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Abstract

A model-independent determination of the primordial power spectrum
of matter density fluctuations could uniquely probe physics of the very
early universe, and provide powerful constraints on inflationary models. We
parametrize the primordial power spectrum A2

s(k) as an arbitrary function,
and deduce its binned amplitude from the cosmic microwave background
radiation anisotropy (CMB) measurements of Maxima, Boomerang, and
DASI. We find that for a flat universe with A2

s(k) = 1 (scale-invariant)
for scales k < 0.001 h/Mpc, the primordial power spectrum is marginally
consistent with a scale-invariant Harrison-Zeldovich spectrum. However, we
deduce a rise in power compared to a scale-invariant power spectrum for
0.001 h/Mpc <∼ k <∼ 0.01 h/Mpc. Our results are consistent with large-scale
structure data, and seem to suggest that the current observational data allow
for the possibility of unusual physics in the very early universe.

http://arxiv.org/abs/astro-ph/0011351v2
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1. Introduction

The inflationary paradigm is presently the most plausible solution to the problems
of the standard cosmology. Inflation is consistent with all current observational data.
However, we are still far from establishing a definitive model of inflation. There exists a
broad range of inflationary models (cf. Kolb 1997, Turner 1997), many of which appear
consistent with observational data. In order to quantify what can be known about inflation
one desires model-independent measurements of the primordial power spectrum of matter
density fluctuations as these can provide unique and powerful constraints on inflationary
models.

Although it has been conventional to take the primordial power spectrum to be
a featureless power law in analyzing cosmological data, there are both theoretical and
observational reasons to allow the primordial power spectrum to be a free function. That
is, some inflationary models predict power spectra that are almost exactly scale-invariant
(Linde 1983), or are described by a power law with spectral index less than one (Freese,
Frieman, & Olinto 1990, La & Steinhardt 1991), while others predict power spectra with
slowly varying spectral indices (Wang 1994), or with broken scale invariance (Holman et
al. 1991ab, Randall, Soljacic, & Guth 1996, Adams, Ross, & Sarkar 1997, Lesgourgues,
Polarski, & Starobinsky 1997, Lesgourgues 2000). The latter represents unusual physics in
the very early universe. For example, inflation might occur in multiple stages in effective
theories with two scalar fields (Holman et al. 1991ab), or in a succession of short bursts due
to symmetry breaking during an era of inflation in supergravity models (Adams, Ross, &
Sarkar 1997).

There is also tentative observational evidence for a peak in the power spectrum
of galaxies at k ∼ 0.05Mpc−1 (Einasto 1998, Baugh & Gaztanaga 1999, Retslaff et al.
1998, Broadhurst & Jaffe 2000, Gramann & Suhhonenko 1999, Gramann & Hütsi 2000).
The simplest explanation for such a peak in the galaxy power spectrum is a new feature in
the primordial power spectrum.

The cosmic microwave background radiation anisotropies (CMB) are signatures of
the primordial matter density fluctuations and gravity waves imprinted at the time when
photons decoupled from matter. The large-scale structure in the distribution of galaxies is
a direct consequence of the power spectrum of the primordial density fluctuations. Wang,
Spergel, & Strauss (1999) have explored how one can use the upcoming CMB data from
the Microwave Anisotropy Probe (MAP; Bennett et al. 1997; http://map.gsfc.nasa.gov)
and the large-scale structure data from the the Sloan Digital Sky Survey (SDSS; cf., Gunn
& Weinberg 1996) to obtain a model-independent measurement of the primordial power
spectrum, and to extract simultaneously the cosmological parameters.

In this paper, we implement the concept of a model-independent measurement of the
primordial power spectrum from Wang et al. (1999) to extract cosmological information
from the CMB data from Maxima (Hanany et al 2000), Boomerang (de Bernardis et al

http://map.gsfc.nasa.gov
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2000), and DASI (Halverson et al. 2001). We parametrize the primordial power spectrum
as a continuous and arbitrary function determined by its amplitude at several wavenumbers
[which are equally spaced in log(k)] via linear interpolation. We then measure these
“binned” amplitudes from the CMB data of Maxima, Boomerang, and DASI.

