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ABSTRACT

The solar tachocline, located at the interface between the
latitude-dependent rotation of the convection zone and
the rigid radiative interior, presents high gradients of an-
gular velocity which are of particular interest for the mod-
els of the solar dynamo and angular momentum trans-
port. Furthermore, latitudinal and temporal variations of
the tachocline parameters, if any, are also of particular
interest in order to constrain models. We present a re-
view of some of the theories of the tachocline and their
predictions that may be tested by helioseismology. We
describethe methods for inferring the tachocline parame-
ters from observations and the associated difficulties. A
review of results previously obtained is given and an anal-
ysis of the new 6 years database of LOWL observations
is presented which yields no compelling evidence of vari-
ations or general trend of the tachocline parameters dur-
ing the ascending phase of the current solar cycle (1994-
2000).
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1. INTRODUCTION

The solar tachocline, so called after Spiegel & Zahn
(1992), is defined as the layer at the base of the convec-
tion zone (hereafter, CZ) where important radial shear oc-
curs. It is the transition zone where the angular velocity
changes from its latitude-dependent value in the CZ to its
constant and intermediate value in the radiative interior.
We can emphasize three main reasons why this layer is of
particular interest.

(i)Shear turbulence and/or meridional circulation inside
the tachocline may provide a mechanism for mixing ma-
terial between the CZ and the radiative interior (e.g. Brun
et al., 1999; Schatzman et al., 2000) which is needed to
understand, for instance, the burning of lithium and the
depletion of helium and to reach a better agreement be-
tween solar models and helioseismic observations (e.g.
Richard et al., 1996; Brun et al., 1999).

(ii)The tachocline may be the seat for angular momen-
tum transport processes that could lead to the observed

rigid rotation rate of the radiative interior. Hydrody-
namical transport by unstable shear flow (e.g. Chaboyer
et al., 1995) and transport by internal gravity waves in
the tachocline (Kumar et al., 1999; Kim & MacGregor,
2000) have been studied but they have not been found
efficient enough to lead to an uniform internal rotation
at the present age of the Sun. This probably requires
also the presence of an internal magnetic field (Mestel &
Weiss, 1987; Charbonneau & MacGregor, 1993; Gough
& McIntyre, 1998).

(iii) Finally, the tachocline is the best location for an os-
cillatory solar dynamo which is generaly believed to be
responsible for the solar magnetic cycle for the following
reasons: (1) Its radial and latitudinal differential rotation
has the ability to produce a toroidal field by shearing a
pre-existing poloidal field. (2) Theα-effect, the essen-
tial mechanism for producing poloidal field from toroidal
field, is usually located in the CZ but the tachocline can
also produce a strongα-effect by magnetic buoyancy in-
stability (Ferriz-Mas et al., 1994) and/or by the unstable
shallow-water modes (Dikpati & Gilman, 2000a). (3) Be-
cause the tachocline (or part of it) may also be located in
the slight sub-adiabatic overshoot layer, the toroidal fields
can be stored for an extended period of time, and there-
fore can be amplified and acted on by theα-effect before
they escape to the surface through buoyant rise or be dis-
rupted completely by convective shredding.

We will first (Sect. 2) give some terminology about the
different layers and their properties at the base of the CZ
(also to be defined). Then, in Sect. 3, we present some
models of the tachocline and their predictions that may
be tested by helioseismology using methods presented
in Sect. 4. Previous results obtained are summarized in
Sect 5 and we then use the new LOWL data to investigate
latitudinal and temporal variations of the tachocline pa-
rameters during the ascending phase of the current solar
cycle (Sect. 6).

