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Gravitino production in the warm inflationary scenario
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We estimate the production of gravitinos during and after the end of a period of warm inflation, a
model in which radiation is produced continuously as the field rolls down the potential producing
dissipation. We find that gravitino production is efficient for models in the strong dissipation
regime, with the result that standard nucleosynthesis is disrupted unless the magnitude of the
inflaton potential is very small. Combining this with the constraint from the thermal production of
adiabatic density perturbations we find the dissipation rate must be extraordinarily strong, or that
the potential is very flat.
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I. INTRODUCTION

The warm inflation scenario [1] is an unusual vari-
ant on the inflationary cosmology, in which the inflaton
has significant interactions during the inflationary epoch
leading to a continuous production of radiation. The
backreaction of this production on the inflaton field ap-
pears as a viscosity, slowing down the scalar field evo-
lution and hence aiding slow-roll inflation [2]. In such
a scenario, inflation can proceed with potentials steeper
than those in standard chaotic scenarios.
Issues concerning the implementation of warm infla-

tion within a realistic particle physics context have yet
to be studied to the same depth as the standard infla-
tionary scenario [3,4]. Nevertheless, given that the warm
inflationary scenario is very different phenomenologically
from the usual picture, it makes good sense to examine
the extent to which its phenomenology is consistent with
observations. The two main purposes of inflation are to
provide a large, nearly homogeneous, patch in the Uni-
verse within which structure formation can take place,
and to ensure that unwanted relic particles do not spoil
the successes of the standard hot big bang cosmology.
The first of these has seen a reasonable amount of study
[5], and so we will consider an example of the latter.
In the context of modern particle physics, the most

troublesome relics are the gravitino and the moduli fields
[6]. We will consider the gravitino, whose existence arises
as the supersymmetric partner of the graviton, and whose
mass is expected to be order of 1 TeV. It is a cosmo-
logical threat because if produced in enough abundance
in the early Universe, it is sufficiently long lived to sur-
vive until after nucleosynthesis, at which point its decays
spoil the element abundances [7]. To avoid this, the ratio
of gravitino to photon number densities must be below
about 10−12. The gravitino may be produced both by
interactions within a thermal bath [8] and by various
non-thermal processes [9]. In conventional inflationary
scenarios, the former gives an important upper limit on
the reheat temperature, while the latter may constrain

many possible physical processes.
In this paper we explore the consequences of gravitino

production during and after warm inflation. Warm infla-
tion differs from conventional inflation in that radiation is
constantly produced during inflation, and the radiation
density decreases monotonically throughout the evolu-
tion, with inflation ending when the radiation density
overtakes the inflaton energy density. There is therefore
continuous gravitino production during inflation, and
also no delay in post-inflationary thermal production due
to an intervening (p)reheating period. Consequently the
gravitino bound is much harder to satisfy. We will show
that the abundance of gravitinos produced during infla-
tion is similar to that produced after inflation, and assess
the strength of the constraints this imposes on warm in-
flation model-building.

II. EVOLUTION OF FIELDS DURING WARM

INFLATION

A. Dissipation effects during inflation

We review the dynamics of warm inflation closely fol-
lowing Taylor and Berera [5], where full details can be
found. Warm inflation is distinguished from ordinary in-
flation by the presence of a viscous damping during the
inflationary evolution, so that the inflaton field φ satisfies
the equation

φ̈+ (3H + Γ)φ̇+ V ′ = 0 . (1)

Here H ≡ ȧ/a is the Hubble parameter, a is the cosmo-
logical expansion factor, and Γ is the dissipation coeffi-
cient. V (φ) is the potential of the inflationary field. For
simplicity we assume a spatially-flat universe through-
out. A dot denotes differentiation with respect to time
and a prime with respect to φ.
The energy density of relativistic species, ρrad, follows

from energy conservation as
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ρ̇rad + 4Hρrad = Γφ̇2 . (2)

These equations are completed by the Friedmann equa-
tion

H2 =
8π

3m2
Pl

(ρφ + ρrad) , (3)

where mPl is the Planck mass and the energy density of
the inflaton field is

ρφ = V (φ) +
1

2
φ̇2 . (4)

During an inflationary era the potential field dominates
both the kinetic energy of the inflationary field and the
energy density of the radiation, so the Friedmann equa-
tion can be reduced to

H2 ≃
8π

3m2
Pl

V . (5)

Assuming the slow-roll condition, φ̈ ≪ V ′, the equa-
tion of motion for the inflaton reduces to