2. Measurement of the Primordial Power Spectrum

We parametrize the primordial power spectrum as

A2
s(k) =

(

ki − k

ki − ki−1

)

ai−1 +

(

k − ki−1

ki − ki−1

)

ai, ki−1 < k ≤ ki, i = 1, n

A2
s(k) = a0 = 1, k ≤ k0 = kmin,

A2
s(k) = an, k ≥ kn = kmax, (1)

where

ki = exp

[

i

n
ln

(

kn
k0

)

+ ln(k0)

]

, i = 0, n

We impose A2
s(k) = 1 for k ≤ k0 = kmin for two reasons. First, on the largest scales, the

CMB data is consistent with a scale-invariant primordial power spectrum (Smoot et al.
1992, Gorski et al. 1996), i.e., A2

s(k) = 1. Second, the bin amplitude of the primordial
power spectrum on the largest scales is poorly constrained by the CMB data due to the
effects of cosmic variance. We also assume that A2

s(k) = an for k > kn = kmax, because kmax

is close to the scale corresponding to the angular resolution of Maxima and Boomerang.
We choose kmin = 0.001 h/Mpc and kmax = 0.1 h/Mpc.

We perform the parameter estimation by computing the CMB angular power spectrum
Cl(s) for a discrete set of cosmological parameters denoted as s. To save computational
time and storage space, we have assumed a flat universe and limited our parameter search
to a grid in six cosmological parameters, {H0,Ωm,Ωb, a1, a2, a3}, with ΩΛ = 1−Ωm, τri = 0.
The ai (i = 1, 3) parametrize the primordial power spectrum A2

s(k) as in Eq.(1) with n = 3.
Our assumption of a flat universe is consistent with all current observational data, and
preferred by non-fine-tuned inflationary models. We use the COBE normalization for all
the theoretical models.

Following the Maxima, Boomerang, and DASI teams (Jaffe et al 2001, Lange et al.
2001, Pryke et al. 2001), we use an offset lognormal likelihood function to define a χ2

goodness of fit (Bond, Jaffe, & Knox 2000). That is, for a given theoretical model with
Cl(s) ≡ l(l + 1)Cl(s)/(2π), we define

χ2(s) ≡ −2 lnL = χ2
d + χ2

cal + χ2
beam, (2)

χ2
d =

∑

i,j

(Zt
i − Zd

i )M
Z
ij (Z

t
j − Zd

j ), (3)
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χ2
cal =

∑

α

(uα − 1)2

σ2
α

, (4)

where

Zd
i ≡ ln(Di + xi) (5)

Zt
i ≡ ln





uα

limax
∑

li
min

filCl gl + xi





 , (6)

fil =
W i

l /l
∑limax

li
min

W i
l /l

, (7)

and
MZ

ij = Mij(Di + xi)(Dj + xj). (8)

In the above equation, Di is the measured CMB bandpower in the ith bin, xi is an offset
which depends upon experimental details, Wl = B2

l is the experimental window function
(where Bl is the beam function). The weight matrix Mij is given by the Fisher matrix

Fij = − ∂2L

∂Ci∂Cj
. The calibration uncertainty is parametrized by uα, the factor of overall

relative calibration; and which has a dispersion of σα = 0.08 and 0.2 for Maxima-1 and
Boomerang, respectively. We also consider beam uncertainties for Boomerang. Following
Lange et al. (2000), we parametrize the beam uncertainty with exp {−(l + 0.5)2[∆(θ2s)]},
with 〈∆(θ2s)〉 = 2θFWHM ∆θFWHM = (572.0)−2, where we have used θFWHM = 12.9′, and
∆θFWHM = 1.4′. Hence, we write

χ2
beam =

∑

i

(

∑lmax,i

lmin,i
filCl exp [−g(l) δbeam]−

∑lmax,i

lmin,i
filCl

)2

(

∑lmax,i

lmin,i
filCl exp [−g(l)]−

∑lmax,i

lmin,i
filCl

)2 , (9)

where we have defined δbeam ≡ 572.02∆(θ2s), and g(l) ≡ [(l + 0.5)/572.0]2.