2. LAYERS AT THE BASE OF THE CONVECTION
ZONE: TERMINOLOGY, DEFINITIONS AND

OBSERVATIONS

As mentioned above, there is, beside the tachocline, an-
other layer defined at the interface between the super-
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Figure 1. Schematic representation of the overshoot
layer between the radiative zone boundaryrrz and the
Schwarzschild boundaryrsd (i.e. where the temperature
gradient equals both its adiabatic and radiative value
∇=∇a=∇r). rcz represents the seismically observed
base of the CZ. Two different models of the convective
(Fc) and radiative (Fr) flux variations are drawn for
comparison. The total fluxFt = Fc + Fr remains con-
stant. The model (1) of Canuto (1997) allows a positive
convective flux in the slightly sub-adiabatic and seismi-
cally observed part of the overshoot in contradiction with
the Schwarzschild criterion while the model (2) of Zahn
(1991) is such thatFc ≤ 0 in all the overshoot layer.

adiabatic CZ and the radiative interior: the overshoot
layer. Different models exist for this layer. The first
particular radius,rsd, corresponds to the Schwarzschild
boundary which defines the beginning of the convectively
unstable zone where the temperature gradient equal its
adiabatic value∇=∇ad. A second particular radius
is where the temperature gradient is taking its radiative
value (∇ = ∇r) and the total flux is equal to the radia-
tive flux (Ft=Fr). This radius,rrz, defines the radiative
zone boundary. The region betweenrsd andrrz is what
we here call the overshoot region (see Fig. 1). The ‘base
of the convection zone’rcz , measured by helioseismol-
ogy, corresponds to the location where the temperature
gradient changes abruptly. If we allow a slightly sub-
adiabatic zone belowrsd then helioseismology cannot
distinguish between the slightly super-adiabatic CZ and
the slightly sub-adiabatic overshoot layer (Christensen-
Dalsgaard et al., 1995; Gilman, 2000) andrrz<rcz<rsd.
Calibrations made by Basu (1997) lead to a value of
rcz = 0.713±0.001R⊙. Helioseismology can also place
an upper limit for the slightly sub-adiabatic overshoot
zone[rcz , rsd]. This upper limit is0.05 pressure scale
heights, about2800Km or ∼ 0.004R⊙ (Basu & Antia,
1997). This is therefore a very thin layer. Another ques-
tion concerning this layer is about the sign of the con-
vective flux inside. If we follow the Schwarzschild crite-
rion, we should haveFc ≤ 0 as in Zahn (1991)’s model
because this layer is (slightly) sub-adiabatic, but Ferriz-
Mas (1996) and Canuto (1997) pointed out that, with a
nonlocal mixing-length treatment of the CZ, this is not
necessarily valid in the overshoot zone and we may well
haveFc > 0 and∇ < ∇ad in spite of the Schwarzschild

criterion. In that case the downward convective energy
transport (Fc < 0) occurs only in the other (lower) part
of the overshoot zone[rrz, rcz], called the overshoot layer
proper (Canuto, 1997; Monteiro et al., 1998). In the same
way, the zone with positive convective flux is sometimes
called CZ proper (e.g. Ferriz-Mas, 1996). These differ-
ences in the overshoot models may have some importance
as it has been shown that flux tubes with equipartition
field strength (∼ 104 G) can be stored in all the overshoot
layer while the field strength of105 gauss required in or-
der to explain the observed active regions at the surface
(e.g. Schüssler et al., 1994), can only be stored where the
convective flux is negative (Ferriz-Mas, 1996).

3. THEORY: SOME MODELS OF THE
TACHOCLINE AND THEIR PREDICTIONS

3.1. Purely hydrodynamic models

The first theory of the tachocline was developed by
Spiegel & Zahn (1992). They mainly address the prob-
lem of the thickness of the tachocline, which we summa-
rized as follows. The differential rotationΩ1(θ) at the
top of the radiative interior induces a latitudinal temper-
ature gradient and therefore a meridional circulation that
would, without any stress acting on it, spread towards the
interior in a thermal time-scale leading to a non rigid rota-
tion rate in the interior and a very thick tachocline for the
present Sun. We therefore need to invoke some stresses
acting in the tachocline in order to prevent its progression
towards the interior. Using a purely (i.e. non-magnetized)
hydrodynamic model where the tachocline is treated as
a boundary layer, Spiegel & Zahn (1992) suggest that a
strong enough anisotropic turbulence could lead to a thin
tachocline. They thus obtained a relation between the
thickness of the tachoclinew and the horizontal turbu-
lent viscosity coefficientνh assumed to be much higher
than its vertical counterpart.