φ̇ ≃ −
V ′

3H(1 + r)
, (6)

where

r ≡
Γ

3H
, (7)

is a dimensionless dissipation coefficient, whose value in
general is time dependent. During the inflationary period
the production of radiation will soon settle into a stable
state, where ρ̇rad ≪ Γφ̇2, giving

ρrad ≡
π2

30
g∗T

4 =
3

4
rφ̇2 , (8)

where g∗ is the number of relativistic degrees of freedom.
In the Standard Model of particle physics g∗ = 106.75
for T ≥ 300GeV, while in the minimal supersymmetric
model (MSSM) we shall be assuming here this rises to
g∗ = 228.75 once the temperature is above the mass of
the supersymmetric particles.
Combining Eqs. (3), (6) and (8) we find

ρrad =
1

2

[

(

1 +
2ǫr

(1 + r)2

)1/2

− 1

]

ρφ , (9)

where

ǫ ≡
m2

Pl

16π

(

V ′

V

)2

(10)

is the usual inflationary slow-roll parameter. Eq. (9)
holds for all values of r. In the limit r → 0 dissipation is
switched off, and the radiation field vanishes as

ρrad =
ǫr

2
ρφ . (11)

In this regime, increasing the dissipation factor r in-
creases the decay of the inflaton field into radiation, while
having no effect on the evolution of the inflaton field. For
fixed ǫ the fractional density of radiation is at a maximum
when r = 1 (equivalently Γ = 3H).

B. The strong dissipation regime

Our main focus will be the strong dissipation regime,
where the differences from standard inflation are most
pronounced. In the regime of strong dissipation r ≫ 1
the radiation field is given by [5]

ρrad =
ǫ

2r
ρφ . (12)

The major effect of increasing the dissipation factor is to
heavily dampen the evolution of the inflaton field, slowing
its evolution down the potential and decreasing the decay
into radiation.
The conditions for slow-roll and warm inflation to oc-

cur are

ǫ < 2r , (13)

and for an extended period of inflation we need

|η| ≪ 3r2 , (14)

where

η ≡
m2

Pl

8π

V ′′

V
. (15)

Eqs. (13) and (14) relax the usual constraints on the infla-
tionary potential. Supercooled inflation ends when ǫ ≈ 1,
while warm inflation takes place until

ǫ ≈ 2r , (16)

when the radiation energy density starts to dominate the
energy density of the inflaton field. At this point the
universe makes a smooth transition from the inflation
phase to a radiation-dominated, hot Friedmann model.
To illustrate the evolution of warm inflation we will

consider polynomial potentials of the form

V (φ) = λm4

(

φ

m

)α

, (17)

where we allow α to be a positive real number. It is
important to note that the only fully complete model of
warm inflation, where a period of warm inflation comes
to a natural end with the field finishing in the minimum
of its potential, occurs when α = 2. For other positive
even integers the potential has a suitable minimum at
the origin. However for α > 4 the radiation density falls
compared to the inflaton energy and so warm inflation
does not take hold, as can be seen from Eq. (12) since
ǫ ∝ φ−2 and r ∝ φ−α/2 [5]. The case α = 4 is spe-
cial in that the densities of the two components remain
in fixed proportion; inflation proceeds forever with the
dissipation easing the inflaton asymptotically into the
minimum. Modification to the potential would be re-
quired to end inflation. We will also consider odd and
non-integral values of α (taking the field to have positive
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FIG. 1. The evolution of energy density of the inflaton and
radiation fields as a function of number of e-folds from the end
of warm inflation, for the inflationary potential V = m2φ2/2
(see text for details). The energy density of the inflationary
field (upper curves) and the radiation field (lower curves) are
taken as initially equal, and the vertical scale is arbitrary.

values). Such potentials have no minimum, and indeed
may be ill-defined for negative φ; we include them merely
to illustrate the effects of modifications to the slope of the
inflaton potential. Our range of investigation will cover
1 ≤ α ≤ 4.
For the polynomial potential the slow-roll parameter

ǫ = α2m2
Pl/16πφ

2, and the number of e-folds of expansion
to the end of inflation, N(φ), is [5]

