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What can we infer about the underlying physics from burst distri-
butions observed in an RMHD simulation?
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Abstract

We determine that the sizes of bursts in mean-square current den-
sity in a reduced magnetohydrodynamic (RMHD) simulation follow
a power-law probability density function (PDF). The PDFs for burst
durations and waiting time between bursts are clearly not exponential
and could also be power-law. This suffices to distinguish their be-
haviour from the original Bak et al. sandpile model which had expo-
nential waiting time PDFs. However, it is not sufficient to distinguish
between turbulence, some other SOC-like models, and other red noise
sources.

1 Introduction

The widespread occurrence of both self-affine time series with “1/f”
power spectra and spatial fractals in nature led Bak et al. (1987, 1988)
(BTW) to propose the hypothesis of self-organised criticality (SOC)
(Bak 1997; Jensen 1998; Sornette 2000) as their common origin. Their
proposal was based on the demonstration of a “sandpile” cellular au-
tomaton (see also the earlier work of Katz (1986)) which appeared to
be attracted from arbitrary initial conditions (“self-organisation”) to
a critical state characterised by fluctuations on all scales in the energy
released by the system (“criticality”). Power-law probability density
functions (PDFs) for the sizes and durations of energy bursts were the
main observed signatures of criticality, and were tested by finite-size
scaling of the PDFs with system size (Cardy 1996).

One of the original applications proposed by BTW for their idea
was fully developed turbulence, in view of the scaling behaviour of
such systems, and the intermittency of their energy dissipation. Fur-
thermore, intermittent turbulence has been an inspiration for later
“sandpile”-like cellular automata such as the forest fire model of Bak
et al. (1990). The SOC paradigm has since found many applications
(Bak 1997; Jensen 1998; Sornette 2000), one of which has been its use
by Lu and Hamilton (1991) and subsequent authors to explain the ob-
served power-law distributions for the magnitudes, intensities, and du-
rations of solar flares. SOC has since also been applied to other natural
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and artificial plasma confinement systems, notably the Earth’s mag-
netosphere (a recent review is that of Chapman and Watkins (2001))
and tokamaks (e.g. (Chapman et al. 2001)).

In turn, recent studies in the solar flare context, of both shell
models (Boffetta et al. 1999) and simulations based more directly on
the magnetohydrodynamic (MHD) equations (Georgoulis et al. 1998;
Einaudi and Velli 1999) have focused attention on the fundamental
questions of the ways in which SOC and turbulence may differ (Bof-
fetta et al. 1999) or, conversely, the extent to which SOC may serve as
a model for turbulence (Einaudi and Velli 1999). These more general
questions are our main focus in this paper. Also included is some brief
discussion of the application of these ideas to solar flares and plasma
turbulence in the solar wind, magnetosphere, and elsewhere.

Recent work has shown that magnetically forced 2D MHD turbu-
lence produces power-law PDFs in the size and duration of bursts in
spatially averaged Ohmic energy dissipation 〈ηJ2〉 (Georgoulis et al.
1998; Einaudi and Velli 1999) (G98). Recall that such power-law PDFs
are a necessary but not sufficient condition for SOC (Jensen 1998). In
addition Einaudi and Velli (1999) showed that a cellular automaton
with rules chosen to be consistent with the MHD model also produces
avalanches (and power-law PDFs).

In contrast, Boffetta et al. (1999) and Giuliani et al. (2000) (B99)
attributed the presence of a power-law PDF in the observed waiting
time between solar flares to turbulence. Rather than simply being
due to the scale-free turbulent cascade itself, B99’s suggested mecha-
nism for the production of power law waiting time PDFs was on-off
intermittency. They noted that simple prototype models of on-off in-
termittency and a many-oscillator shell model of turbulence both had
waiting time PDFs which were power-law, while the original BTW
sandpile algorithm did not, having instead an exponential PDF of
waiting times.

Two important criticisms of B99’s model and its interpretation
have recently been made in the context of solar flares. Einaudi and
Velli (1999) pointed out that its attractors were states in which veloc-
ity and magnetic field were aligned, whereas they asserted that force
free (aligned current and magnetic field) states were probably more
appropriate to the corona. Wheatland (2000) showed how a Poisson
process varying on a long time scale (e.g. the quasi-periodic solar
cycle) could convert an exponential waiting time distribution such as
that from the original sandpile model into a power-law one of the type
observed.

These results are however less relevant to the more general plasma
turbulence case. In physical systems where there is no long-term peri-
odicity to motivate the “periodic-Poisson” assumption of Wheatland
(2000) there is no apparent reason to prefer such a mechanism for
observed power laws to an intrinsically scale-free one. In addition,
the work of Wheatland (2000) seems to have been partly been a re-
sponse to B99’s over-general assertion that all SOC models must have
exponential waiting time PDFs. This is not true in general (c.f. the
discussions in Galtier (2001) and Freeman et al. (2000b); and the
models studied by Paczuski et al. (1996)). In consequence, several
interesting questions remain open.
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One is whether the burst size and duration PDFs found in simu-
lations of 2D MHD turbulence (Georgoulis et al. 1998; Einaudi and
Velli 1999) are also observed for either full MHD or reduced MHD
(RMHD), in which “slow” kz dependence is retained, (see below).