νh = 8.34 106
(

Ω0

N

)2
(rcz
w

)4

cm2 s−1 (1)

Nevertheless there remain two major questions with this
approach. First, the latitudinal rotation profile inside the
tachocline is likely to be linearly stable to 2D distur-
bances according to Rayleigh’s criterion (Charbonneau
et al., 1999b) and so it is probably not the process lead-
ing to the anisotropic turbulence assumed in the model.
A solution to this problem may be found in a recent work
of Dikpati & Gilman (2000a) showing that, if we allow
radial deformations of the layer and use the so-called
shallow water model as a first approximation of the full
3D problem, then the tachocline is found unstable in the
slightly sub-adiabatic overshoot zone even in the purely
hydrodynamic case (Fig. 2). The second difficulty with
this hydrodynamic model is that, even if it leads to a lati-
tudinal independent rotation at the base of the tachocline,
it cannot explain the fact that there is also no significant
radial gradient in the interior.



3

Figure 2. Stability diagram from the shallow water
model (Dikpati & Gilman, 2000a). The variation of
G ≃ 103|∇ − ∇ad| with radius is given by the solid
line for schematic solar model. The stability zones and
the tachocline thickness and location have been estimated
from observations (Charbonneau et al., 1999a,b). The
overshoot layer has arbitrarily been assigned a thick-
ness of0.015R⊙ and it is slightly sub-adiabatic with
|∇ −∇ad| ≤ 10−4.

3.2. Magnetized models

Because it is very likely that the tachocline is magne-
tized, another mechanism that can lead to anisotropic tur-
bulence in the tachocline is magnetic instability. It has
effectively been shown (Gilman & Fox, 1997, 1999; Dik-
pati & Gilman, 1999) that there exists a joint instability
between latitudinal differential rotation and toroidal mag-
netic fields. But two different kind of magnetic fields are
usually invoked in the solar interior, namely primordial
fields and dynamo generated fields. As we shall see, in
both cases theories relate their properties to the shape of
the tachocline.

(i) Dynamo generated magnetic fields. In virtually all
dynamo theories (overshoot layer, interface or Babcok-
Leighton dynamos, see the review of Petrovay (2001)),
the shape and especially the thickness of the tachocline
and the overshoot layer are key issues since they deter-
mine the strength of the magnetic field that can be stored
and the process by which it is transformed. Using an
MHD version of their shallow water model (Dikpati &
Gilman, 2000b) demonstrate that the presence of a mag-
netic field in the tachocline would induce a prolateness of
the tachocline otherwise oblate. This can also be tested
by helioseismology by measuring the central position of
the radial shear at different latitudes. Such measure-
ment of the prolateness would allow us to estimate the
strength of the magnetic field depending on its geome-
try and localization inside the tachocline. The shape of
the tachocline as obtained from this model is shown as a
function of the toroidal field strength on Fig 3.

(ii) Primordial magnetic fields. Independently of any
magnetic field that may be generated in the CZ, Gough &

Figure 3. Shape of the top surface of the tachocline
with a broad nonuniform toroidal magnetic field of dif-
ferent strength. G is the same quantity as in Fig. 2
and h is related to the width of the tachocline byw ∼
0.035R⊙(1 + h) Dikpati & Gilman (2000b).

McIntyre (1998) argue that we must also have a magnetic
field in the radiative interior in order to explain the uni-
form (with no radial shear) rotation rate observed there.
This large scale poloidal magnetic field would also con-
fine the shear in a thin layer as a result of a balance be-
tween upward diffusion of the magnetic field and down-
ward advection by the thermally driven tachocline circu-
lation. They obtain the following relation between the
thickness of the tachocline and the strength of the inter-
nal magnetic field:

|B0| = 2.3 103
(

Ω0

N

)7
(rcz
w

)9

(Gauss). (2)

Such internal field is also required in the magnetic mod-
els of Rudiger & Kitchatinov (1997) and MacGregor &
Charbonneau (1999) where the tachocline is identified
with an MHD boundary layer located in the radiative
interior. Assuming no magnetic coupling at the core-
envelope interface and that advective effects (as modeled
by Spiegel & Zahn (1992)) dominate the viscous effects
to prevent the inward spreading of the layer, MacGregor
& Charbonneau (1999) obtain:

|B0| ∼ 3 10−8

(rc
w

)3

(Gauss). (3)