We use the higher precision Maxima and Boomerang data as published in Lee et
al. 2001 and Netterfield et al. 2001. The relevant experimental details (beam functions,
covariance matrix, and log-normal offsets xi) have not yet been released. It has been shown
that in the absence of the knowledge of xi, Gaussian statistics describe the data better
than a log-normal distribution with arbitrary xi (Bond, Jaffe, & Knox 2000). Therefore, we
replace Eq.(3) with

χ2(s) =
∑

i

[Ci
data − Ci

BP (s)]
2

σ2
i

, (10)

where Ci
data are the experimental band-powers with measurement errors σi, and

Ci
BP (s) =

∑lmax,i

lmin,i
WlCl(s)/l

∑lmax,i

lmin,i
Wl/l

, Wl = B2
l = e−(0.425θFWHM l)2 , (11)
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where θFWHM = 10′ and 12.9′ for Maxima and Boomerang respectively. Eq.(10) assumes
symmetric error bars on Ci

data. For the asymmetric errors given by Maxima, we take
σi = σi,− for Ci

data > Ci
BP (s), and σi = σi,+ otherwise.

The DASI team has released the experimental details (window functions
fil, log-normal offsets xi, and covariance matrix Vij) together with their data
(http://astro.uchicago.edu/dasi/). This enables us to use log-normal statistics [Eqs.(3)-
(8)], with the weight matrix Mij given by the inverse of the matrix Nij = Vij + σαDiDj,
where σα = 0.08 is the calibration uncertainty of DASI.

For a given set of cosmological parameters, {H0,Ωm,Ωb, a1, a2, a3}, we marginalize
the model over the calibration uncertainties of Maxima, Boomerang, and DASI, and over
the beam uncertainty of Boomerang. The beam uncertainty is only marginalized for
Boomerang, since only this experiment appears to have significant beam uncertainty.

3. Results

Since only five values of H0 = 100 h km/sMpc−1 (h = 0.5, 0.6, 0.7, 0.8, 0.9) are
computed for our grid, we present our results for the different values of h separately, instead
of marginalizing over h.

Figs.1(a)-(c) show the data from (a) Maxima, (b) Boomerang, and (c) DASI, together
with best-fit models. In each figure, the solid curve is the best-fit model to the combined
Maxima, Boomerang, and DASI data, while the dotted line is the best-fit model to the
(a) Maxima, (b) Boomerang, and (c) DASI data separately. The dotted error bars are the
errors on each data point including calibration uncertainty. We have combined the data
from Maxima, Boomerang, and DASI assuming that the three experiments are independent
of each other.

Table 1 shows the best-fit models to the combined Maxima, Boomerang, and DASI
data.

Table 1: Best fit models to the combined Maxima, Boomerang, and DASI data

h Ωm Ωb a1 a2 a3 umx uBoom uDASI δbeam χ2
min

0.5 0.700 0.070 2.5 1.7 1.3 0.933 1.008 0.952 0.10 28.4500
0.6 0.425 0.055 2.0 1.2 1.0 0.974 1.056 0.987 0.05 28.2064
0.7 0.250 0.040 1.5 0.9 0.9 0.978 1.056 0.994 0.05 29.3004
0.8 0.200 0.040 1.0 0.8 1.0 0.958 1.048 0.971 0.10 29.8050
0.9 0.120 0.030 0.9 0.7 1.0 0.981 1.048 0.990 0.05 29.0687

http://astro.uchicago.edu/dasi/
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Table 2-4 show the best-fit models to the Maxima, Boomerang, and DASI data
separately.

Table 2: Best fit models to the Maxima data

h Ωm Ωb a1 a2 a3 umx χ2
min

0.5 0.800 0.100 3.0 1.5 1.5 0.997 4.3313
0.6 0.600 0.100 2.5 1.0 1.5 0.997 3.2590
0.7 0.400 0.080 0.9 0.6 1.0 0 1.010 3.9188
0.8 0.300 0.070 1.0 0.6 1.2 0.994 4.5866
0.9 0.200 0.060 0.7 0.5 1.3 1.000 4.7581

Table 3: Best fit models to the Boomerang data

h Ωm Ωb a1 a2 a3 uB00 δbeam χ2
min

0.5 0.600 0.050 5.0 3.0 1.5 0.968 -0.05 11.4684
0.6 0.375 0.050 2.5 1.5 1.0 0.968 0.00 11.7898
0.7 0.250 0.040 2.0 1.2 0.9 0.984 0.00 12.1868
0.8 0.150 0.030 1.5 0.9 0.8 1.016 0.00 12.4757
0.9 0.120 0.030 0.9 0.8 0.9 1.008 0.05 13.5643