The second is whether the power-law waiting time PDFs seen in
both the B99 one-dimensional shell model and the Galtier (2001) 1D
MHD simulation, are also seen in higher dimensions.

Finally there is the question of whether a minimal set of scale-free
“burst” PDFs and power spectra can be identified which suffices to
identify SOC (or turbulence) in a physical system. This last question
is also highly topical in magnetospheric and laboratory plasmas (cf.
Krommes 2000; Freeman et al. 2000b; Kovacs et al. 2001).

In this paper we address these questions by examining time se-
ries of various spatial averages of the squared electric current density,
j2(x, y, z, t), drawn from a RMHD simulation. A threshold method,
used by previous authors to construct burst-size PDFs, is applied to
the time series. Power-laws in size (and arguably also in duration) are
found, extending the forced 2D MHD results of Georgoulis et al. (1998)
and Einaudi and Velli (1999) to forced RMHD. The PDF of wait-
ing times is also not exponential, confirming that higher-dimensional
RMHD is in keeping with the predictions of B99 based on a 1D shell
model. Because the fixed threshold method employed detects fractal-
ity, which was a predicted feature of SOC but is also generic to red
noise, we then consider to what extent the current evidence is unam-
biguous. We conclude by suggesting a direction for future research.

2 Simulation Data and Analysis

The data analysed here is extracted from a (spectral method) reduced
MHD simulation which was used in connection with a model for coro-
nal heating via the coupling of low-frequency Alfvén waves and quasi-
2D turbulence (see Oughton et al. (2001) for further details). Using
standard (nonlinear) RMHD as a base (Montgomery 1982; Strauss
1976; Zank and Matthaeus 1992), the equations were augmented with
terms representing (i) forcing by a single large-scale Alfvénic mode,
(ii) reflection of all propagating modes, and (iii) transmission of out-
ward propagating modes. Physically, one may think of reduced MHD
as parallel planes of (incompressible) 2D MHD coupled together by a
strong mean magnetic field (B0) perpendicular to these planes. Long
wavelength Alfvén waves propagate along the mean field. Thus, the
fluctuating velocity and magnetic fields (respectively v and b) are
functions of all three spatial coordinates, but gradients in the B0 di-
rection are restricted to be weak. Moreover, v and b are strictly
perpendicular to B0.

Here we are primarily interested in various time series characteriz-
ing such systems. Specifically, those for the spatially averaged mean-
square electric current density J2(t) = 〈j2(x, y, z, t)〉/2, and the kz-
dependent x- and y-averaged j2/2, denoted as J2(t, kz), where kz is
the Fourier wavenumber in the direction parallel to the mean field
and angle brackets denote the spatial averaging. Clearly, J2(t) =
∑

kz J
2(t, kz).
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The particular simulation employed has large-scale Reynolds num-
bers of 800, a resolution of 2562 × 4, (Alfvénic) forcing of the k =
(1, 1, 1) Fourier mode, and reflection and transmission rates of 1.0 and
0.3, respectively (Oughton et al. 2001). Note that the reflection and
transmission parameters are to be interpreted as inverse time scales
and not as fractions. The simulation was continued for 500 TB where
TB is defined as the time taken for a forced Alfven wave to cross the
simulation box, which is comparable to the large-scale nonlinear time.
After a few tens of TB, the system settles down into a state which is
more or less statistically steady, reminiscent of the similar behaviour
of the BTW sandpile (see figure 4.3 of Jensen (1998)). The time series
are obtained by calculating the appropriate quantities every 1/10 of
a box crossing time, after this steady state has been reached. This
sampling interval was chosen in order to have a manageable amount
of simulation data. After removing the initial transient, each time
series J2(kz, t) consists of ≈ 4500 points. The kz = 1 plane is special,
since the single forced mode lies in it.

Figure 1a shows the statistically steady portion of the time series
of J2(t, kz = 2), for which the corresponding PDF and cumulative
distribution function (CDF) are shown as Figures 1b and 1c respec-
tively. Inspection of the time series itself (Figure 1a) does not show
extreme values to the same extent as e.g. figure 1a of Georgoulis et al.
(1998), and so in consequence the PDF we find for it (Figure 1b) is
substantially more symmetric. This is illustrated by the dashed line in
Figure 1b which shows a Gaussian with the same mean and standard
deviation as those of the time series.