N(φ) ≡ ln
aend
a

≈
α

4− α

ρφ
ρrad

, (18)

where ρφ and ρrad are the energy densities near the start
of warm inflation once stable radiation production has
been established. If warm inflation starts with an initial
stable ratio ρφ/ρrad, it will take N ∼ ρφ/ρrad e-folds
before the radiation and the vacuum energy are equal.
Figure 1 shows the evolution of the energy densities

of the inflaton and radiation fields during an inflationary
era, when α = 2. We numerically solved Eqs. (1), (2) and
(3) as in Ref. [5]. The number of e-folds is N = 100, and
we began the model with ρrad = ρφ, although the evolu-
tion is insensitive to the initial conditions and soon settles
into its stable configuration. The choice of parameters
was made so that the amplitude of thermally-produced
adiabatic perturbations generated during warm inflation
agrees with the amplitude of temperature fluctuations
in the CMB measured by COBE, δH = 2 × 10−5 (see
Section IV.B and Ref. [5] for details), with Γ = 102m,
m = 10−8mPl, and V 1/4 ∼ 10−4mPl.

III. THERMAL PRODUCTION OF GRAVITINOS

Gravitinos are too weakly interacting to be able to
reach thermal equilibrium with a radiation bath unless
the temperature is around the Planck temperature. How-
ever, although interactions are negligible once they form,
they can be created by two-body processes such as

γ + γ → g̃ + ¯̃g . (19)

The single-particle decay rate for gravitinos gives a life-
time of order m3

3/2/m
2
Pl.

A. Thermal production during warm inflation

The number density, n3/2, of gravitinos produced from
the thermal bath is governed by the equation [8]

ṅ3/2 + 3Hn3/2 = 〈σ3/2|v|〉n
2
rad , (20)

where

nrad =
ζ(3)

π2
g∗T

3 ≈ 0.28 g
1/4
∗ ρ

3/4
rad , (21)

is the number density of particles in the thermal bath,
and ζ(3) = 1.202. Provided the typical particle energies
well exceed the gravitino mass, which is always an excel-
lent approximation for us, the effective total cross-section
in a thermal bath for gravitino production, including all
particle channels, has been computed as σtot

3/2 ≈ 250/m2
Pl

[8,10]. For convenience we have defined a mean creation
rate per particle species as σ3/2 ≈ 250/g2∗m

2
Pl, the square

arising as the production is a two-body process.∗ We will
be considering temperatures hot enough that all super-
symmetric species participate in the thermal bath. The
factor v ≈ 1 is the velocity of the produced gravitinos.
The gravitino production is small enough that backre-
action on the radiation density can be neglected, as can
reactions destroying gravitinos by interactions or decays.
After a short period of inflation the gravitino produc-

tion rate becomes stable, ṅ3/2 ≪ 〈σ3/2|v|〉n
2
rad, and the

gravitino number density is given by

n3/2 = rgnrad , (22)

where

rg =
〈σ3/2|v|〉

3H
nrad , (23)

is the dimensionless production rate in units of the Hub-
ble expansion. We define the yield of gravitinos as

∗Our notation differs from that of Ref. [8], who define nrad

to be the number density of a single degree of freedom and
use the total cross-section.
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FIG. 2. The evolution of number density of the radiation
and gravitinos as a function of number of e-folds from the end
of warm inflation, for the inflationary potential V = m2φ2/2.
Number densities are expressed in units of the radiation num-
ber density at the 50th e-fold.

Y3/2 ≡
n3/2

s
, (24)

where the entropy s is equal to 3.6nrad in the high-energy
regime. Hence during warm inflation the yield is simply

Y3/2 =
rg
3.6

. (25)

As long as the stable production hypothesis is valid, the
ultimate yield will only depend on the situation at the
end of warm inflation.
Figure 2 shows the evolution of the number densities

of the radiation and gravitino populations during warm
inflation. The number densities are normalised to the
number density of radiation at the 50th e-fold, and are
typically nrad ∼ 10−12m3

Pl, and n3/2 ∼ 10−20m3
Pl. The

choice of model parameters is the same as for Figure 1.
The gravitino yield is given by Eqs. (21), (23), (25),

(12) and (5)

Y3/2 = 2 g
−7/4
∗

( ǫ

2r

)3/4 V 1/4

mPl
. (26)

For a fixed potential, the yield during warm inflation in-
creases with increasing potential magnitude and slope, as
there is greater dissipation into radiation, while the yield
decreases with increasing dissipation factor as strong dis-
sipation will dampen the decay process.
For polynomial potentials of the form of Eq. (17) the

yield is given by

FIG. 3. The evolution of gravitino yield for α = 2, 3.8 and
4. The thick lines are calculated numerically, while the lighter
lines are from the analytic expression Eq. (27). The warm
inflationary parameters are chosen to produce the observed
amplitude of adiabatic density perturbations (see text).