Table 4: Best fit models to the DASI data

h Ωm Ωb a1 a2 a3 uDASI χ2
min

0.5 0.800 0.070 2.5 1.7 1.3 0.990 4.3187
0.6 0.450 0.050 4.0 1.7 1.5 1.010 3.3240
0.7 0.275 0.040 3.0 1.2 1.3 1.006 2.5608
0.8 0.200 0.040 2.0 0.9 1.3 0.994 2.6985
0.9 0.120 0.030 0.9 0.6 1.0 1.029 2.3055

We constrain parameters individually by marginalizing over all other parameters.
Figs.2(a)-(e) show the likelihood functions for the combined Maxima, Boomerang, and
DASI data for the set of parameters {Ωm,Ωb, a1, a2, a3}, for h = 0.5 (dot), 0.6 (solid), 0.7
(dashed), 0.8 (long-dashed), and 0.9 (dot-dashed). The likelihood functions have been
derived using χ2 values which resulted from multi-dimensional interpolations of the χ2

values computed for the grid of models (cf. Tegmark & Zaldarriaga 2000a).
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Fig.3 shows the primordial power spectrum A2
s(k) measured from the combined

Maxima, Boomerang, and DASI data for h = 0.6 (solid), and 0.7 (dotted). The ±1σ errors
are deduced from Fig.2(c)-(e).

Note that A2
s(k) = 1 corresponds to the scale-invariant Harrison-Zeldovich

ns = 1 spectrum, with the primordial scalar power spectrum conventionally defined as
k A2

s(k) ∝ kns. Clearly, the primordial power spectrum is marginally consistent with a
scale-invariant Harrison-Zeldovich spectrum. However, there is a rise in the power at
0.001 hMpc−1 <∼ k <∼ 0.01 hMpc−1 compared to a scale-invariant power spectrum. Although
this rise is not statistically convincing, it could be an indication of interesting physics
worthy of future investigation.

4. Discussion

Due to parameter degeneracies between h and Ωm and Ωb, the CMB data constrain h
only weakly. Fortunately, there are a number of independent methods for constraining h
(Freedman et al 2001, Branch 1998, Kundic et al 1997). The current combined CMB data
from Maxima, Boomerang, and DASI marginally prefer h = 0.6 (see Table 1).

Although the CMB data is sensitive to Ωmh
2 and Ωbh

2, the likelihood curves for
different values of h do not overlap [see Figs.2(a)(b)], since these curves correspond to
different values of ΩΛ (we assume that ΩΛ = 1 − Ωm). The likelihood curves for Ωbh

2 are
less sensitive to the value of h [see Fig.2(b)]. This is because varying Ωb has a much smaller
effect on ΩΛ than varying Ωm.

Our measurement of the primordial power spectrum [see Fig.3] is consistent with the
large-scale structure data which seem to indicate a peak in the matter power spectrum at
k ∼ 0.05Mpc−1 (Einasto 1998, Baugh & Gaztanaga 1999, Retslaff et al. 1998, Broadhurst
& Jaffe 2000, Gramann & Suhhonenko 1999, Gramann & Hütsi 2000). We note that the
real space power spectrum of the PSCz Survey, from 0.01 to 300 h/Mpc (Hamilton &
Tegmark 2000), does not show this peak. The data from 2df (Dalton et al. 2000) and
SDSS (Gunn & Weinberg 1996) should help clarify any features in the large-scale structure
power spectrum. However, if there is a feature at k <∼ 0.002 hMpc−1 (corresponding to the
characteristic length scale of the SDSS, see Wang, Spergel,& Strauss 1999), satelite CMB
data from MAP or Planck will be required to constrain such features in the primordial
power spectrum (Wang, Spergel,& Strauss 1999).

A number of authors have used Maxima and Boomerang data to derive cosmological
constraints (Abazajian, Fuller, & Patel 2000, Amendola 2001, Avelino et al. 2000, Balbi et
al 2000, Bento, Bertolami, & Silva 2001, Bouchet et al. 2002, Brax, Martin, & Riazuelo
2000, Bridle et al. 2001, Contaldi 2000, Durrer & Novosyadlyj 2001, Enqvist, Kurki-Suonio,
& Valiviita 2000, Esposito et al. 2001, Griffiths, Silk, & Zaroubi 2001, Hannestad
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2000, Hannestad & Scherrer 2001, Hu et al. 2001, Jaffe et al 2001, Kanazawa et al.
2000, Kinney, Melchiorri, Riotto 2001, Landau, Harari, & Zaldarriaga 2001, Lange
et al. 2001, Lesgourgues & Peloso 2000, McGaugh 2000, Melchiorri & Griffiths
2001, Padmanabhan & Sethi 2001, Tegmark & Zaldarriaga 2000b, Tegmark, Zaldarriaga,
& Hamilton 2001, White, Scott, & Pierpaoli 2001). Our work is unique in allowing the
primordial power spectrum to be an arbitrary function, thus allowing the possibility for
detecting new features in the primordial power spectrum.

