97 50760.27–766.85 150.0 Normal + RXTE
SS Cyg 06/99 51336.84–349.67 274.0 Anom. Narrow + RXTE
OY Car 02/00 51597.66–601.26 69.1 Super &HST
Net Exposure: 87.4 days 1.7 Ms

3. Optical and EUV Light Curves

Optical light curves of these outbursts were constructed from visual magnitude
estimates and CCD photometric measurements obtained by members of the
American Association of Variable Star Observers (AAVSO) and the Variable
Star Section/Royal Astronomical Society of New Zealand (VSS/RASNZ). EUV
light curves were constructed from the EUVE deep survey photometer (DS) or
short wavelength spectrometer (SW) in those instances when the DS was turned
off (during the peak of the 10/96 outburst of SS Cyg, both outbursts of U Gem,
and the 6/94 outburst of VW Hyi). The resulting optical and EUV light curves
are shown in Figures 1–6, with the EUVE DS and SW data shown by filled
circles and squares, respectively, and the optical data shown by dots and open
diamonds (measurements) or carets (upper limits). Half-day averages of the
optical measurements are shown by the histograms for SS Cyg and U Gem. In
Figure 4 the Voyager 950–1150 Å (FUV) flux density light curve of VW Hyi in
normal outburst is shown by the filled triangles.

4. Discussion

The anomalous outbursts of SS Cyg (Fig. 1) manifest the gradual increase of
the optical and EUV light curves expected for inside-out outbursts. The opti-
cal and EUV flux rises during the beginning of these outbursts as the heating
wave sweeps outward through the disk, causing more and more material to flow
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Figure 1. Anomalous (slow-rise) outbursts of SS Cyg.
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Figure 2. Normal (fast-rise) outbursts of SS Cyg. The optical-EUV
delay is ≈ 1.5 days.
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Figure 3. Outbursts of U Gem. The optical-EUV delay is ≈ 1.25 days.
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Figure 4. Normal outburst of VW Hyi. The optical-FUV delay is
≈ 0.5 days and the optical-EUV delay is ≈ 0.75 days.
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Figure 5. Superoutbursts of VW Hyi.
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Figure 6. Superoutbursts of OY Car.
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through the disk and boundary layer onto the white dwarf. In contrast, the
normal outbursts of SS Cyg (Fig. 2), U Gem (Fig. 3), and VW Hyi (Fig. 4)
manifest the fast increase of, and the delay between, the optical and EUV light
curves expected for outside-in outbursts. As measured from the initial rise of
the optical light curves, the delay of the rise of the EUV light curves is ≈ 1.5,
1.25, and 0.75 days for SS Cyg, U Gem, and VW Hyi, respectively. In VW Hyi,
the FUV light curve rises ≈ 0.5 days after the optical light curve and ≈ 0.25
days before the EUV light curve, but falls as slowly as the optical light curve,
consistent with the expectation that the accretion disk and not the boundary
layer is the source of the FUV flux. We were not able to observe the rise of the
EUV light curves of the superoutbursts of VW Hyi (Fig. 5) or OY Car (Fig. 6),
but during both observations of OY Car the EUV light curve was observed to
fall and then rise while the optical light curve was declining only slowly. This
behavior is evidence for a decrease and subsequent increase of the mass-accretion
rate onto the white dwarf, as might be expected if a normal outburst is rejuve-
nated by an increase in the mass-accretion rate driven by the tidal instability
expected for such high mass-ratio binaries.

The observed optical-EUV delays of the normal outbursts of SS Cyg, U Gem,
and VW Hyi provide the most direct measurement of the velocity of the heating
wave which transforms the disk from quiescence to outburst. Assuming the sys-
tem parameters shown in Table 1, that the radius of the disk is Rdisk ≈ 0.7×RL1,
and that the disk instability starts at the outer edge of the disk, the veloc-
ity of the heating wave v ≈ Rdisk/delay ≈ 3 km s−1. This result is consis-
tent with v = αcs if the viscosity parameter α ≈ 0.2 and the sound speed
cs = 10 (T/104 K)1/2 ≈ 15 km s−1.

Table 2. System Parametersa and Velocity of the Heating Wave
Parameter SS Cyg U Gem VW Hyi
Porb (days) . . . . . . . . . . . . . . . . . . . . . . . . . 0.2751 0.1769 0.0743
M1 (M⊙) . . . . . . . . . . . . . . . . . . . . . . . . . . 1.19 1.26 0.63
M2 (M⊙) . . . . . . . . . . . . . . . . . . . . . . . . . . 0.70 0.57 0.11
q = M1/M2 . . . . . . . . . . . . . . . . . . . . . . . . 1.69 2.17 6
RL1/a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.43 0.45 0.54
a = [(Porb/2π)2G(M1 +M2)]

1/3 (cm) 1.5 × 1011 1.1× 1011 4.7× 1010

Rdisk ≈ 0.7×RL1 (cm) . . . . . . . . . . . . . 4.6 × 1010 3.5× 1010 1.8× 1010

delay (days) . . . . . . . . . . . . . . . . . . . . . . . . 1.5 1.25 0.75
v ≈ Rdisk/delay (km s−1) . . . . . . . . . . . 3.5 3.3 2.7
aRitter, H., & Kolb, U. 1998, A&A, 129, 83
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