Y3/2 = 0.4 g
−7/4
∗ λ5/8α3/2 m

mPl

(mPl

Γ

)3/4
(

φ

m

)(5α−12)/8

.

(27)

For this type of potential we see that α = 12/5 is a critical
slope for gravitino production, leading to a constant yield
as a function of time. Expressing Eq. (27) in terms of
the number of e-folds until the end of warm inflation

Y3/2 ∼

[

1 +
(4− α)

2α
N

](5α−12)/4(4−α)

. (28)

For α < 12/5 the yield increases as a function of time,
or e-folds, with a maximum at the end of warm inflation.
For α > 12/5 the yield is a decreasing function of time.
Figure 3 shows the evolution of the yield Y3/2 dur-

ing the warm inflation phase, for polynomial potentials
with α = 2, 3.8 and 4. The solid lines are calculated
numerically, while the lighter lines are from the analytic
expression, Eq. (27). Since the gravitino number den-
sity quickly settles into its stable production state, the
analytic expression accurately describes the evolution.
As the slope is increased to α → 4, the timescale for

inflation is asymptotically stretched out, as discussed in
Section II B. The dependence on e-folds asymptotically
becomes Y3/2 ∼ eN/4 = (a/aend)

−1/4. This weak depen-
dence can be seen in Figure 3.
At the end of warm inflation ǫ = 2r and the yield is

given by
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Y end
3/2 = 2 g

−7/4
∗

V 1/4

mPl
. (29)

Hence at the end of warm inflation the yield only de-
pends on the magnitude of the potential. The end yield
is directly related to the final temperature, Tend, by

Y3/2(Tend) ≃ 1.5 g
−3/2
∗

(

Tend

mPl

)

. (30)

B. Evolution of gravitinos after warm inflation

Gravitinos have a sufficiently long decay time that
they survive beyond nucleosynthesis. Their decays de-
stroy 4He and D nuclei by photodissociation, and if the
gravitino abundance is high enough this will disrupt the
successful predictions of nucleosynthesis. The important
quantity is the ratio of the gravitino to entropy densities.
The entropy is a particularly useful quantity to follow,

as the comoving entropy is conserved not only during
normal expansion but also during epochs where species
fall out of thermal equilibrium and annihilate, changing
the number of particle species in the thermal bath, so
s ∝ 1/a3 always.† The evolution of gravitinos, Eq. (20),
can be rewritten

ṅ3/2 + 3Hn3/2 = sẎ3/2 = 〈σ3/2|v|〉n
2
rad . (31)

The yield produced once radiation domination begins is
readily calculated using the normal radiation-dominated
solution. It is dominated by early time production, as
is well known, and the total yield from the beginning of
radiation domination is

Y3/2 − Y end
3/2 ≃

3g
−11/6
∗

mPl

[

n
1/3
rad(Tend)− n

1/3
rad(T )

]

. (32)

Once T ≪ Tend, the right-hand side of Eq. (32) equals
the yield at the end of warm inflation, given by Eq. (29),
since at the end of warm inflation ρφ ≃ ρrad. We con-
clude therefore that the production of gravitinos during
warm inflation can only lead to at most a factor of two
enhancement over the total production at the end of the
warm inflation era.

IV. CONSTRAINTS ON WARM INFLATION

Having calculated the yield of gravitinos during the
warm inflationary era, and shown that the yield does
not significantly change afterwards, we now use this to

†An exception to this would be if there were particles with
late out-of-equilibrium decays.

constrain the warm inflationary parameters. In standard
inflation, there are essentially two free parameters, the
amplitude of the inflaton potential, V , and its slope, ǫ.
In general these can be constrained by the gravitino yield
and the amplitude of adiabatic perturbations, the lat-
ter being constrained by the observed fluctuations in the
microwave background. In the following section we shall
show that the main constraint from the gravitino produc-
tion is on the magnitude of the inflaton potential, while
the adiabatic density perturbations constrain the dissi-
pation factor Γ. We begin with the constraint from the
gravitino production.