This work also suggests that the primordial magnetic field
is very likely to be decoupled from the tachocline i.e.
entirely contained within the radiative interior. The in-
teraction between a primordial time-independent mag-
netic field that would extend into the CZ and the time-
dependent dynamo-generated magnetic field had never-
theless been investigated by Boruta (1996) suggesting
that this interaction would lead to an inversion and an
amplification of the primordial field by an amount that
depends again on the thickness of the tachocline. On the
other hand, if the dynamo magnetic field is generated in
the CZ, it has been shown to have only a weak influence
on the dynamics of both the tachocline and the radiative
interior (Hujeirat & Yorke, 1998; Garaud, 1999).
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4. HELIOSEISMOLOGY: TOOLS AND METHODS
FOR INFERRING THE TACHOCLINE

PARAMETERS

One of the observational goals of helioseismology is to
localize precisely the tachocline with respect to the others
described in Sect. 2. In that perspective, we need to define
clearly what we understand by tachocline parameters.

4.1. The tachocline parameters: definition

Following Kosovichev (1996) we parameterize the rota-
tion rate between0.4 and 0.8 solar radius by an error
function of the form:

Ω(r, θ)=Ω0+
Ω1(θ)− Ω0

2

(

1 +erf

(

r − rc(θ)

0.5 w(θ)

))

(4)

whereΩ0 represents the rigid rotation rate in the radia-
tive interior, Ω1(θ) the rotation rate at the top of the
tachocline, andrc(θ), w(θ) the central position and the
width of the tachocline at the colatitudeθ. In order to
better take into account a potential trend in the CZ an-
other parameter(α) is sometimes fitted by adding a term
α(r − 0.7) to Eq. 4 (Antia et al., 1998; Corbard et al.,
1999). An important point to notice is that, with this pa-
rameterization, the widthw(θ) corresponds to a change in
the rotation rate of85% of the jumpΩ1(θ) − Ω0. Other
parameterizations have been used (Antia et al., 1998) but
we can easily compare results using this later definition.

4.2. The inverse problem: principle and difficulties

Solar oscillation modes are identified by three integers:
the spherical harmonics degreel and azimuthal orderm,
and the radial ordern. The frequency splittingδνnlm
induced by the rotationΩ(r, µ) can be calculated by:

δνnlm=

∫

1

0

∫

1

0

Knlm(r, µ) Ω(r, µ)drdµ (5)

where,r is the fractional solar radius,µ = cos(θ) and
Knlm are kernels calculated from a standard solar model.
Inferring the internal rotation rate from observed split-
tings therefore requires inverting this integral equation.
In order to achieve this, two classes of methods, both
linear, are usually used. The first approach is a Least-
Squares (LS) method (e.g. Corbard et al., 1997) by which
we try to find the rotation profile that minimizes the sum
of the square of the differences between observed and
predicted splittings, weighted by the observational errors.
The second approach, called Optimally Localized Aver-
ages (OLA, e.g. Pijpers & Thompson, 1992), consists in
trying to reach locally, at(r0, µ0), the best resolution by
building the appropriate linear combination of observa-
tions< Ω(r0, ν0) >=

∑

cnlm(r0, µ0)δnlm. From Eq. 5
this is equivalent to taking a linear combination of the
kernelsKnlm. The resulting kernel

κ(r0, µ0, r, µ) =
∑

cnlm(r0, µ0)Knlm(r, µ) (6)

is called averaging kernel because it follows from the
previous equations that the quantity< Ω(r0, µ0) > is
an average of the rotation rate in a domain defined by
κ(r0, µ0, r, µ):

< Ω(r0, µ0) >=

∫ 1

0

∫ 1

0

κ(r0, µ0, r, µ)Ω(r, µ)drdµ

(7)

The difficulties arise from the fact that Eq. 5 is an ill-
posed problem with no unique solution. In the global
(LS) methods, we therefore need to introduce some a-
priori knowledge on the rotation profile in order toregu-
larize the solution and avoid strong oscillations. Never-
theless, this Regularized Least Squares (RLS) approach
prevents us from recovering accurately sharp gradients as
those expected in the tachocline because they do not con-
form to the global smoothness a-priori introduced.