To measure the distribution of bursts, a fixed threshold method
was employed, as used by Freeman et al. (2000b) (and previous work-
ers, see references therein). The size e of a burst was defined as the
integrated area under the curve between a given upward crossing of a
fixed threshold and the immediately subsequent downward crossing.
The duration T was then the time between upward and downward
crossings, while the waiting time (or inter-burst interval, τ) was that
between a given downward crossing and the next upward crossing. The
resulting PDF for burst size is plotted in Figure 2a, where the solid
line indicates the curve corresponding to use of the median value of the
time series as the threshold, while the eight dotted lines correspond to
those resulting from the 10th, 20th, . . . , 40th, 60th through 90th per-
centiles. PDFs for burst duration and waiting time constructed by the
same method are shown in Figures 2b and 2c. The number of bursts
bursts thus defined will vary weakly with the threshold chosen, in the
case of the median threshold the size distribution D(e) was formed
from 198 events. Despite the symmetrical PDF of J2 shown in Figure
1b, a power-law PDF is obtained for burst sizes in the range 10−3

to 2 units (Figure 2a), which remains stable even as the thresholds
are varied. Outside this region the points deviate from a power law
but their statistical weight is low. The dashed line shown is a power
law fit to those points where the number of samples per bin is greater
than 4. The PDFs of burst durations and waiting times also resemble
power-laws in the range 0.2 to 2, beyond which the number of samples
per bin again falls below 5. Similar plots were obtained for all four kz
planes in the simulation, and on averaging over kz. Figure 2d shows
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the PDF for the waiting times plotted on semilog axes, on which an
exponential distribution would appear as a straight line, confirming
that the waiting times (as defined herein) for this simulation are not

exponentially distributed.

3 Discussion and Conclusions

We find that the PDF of burst size measured in our simulation is
power-law in form, independent of the choice of threshold. The PDFs
of duration and waiting time appear to have the same basic form
(although the evidence is much less clear cut). Intriguingly, we have
observed this property in a time series (Figure 1a) whose PDF (Figure
1b) is not long-tailed but rather symmetric. Power-law burst PDFs
are often seen coupled with long-tailed underlying PDFs, and so it is
sometimes thought that the scaling range of a signal will be controlled
by the mean to peak ratio (governed by σ and µ for Gaussian data, µ
for Poisson data, etc.) In fact, however, burst size is also governed by
the degree of persistence β in the signal, because it is not just affected
by the probability of N points being above a line but is controlled
by the probability of N non-independent, successive points all being
above the line. Malamud and Turcotte (1999) have noted that β can
be varied independently of the PDF of the members of a time series,
so that even a time series with a Gaussian distribution of amplitudes
but a non-zero β would have a non-negligible probability of several
successive values exceeding a threshold. In addition, for such a series,
the scaling properties of the distributions of waiting time and inter-
burst interval are set entirely by β and would be power laws.

This raises an interesting question, however (see also Freeman et al.
(2000b)). Red noise (“1/f”) time series of the type which SOC sys-
tems were originally expected to produce, and whose appearance SOC
was proposed to account for, are fractal. The distribution of isosets1

of such a time series is a power-law (Addison 1997). Hence the burst
duration and waiting time PDFs of red noise when found by a thresh-
old method should be power-laws, regardless of whether the noise is
produced by turbulence or one of the class of SOC-type models which
do produce red noise. The original BTW model can be eliminated as
its waiting time series was later shown to be uncorrelated and thus not
red noise (Jensen 1998; Boffetta et al. 1999; Freeman et al. 2000b). To
determine if a process is SOC in the sense of BTW’s original proposal,
one needs information about spatial correlations as well as temporal
correlations. This is because SOC was proposed as a mechanism link-
ing spatial fractality and temporal persistence (“1/f” noise). This
reinforces the point that, rather than simply temporal information
(burst durations and waiting times) or avalanche distributions (“burst
sizes”), to differentiate between turbulence and SOC it will be nec-
essary to make unambiguous predictions about spatial structure for
each phenomenon, requiring at minimum then availability of spatial
correlation functions. We note that correlation between bursts e.g.
the debated “sympathetic” quality of solar flares (Wheatland et al.
1998) could in principle occur through time or space correlation. This

1Defined as the set of times at which the time series crosses a fixed level.
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line of investigation will be pursued in future papers.
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Figure 1: a) Time series of current density for the reduced MHD simulation.
b) PDF of current density for the time series in a). Overplotted is a Gaussian
distribution with the mean and standard deviation of the time series in Figure
1a. c) CDF of current density for the time series in a).
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Figure 2: a) Burst size PDF obtained by the threshold method for the time
series of Figure 1a). The solid line corresponds to the use of the median of
the time series as the threshold while the dotted lines show the 10th, 20th,
. . . 90th percentiles. The dashed line passes through those points for which a
statistically significant number of points is available. b) Burst duration PDF
obtained by the method of Figure 2a). c) PDF of waiting times between
bursts obtained by the method of Figure 2a). d) The PDF of figure 2c)
plotted on a log-linear scale, illustrating that the PDF cannot be fitted well
by an exponential.
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