A. The constraint from nucleosynthesis

Avoiding overproduction of D + 3He constrains the
ratio of gravitinos to photons at the end of warm infla-
tion. The details of the constraint depend on the grav-
itino mass [8], but for our purposes we can safely adopt
a conservative limit

Y3/2 ≤ 10−12 . (33)

Combining this with Eq. (29) for the yield at the end of
warm inflation, and Eq. (32), for the subsequent produc-
tion during radiation domination, we find the following
constraint on the magnitude of the inflation potential

V 1/4 ≤ 2× 10−13 g
7/4
∗ mPl. (34)

This can be expressed in terms of the temperature at the
end of the warm inflationary phase, via Eq. (30), giving

Tend ≤ 8× 106g
3/2
∗ GeV . (35)

With g∗ = 228.75 for the MSSM, this gives a constraint
in good agreement with the standard result [8], though
slightly weaker due to our adoption of a conservative con-
straint on Y3/2. This is as expected since warm inflation
has not greatly enhanced the gravitino yield. The main
difference in warm inflation is how this constraint inter-
acts with other constraints on the scenario.

B. The constraint from the amplitude of adiabatic

density perturbations

In addition to the yield we can add the independent
constraint on warm inflation parameters from the ampli-
tude of perturbations, δ2H, produced from thermal fluctu-
ations during the warm inflationary era [5],

δ2H = 0.57g
−1/4
∗

(r

ǫ

)3/4
(

r2V

m4
Pl

)3/4

. (36)

The observational constraint from adiabatic density per-
turbations does not actually constrain the amplitude of
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the potential field alone [5], since the amplitude is ob-
served at a fixed e-fold from the end of warm inflation,
but rather the combination r2V ≡ Γ2m2

Pl/24π. As we
usually assume the amplitude of perturbations is mea-
sured at the 50th e-fold from the end of warm inflation,
some scaling has to be made to match the constraint from
the yield at the end of warm inflation. We may write the
number of e-folds from the end of warm inflation as

N ≃ A
(r

ǫ
− 1

)

, (37)

where A depends on the shape of the potential. For poly-
nomial potentials

A =
2α

(4− α)
. (38)

The amplitude of perturbations then constrains the dis-
sipation factor

Γ = 10−6

(

δ2H
4× 10−10

)2/3

g
1/6
∗

(

1 +
N

50A

)−1/2

mPl .

(39)

As r = Γ/H and H ∼ V 1/2, we can combine Eq. (39)
with the constraint on the gravitino yield, giving a con-
straint on the dimensionless dissipation rate

r ≥ 2× 1018
(

δ2H
4× 10−10

)2/3

g
−7/3
∗

(

1 +
N

50A

)−1/2

.

(40)

This equation is our main result. It shows that if warm
inflation is to simultaneously produce density perturba-
tions of a satisfactory magnitude and avoid overgenerat-
ing gravitinos, then the dimensionless dissipation must
be extremely high. The main reason for this is that high
dissipation increases the magnitude of density perturba-
tions, allowing the inflationary energy scale to be normal-
ized down. With sufficient dissipation, the energy scale
becomes low enough that the gravitino yield is sufficiently
suppressed.
One caveat to Eq. (40) is the factor A, relating the

ratio r/ǫ to the number of e-folds before the end of warm
inflation, when the density perturbations where formed.
For polynomial potentials this is typically of order unity,
but for potentials with very flat slopes, α → 0, the dis-
sipation rate can be arbitrarily small, as the radiation
production is suppressed.

V. CONCLUSIONS

A crucial role of inflation is to ensure that unwanted
relic particles do not survive with abundances capable
of spoiling the standard hot big bang model. We have
studied the production of gravitinos during and after a

warm inflationary era, and combined the constraint this
gives with the requirement that density perturbations of
the correct magnitude are generated.
We have found that although there is continuous grav-

itino production during warm inflation from interactions
in the thermal bath, this does not in itself lead to a
very significant extra yield of gravitinos over and above
that produced at the end of warm inflation. Neverthe-
less, avoiding overproduction of gravitinos is much more
challenging than in conventional inflationary scenarios,
because the radiation density is monotonically decreas-
ing throughout the evolution. Satisfying the gravitino
bound requires that the potential energy at the end of
warm inflation be very small, V 1/4 <

∼ 10−9mPl. In or-
der for density perturbations to have the correct mag-
nitude requires a dissipation factor Γ ≈ 10−6mPl, and
hence a dimensionless dissipation r >

∼ 1012 unless the
slope of the potential is extremely flat. Either way, it is
clear that evading overproduction of gravitinos strongly
constrains the warm inflation scenario, requiring dimen-
sionless numbers many orders of magnitude away from
unity.
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