For local (OLA) methods, the limitation in resolution
comes from the error propagation. A quantitative mea-
sure of the resolution in the radial direction is obtained
by fitting the averaging kernel by a Gaussian profile cen-
tered atr0 with a standard deviationσr. We then define
the radial resolution by∆r=

√

8σ2
r . The reason for the

choice of this definition will become more clear in the
next section but it turns out that from actual observations
the tachocline is not resolved by linear inversions when
limiting error propagation to a reasonable amount.

Therefore the information about the thickness of a sharp
gradients of the rotation profile is not directly readable
from the solutions obtained by classic inversions. How-
ever three different approaches have been developed in
order to overcome this difficulties.

(i) Forward analysis. The general shape of the rotation
rate is assumed to be known and the tachocline is parame-
terized with few parameters (as theerf function of Eq. 4)
which are adjusted to fit the data by calibration (Basu,
1997) or by minimization using methods such as simu-
lated annealing (Antia et al., 1998) or genetic algorithm
(Charbonneau et al., 1999a).

(ii) Deconvolution. This method uses our knowledge of
the resolution kernel in linear methods in order to reach
a better estimate of the tachocline width. The basic idea
is to approximate Eq. 7 by a convolution equation (Char-
bonneau et al., 1999a; Corbard et al., 1998). Then, if the
tachocline profile after inversion is approximated by an
erf function of widthw, the ‘true width’wc can be ob-
tained by:

wc =
√

w2 −∆2
r (8)

where∆r is the radial resolution at the center of the
tachocline as defined in Sec. 4.2.

(iii) Non linear or adaptive regularization. This approach
has been suggested by Corbard et al. (1998) and fully de-
veloped by Corbard et al. (1999). In brief, we construct
an iterative process which will adjust locally the smooth-
ness term as a function of the gradient amplitude found
at the previous step. This allow us to keep the well con-
strained sharp gradient zones while still regularizing else-
where.
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Table 1. Tachocline width and position as inferred from different authors, data and methods. The upper table gives values
over an average in latitude (the weighting function being(1−µ2)(5µ2−1)) while the lower table is for fits at the equator.
GONG month 4 starts 8/23/95. The end of GONG months 7,10 and 14are respectively 1/13/96, 4/30/96, 9/21/96. LOWL
data have been collected between 2/26/94 and 2/25/96.

Authors rc/R⊙ w/R⊙ Data Method
Kosovichev (1996) 0.692± 0.005 0.09± 0.04 BBSO 86,88-90 FM
Basu (1997) 0.7066± 0.0047 0.0412± 0.0260 BBSO 86,88-90 FM (calibration)

0.7034± 0.0056 0.0490± 0.0245 GONG 4-7 FM (calibration)
0.7048± 0.0039 0.0514± 0.0177 GONG 4-10 FM (calibration)

Charbonneau et al. (1999a)0.705± 0.002 0.053± 0.015 LOWL 94-96 Genetic FM
Weighted average 0.704± 0.002 0.052± 0.010

Charbonneau et al. (1999a)0.689± 0.006 0.01± 0.03 LOWL 94-96 OLA + Deconvolution
0.691± 0.007 0.07± 0.03 LOWL 94-96 RLS + Deconvolution

Corbard et al. (1998) 0.695± 0.005 0.05± 0.03 LOWL 94-96 RLS + Deconvolution
Corbard et al. (1999) 0.691± 0.004 0.01± 0.03 LOWL 94-96 Adaptive Regularization
Antia et al. (1998) 0.6851± 0.0077 0.0230± 0.0407 GONG 4-14 FM (calibration)

0.6843± 0.0112 0.0098± 0.0093 GONG 4-14 FM (simulated annealing)
Weighted average 0.691± 0.003 0.034± 0.014

