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ABSTRACT

We examine the three–dimensional clustering of C IV absorption–line systems, using

an extensive catalog of QSO heavy–element absorbers drawn from the literature. We

measure clustering by a volume–weighted integral of the correlation function called

the reduced second–moment measure, and include information from both along and

across QSO lines of sight, thus enabling a full determination of the three–dimensional

clustering of absorbers, as well as a comparison of line– and cross–line–of–sight clustering

properties. Here we present the three–dimensional reduced second–moment estimator

for a three–dimensional point process probed by one–dimensional lines of sight, and

apply our algorithm to a sample of 345 C IV absorbers with median redshift 〈z〉 = 2.2,

drawn from the spectra of 276 QSOs. We confirm the existence of significant clustering

on comoving scales up to 100 h−1 Mpc (q0 = 0.5), and find that the additional cross–

line–of–sight information strengthens the evidence for clustering on scales from 100

h−1 Mpc to 150 h−1 Mpc. There is no evidence of absorber clustering along or across

lines of sight for scales from 150 h−1 Mpc to 300 h−1 Mpc. We show that with a
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300–times larger catalog, such as that to be compiled by the Sloan Digital Sky Survey

(100,000 QSOs), use of the full three–dimensional estimator and cross–line–of–sight

information will substantially increase clustering sensitivity. We find that standard

errors are reduced by a factor 2 to 20 on scales of 30 to 200 h−1 Mpc, in addition to the

factor of
√

300 reduction from the larger sample size, effectively increasing the sample

size by an extra factor of 4 to 400 at large distances.

Subject headings: cosmology:observations — intergalactic medium — large–scale struc-

ture of universe — methods:statistical — quasars:absorption lines

1. Introduction

In a previous series of investigations (Vanden Berk et al. 1996; Quashnock, Vanden Berk, &

York 1996; Quashnock & Vanden Berk 1998), the clustering properties of C IV and Mg II absorbers

have been investigated, using an extensive catalog of heavy–element absorption–line systems drawn

from the literature.2 These authors used a one–dimensional correlation analysis — one confined to

pairs of absorbers along the same QSO line of sight — and found evidence for strong and evolving

clustering on small scales (1–16 h−1 Mpc), as well as for superclustering on scales as large as 50–

100 h−1 Mpc. Together, these investigations suggest that these strong absorbers, with median rest

equivalent width 〈W 〉 = 0.4 Å for C IV (Quashnock & Vanden Berk 1998), are biased tracers of

the higher density regions of space, and that agglomerations of absorbers along a line of sight are

indicators of clusters and superclusters.

Recently, Quashnock & Stein (1999) used a new measure of clustering, called the reduced

second moment measure or K(r) (Ripley 1988; Baddeley 1998), which directly measures the mean

overdensity of absorbers on scales ∼< r. While closely related to other second–order measures of

clustering, such as the correlation function or the power spectrum, the reduced second moment

measure nevertheless has a number of advantageous statistical properties, and has recently been

studied by astrophysicists (Mart́ınez et al. 1998; Quashnock & Stein 1999; Stein, Quashnock, &

Loh 2000). Quashnock & Stein (1999) found significant evidence for clustering of C IV absorbers on

scales of 20–100 h−1 Mpc, with marginal evidence on 100–200 h−1 Mpc scales, again suggesting that

the absorbers show superclustering much like what is seen locally in the distribution of galaxies.

However, their analysis also was confined to pairs of absorbers along the same line of sight,

and hence did not include cross–line–of–sight information valuable for a full determination of the

three–dimensional clustering properties of absorbers, which we are ultimately interested in finding.

Indeed, Richards et al. (1999) have claimed that there is evidence of some significant contamination

2Contact D. E. Vanden Berk (danvb@fnal.gov) for the latest version of the catalog; see York et al. (1991) for an

earlier version.
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of true intervening systems along the line of sight by absorbers that are actually physically associ-

ated with the QSO, and that such contamination may extend to relative velocities as great as 75000

km s−1. This means that such a contamination could be present as well in the superclustering signal

found by Quashnock & Stein (1999). In addition, on smaller scales of a few megaparsecs, Crotts,

Burles, & Tytler (1997) have claimed that the clustering of C IV systems across adjacent lines of

sight is significantly weaker than along a line of sight and have questioned whether the correlations

are due to velocity dispersion in associated systems rather than intrinsic spatial clustering. The

number of adjacent lines analyzed by Crotts, Burles, & Tytler (1997) was small, however.