Our results seem to indicate that the current observational data do not rule out
unusual physics (such as multiple-stage inflation) in the very early universe. The upcoming
data from the CMB satellite missions MAP (Bennett et al. 1997) and Planck (De Zotti et
al. 1999), and the large-scale structure data from 2df (Dalton et al. 2000) and SDSS (Gunn
& Weinberg 1996) should allow for a more definitive measurement of the primordial power
spectrum (Wang, Spergel,& Strauss 1999). These data will more precisely constrain the
possibility for such complex physics in the very early universe.
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Retslaff, J., Borgani, S., Gottlöber, S., Klypin, A., & Müller, V. 1998, New A., 3, 631

Seljak, U., & Zaldarriaga, M. 1996, ApJ, 469, 437

Smoot, G. F., et al. 1992, ApJ, 396L, 1

Tegmark, M., Zaldarriaga, M. 2000, ApJ, 544, 30

Tegmark, M., Zaldarriaga, M. 2000, Phys. Rev. Lett., 85, 2240

Tegmark, M., Zaldarriaga, M., Hamilton, A.J.S. 2001, Phys. Rev. D63, 043007

http://arxiv.org/abs/astro-ph/0104460
http://arxiv.org/abs/astro-ph/0104490


– 12 –

Turner, M.S. 1997, in Generation of Cosmological Large-Scale Structure, ed. D.N. Schramm
& P. Galeotti (Dordrecht: Kluwer), 153

Wang, Y. 1994, Phys. Rev., D50, 6135

Wang, Y., Spergel, D.N., and Strauss, M.A. 1999, ApJ, 510, 20

White, M., Scott, D., & Pierpaoli, E. 2001, ApJ, 545, 1

This manuscript was prepared with the AAS LATEX macros v4.0.



– 13 –

Fig. 1.— The data from (a) Maxima, (b) Boomerang, and (c) DASI, together with best-
fit models. In each figure, the solid curve is the best-fit model to the combined Maxima,
Boomerang, and DASI data, while the dotted line is the best-fit model to the (a) Maxima,
(b) Boomerang, and (c) DASI data separately. The dotted error bars are the errors on each
data point including calibration uncertainty.

Fig. 2.— The likelihood functions for the combined Maxima, Boomerang, and DASI data
for the set of parameters {Ωm,Ωb, a1, a2, a3}, for h = 0.5 (dot), 0.6 (solid), 0.7 (dashed), and
0.8 (long-dashed).

Fig. 3.— The primordial power spectrum A2
s(k) measured from the combined Maxima,

Boomerang, and DASI data for h = 0.6 (solid), and 0.7 (dotted). The ±1σ errors are
estimated from Fig.2(c)-(e).
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Fig. 1.— The data from (a) Maxima, (b) Boomerang, and (c) DASI, together with best-
fit models. In each figure, the solid curve is the best-fit model to the combined Maxima,
Boomerang, and DASI data, while the dotted line is the best-fit model to the (a) Maxima,
(b) Boomerang, and (c) DASI data separately. The dotted error bars are the errors on each
data point including calibration uncertainty.
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Fig. 1.— (b) Boomerang data.
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Fig. 1.— (c) DASI data.
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Fig. 2.— The likelihood functions for the combined Maxima, Boomerang, and DASI data
for the set of parameters {Ωm,Ωb, a1, a2, a3}, for h = 0.5 (dot), 0.6 (solid), 0.7 (dashed), and
0.8 (long-dashed). (a) Ωmh

2.
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Fig. 2.— (b) Ωbh
2.
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Fig. 2.— (c) a1.
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Fig. 2.— (d) a2.
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Fig. 2.— (e) a3.



– 22 –

Fig. 3.— The primordial power spectrum A2
s(k) measured from the combined Maxima,

Boomerang, and DASI data for h = 0.6 (solid), and 0.7 (dotted). The ±1σ errors are
estimated from Fig.2(c)-(e).