5. RESULTS FOR THE EQUATORIAL PLANE AND
FOR SPHERICAL AVERAGE

All modes have amplitude near the equator and there-
fore we expect to have more chance to be able to infer
tachocline parameters accurately there. The first results
on the tachocline parameters were obtained (Tab. 1) ei-
ther at the equator or on an average over all latitudes.
The equatorial results leads to an interval[0.674, 0.708]
or, taking into account uncertainties on both position and
with, [0.665, 0.717] for the location of the tachocline. In
the case of the latitudinally averaged results, we obtain
respectively[0.677, 0.730] and[0.671, 0.736]. These first
results show that the equatorial tachocline is centered sig-
nificantly (∼ 0.02R⊙) below the base of the CZ and
that it is very likely that all the strong radial gradient
of angular velocity is located belowrcz in the equatorial
plane. On the other hand, the latitudinally averaged re-
sults suggest that these characteristics are not maintained
at all latitudes leading, on average, to a thicker tachocline
centered only around0.01R⊙ below rcz. Therefore, it
seems that, in a latitude-average, the upper third of the
tachocline is located in the nearly adiabatically strati-
fied zone abovercz . Nevertheless this results must be
taken with caution because the decreasing radial reso-
lution with latitude tends naturally to show a thicker
tachocline at high latitudes thereby influencing the aver-
age thickness and position. The parameters obtained this
way should therefore be regarded as upper limits for the
tachocline properties.

The latitude-average width is however probably the best
estimate to use in the formulae obtained from the various
theories of Sect. 3 which assume also a spherical sym-
metry. In the hydrodynamic theory, Eq. 1 with a with of
0.05R⊙ leads to an horizontal turbulent viscosity coeffi-
cient of about3 106cm2 s−1, several order of magnitude
higher than the microscopic value. In the MHD theories
the same value of the width leads to a primordial mag-
netic field strength of|B0| ∼ 10−4Gauss for both Eq. 2
and 3. This suggests that even a weak magnetic field is

enough to keep the radiative interior rotating rigidly and
to confine the radial shear to a thin layer compatible with
observations. By analyzing the even splitting coefficients
from GONG observations (see Sect. 6.1 below), Basu
(1997) set an upper limit of0.3MG for a field located
at the base of the CZ. From Eq. 2 this would correspond
to a width of0.0045R⊙ which cannot be excluded from
observations. By shearing a poloidal field of10−4Gauss
the theory of MacGregor & Charbonneau (1999) predicts
the generation of a toroidal field of∼ 0.1MG which is
also compatible with the0.3MG limit.

6. VARIATIONS WITH LATITUDE? WITH TIME?

Theories predict variation with latitude of the shape of
the tachocline. We have seen for example that, in the
shallow-water model, the presence of a magnetic field
would induce a prolate tachocline otherwise oblate. Both
the magnetic model of Rudiger & Kitchatinov (1997) and
the 2D hydrodynamic model of Spiegel & Zahn (1992)
predict a thicker tachocline at the pole than at the equator
(see also Elliott, 1997). In the model of Gough & McIn-
tyre (1998) the tachocline is thicker where the horizontal
component of the magnetic field in the radiative interior
is small. The poles should be therefore thicker but that
may also be true for other latitudes. This means that the
shape of the tachocline could also be a diagnostic for the
geometry of the magnetic field. Some attempts have been
made to infer latitudinal variations in the tachocline pro-
file from observations (Antia et al., 1998; Charbonneau
et al., 1999a), but no compelling evidence has been found
yet. Even if, as shown in the previous section, the re-
sults tend to argue in favor of a prolate tachocline thicker
at high latitudes than at the pole, this may very well be
due to the limits in resolution associated with the datasets
used.

Time variations are also expected mainly because of the
changes of the magnetic field strength and geometry dur-
ing the solar cycle. Some evolution of the large scale
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Figure 4. Distance in frequency between neighboringℓ’s
at constantn as a function ofν/L. The dashed lines show
the frequencies corresponding to the first three sidelobes.
The frequencies used here are an average over six inde-
pendent data sets.

circulation inside the layer or the action of internal grav-
ity waves may also induce temporal changes or oscilla-
tions in the tachocline parameters. Small amplitude os-
cillations, with a period of 1.3 year, have recently been
found in the rotation profile close to the boundaries of the
tachocline (Howe et al., 2000). These results are based
on both GONG and MDI data but have not been con-
firmed by independent analysis (Antia & Basu, 2000). If
these oscillations are real, the 1.3 year period remains un-
explained (see Gough, 2000). Because of the observed
magnetic cycle, we rather expect the tachocline variations
to be on the time scale of the solar cycle (11 years). A
first attempt at detecting long term temporal variations in
the tachocline have been made by Basu & Schou (2000)
using 11 sets of MDI observations covering 72 days each
between July 1996 and April 1998. They found no clear
changes in the width or position of the tachocline but gave
some hints that the position may move slightly outwards
with increased activity. In the following we use the obser-
vations collected by LOWL instrument during the 6 years
of the ascending phase of the solar cycle (1994-2000) in
order to investigate the possible cycle related changes in
the tachocline. But lets first introduce this new dataset.

6.1. Six years of LOWL observations: a new dataset

The LOWL instrument (Tomczyk et al., 1995), based on a
Potassium magneto-optical filter, has been collecting re-
solved Doppler observations for more than six years. The
spectra were processed using the LOWL pipeline, which
has been recently improved (Jiménez-Reyes, 2001). An-
nual time series for degrees fromℓ = 0 up to 99 have
been created by using spherical harmonic masks and a
Fast Fourier Transform has been applied to each one of
the time series. The average duty cycle over one year of
observations was around 20%.

A detailed description of the fitting method can be found
in Jiménez-Reyes et al. (2001). In brief, we have used
the general expression of the likelihood function, assum-
ing that the statistics of the real and imaginary parts of
the Fourier transform follows a multi-normal distribution,
described by a covariance matrix (Schou, 1992; Appour-
chaux et al., 1998). This model is required due to the fact

Figure 5. Average ofa1 over six years. The solid line de-
notes the best fit of a Gaussian profile plus a background
given by a straight line.

that the spherical harmonics are not orthogonal over the
observed hemisphere. This introduces a natural leakage
between modes with differentℓ andm.

The observed splitting betweenm-components is given
in terms ofa-coefficients by:

νnℓm = νnℓ +

ncoef
∑

j=1

aj(n, ℓ)P
ℓ
j (m) (9)

where P ℓ
j (m) are orthogonal polynomials normalized

such thatP ℓ
j (ℓ) = ℓ (Schou et al., 1994, App. A). The

sum over the odda-coefficients gives the rotational split-
ting δnlm (Eq. 5), while the even terms are mainly due to
magnetic fields and second order effects of the rotation.
An analysis of the central frequencyνnl and the even
a-coefficients has been carried out using these data by
(Jiménez-Reyes et al., 2001). These parameters present
significant variations very well correlated with the solar
cycle.

One of the main source of systematic errors in the fit-
ting procedure is the leakage, which affects mainly the
a-coefficients estimates. It is particular important when
the distance in frequency between neighboringℓ’s at con-
stantn gets smaller. Following the asymptotic expres-
sion given by e.g. Deubner & Gough (1984) for the
frequencies at intermediate and high degrees, we obtain:
( δν
δℓ
)n ≃ ν

2ℓ
. Therefore, the distance between neighbor-

ing ℓ’s is proportional toν/ℓ which, in turn, is related to
the inner turning point radiusrt through the local sound
speedc(rt) by: 2πrt = c(rt)(L/ν). This property is
illustrated on Fig. 4. Moreover, in the case of observa-
tions collected from just one site (as LOWL), sidelobes at
11.57µHz from the main peak will appear in the Fourier
Transform due to the modulation of one day introduced
in the signal. The leakage between modes will therefore
occur at lower turning point. Using Fig. 4, we can pre-
dict where to expect complications in the fitting. The
dashed lines denote the position in frequency of the first
three sidelobes. Whenν/L ≈ 31µHz the first sidelobe
from ℓ± 1 will cross the position in frequency of the tar-
get mode with degreeℓ. The amplitude of the second
and third sidelobes are very small will not be considered.
From the equation above and a standard sound speed pro-
file, we can deduce thatν/L ≈ 31µHz corresponds to
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Figure 6. Inferred tachocline parameters as a function
of time from LOWL observations. The full and dashed
lines correspond respectively to fit at the equator and at
60◦. For the width (upper left), the lower dashed line is
obtained after deconvolution using Eq. 8. The scale on
the right of the lower right panel corresponds to the fit at
60◦ (dashed line).

rt = 0.9R⊙ which is effectively the depth where the
previous analysis of LOWL data showed an artificial in-
crease of the solar rotation (e.g. Corbard et al., 1997;
Chaplin et al., 1999). Nevertheless, two different peaks
very close in frequency can be overlapping or not depend-
ing on their linewidthΓ. Therefore, thea-coefficients
should be plotted against[(δν/δℓ)n−11.57]Γ−1 (Fig. 5).
An important feature orbump appear centered approx-
imately at zero. Its amplitude is maximum fora1 (∼
2nHz). The same analysis was carried out year by year,
showing that this feature is found similar for all time se-
ries. Thus, we decided to remove this systematic error by
fitting the bump with a Gaussian profile in the average
over six years and by subtracting afterwards this profile
from every yearly fit. The evena-coefficients do not show
similar bumps and have therefore not been changed.

6.2. Results and Discussion

The splitting coefficients obtained for each year have
been inverted using a 2D RLS inversion code (Corbard
et al., 1997). The rotation profile has then been fitted at
the equator and60◦ by anerf function as given by Eq. 4.
The averaging kernels at the center of the tachocline have
been fitted by a gaussian in order to estimate the radial
resolution. The results are shown in Fig. 6. The radial
resolution obtained is about0.12R⊙ at 60◦ and0.10R⊙

at the equator. The angular resolution achieved is related
to the number ofa-coefficients in Eq. 9. Our analysis
includes up to 9 coefficients leading to a maximum an-
gular resolution of about20◦ at the equator. Because the
radial shear doesn’t exist at about30◦ and because the
angular resolution decrease at high latitudes, we limit our
analysis to two latitudes: the equator and60◦. There-

Figure 7. Difference between the central position infered
at60◦ and at the equator, as a function of time. The upper
plot corresponds to the results of Fig. 6 while the lower
plot corresponds to inversion using stronger regulariza-
tion.

fore, in the following, prolateness refers to the difference
between the central position of the layer at these two lat-
itudes.

Because the inferred width at the equator is always lower
than the resolution we cannot use our simple model
for deconvolving. This indicates that the width of the
tachocline at the equator is probably lower than the local
spacing of the grid used for the inversion i.e.0.02R⊙.
The same happens at60◦ for 1995, 1998 and 1999.
There is therefore no strong evidence of a systematically
thicker tachocline at60◦. Moreover the errors reported
on the plot are formal errors as obtained from the fits
but Monte Carlo simulations have been carried out which
suggest that the uncertainties on the inferred widths af-
ter the whole inversion process are between±0.02 and
±0.03R⊙.

The center of the tachocline is always found deeper at
the equator than at60◦. The variation of this prolateness
with time is shown in Fig. 7. The maximum of prolate-
ness found is about0.02R⊙ and no prolateness is found
the first and last years. These differences and their fluctu-
ations are nevertheless very small and are also very sen-
sitive to the inversion parameters chosen and especially
the amount of regularization used. The lower panel of
Fig. 7 illustrates this point by showing that, with a more
regularized inversion, the maximum prolateness is about
0.03R⊙ and a minimum is no longer found for 1994.

Generally speaking, we do not find from this analysis ev-
idence of any general trend or significant oscillation in
the tachocline parameters during the ascending phase of
the actual solar cycle. In particular we do not find an out-
ward trend for the central position as suggested by Basu
& Schou (2000). Nevertheless, a prolateness of the layer
is observed every year which allow us to, at least, exclude
an oblate tachocline. The amount of prolateness found
between the equator and60◦ is however of the same or-
der of magnitude than the uncertainties on the width of
the layer. We can therefore only set an upper limit for
the prolateness which is around0.03R⊙. This is in good
agreement with previous estimates of Antia et al. (1998)
(0.004<∆rc/R⊙<0.023) and Charbonneau et al. (1999a)
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(∆rc ≃ 0.023R⊙). Using the shallow-water model and
shape curves as shown in Fig. 3, this would correspond
to a toroidal magnetic field strength of about0.1MG if
it is located in the overshoot layer or about0.6MG if it
is located in the radiative interior. If the toroidal field is
concentrated in bands migrating towards the equator dur-
ing the ascending phase of the cycle, one would expect,
from the shallow water model, a decreasing prolateness
for the period of LOWL observations. This general trend
cannot be excluded but is not observed from our prelimi-
nary analysis of LOWL data.
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