It is thus essential to study correlations both along and across QSO lines of sight, to enable a

complete determination of the three–dimensional clustering of absorbers, as well as a comparison of

line– and cross–line–of–sight clustering properties (and ultimately statistically discriminate between

intrinsic and intervening absorbers). What is required is a method that measures spatial clustering

of absorbers — which are nonetheless confined to QSO lines of sight — and can contrast clustering

along and across lines of sight.

Here we present the three–dimensional estimator for the reduced second moment measure of a

three–dimensional point process probed by one–dimensional lines of sight. We apply our algorithm

to a sample of 345 C IV absorbers with median redshift 〈z〉 = 2.2, drawn from the spectra of

276 QSOs in the aforementioned catalog of Vanden Berk et al., with the goal of determining the

clustering of absorbers on very large scales and seeing if the signal found by Quashnock & Stein

(1999) remains when including cross–line–of–sight information, or, more compellingly, using only

cross–line–of–sight information.

The outline of the paper is as follows: In §2 we define the three–dimensional reduced second

moment measure, compare it to its one–dimensional analog, and outline our method of estimation.

In §3 we apply our methodology to the above sample and present our results. In §4 we interpret the

results and discuss how the full three–dimensional estimator and cross–line–of–sight information

will improve our ability to measure clustering with the absorber sample from the Sloan Digital Sky

Survey (100,000 QSOs). Finally, we conclude in §5 and present the details of the three–dimensional

reduced second moment estimator in the Appendix.

2. The Reduced Second Moment Measure

Here we assume that the clustering of absorbers is both statistically homogeneous and sta-

tionary (does not depend on cosmic epoch or redshift z) when examined in comoving coordinates.

The latter assumption is likely not to be strictly true, since growth of the correlation function with

decreasing redshift has been detected, at least on smaller scales of 1–16 h−1 Mpc(Quashnock &

Vanden Berk 1998). Nevertheless, our results here can be thought of as averages for the absorber

sample as a whole, which has a characteristic redshift given by the median 〈z〉 = 2.2. It is possible

to extend our treatment and examine the evolution of the clustering with redshift (see §4 below
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regarding the Sloan Digital Sky Survey), but we have not done so here, largely because of the

limited size of our sample. We follow the usual convention and take the Hubble constant, H0, to

be 100 h km s−1 Mpc−1 and take q0 = 0.5 and Λ = 0.

2.1. Definitions

We treat the distribution of absorbers as a point process in three–dimensional space rather than

as a one–dimensional process on the lines of sight, and use the reduced second moment to describe

the three–dimensional clustering. Otherwise, we closely follow the treatment given in Quashnock

& Stein (1999) — where one–dimensional clustering is described — and use the same symbol K

for the three–dimensional reduced second moment.

Let λ be the mean number of absorbers per unit comoving volume. The absorbers have some

physical size, perhaps of order 100 kpc or so (Churchill, Steidel, & Vogt 1996), so that there is a

finite probability of intersection between an absorber and the QSO lines of sight. For simplicity, we

assume the absorbers are balls of identical radius d. Our treatment is accurate on scales of a few

Mpc and greater, which are much larger than the physical size of the absorbers. The clustering we

seek to measure is that of the centers of the absorbers.

Neither our methods nor results depend on specifying d (see Appendix). Since absorbers do

vary in size, mass and column density, and their clustering likely depends on these quantities (Cris-

tiani et al. 1997; D’Odorico et al. 1998), our results cannot be directly interpreted as a quantitative

measure of the clustering of mass. Nevertheless, we expect our results to be qualitatively correct

to the extent that if our estimates of K show evidence of clustering on some spatial scale, matter

should also show clustering on this same scale, especially if the latter is quite large. Furthermore,

our results are neither more nor less dependent on the assumption of equal absorber size as those

in the one–dimensional analyses presented in Quashnock & Vanden Berk (1998) or Quashnock &

Stein (1999); rather, it is just harder to ignore the fact that absorbers must have a finite cross

section and volume when doing a three–dimensional analysis based on intersections of absorbers

with lines of sight.

The reduced second moment measure, K(r), is the conditional expectation, or average — given

that there is an absorber center at x — of the number of absorbers (other than the one at x itself),

N(x, r), whose centers are within a comoving distance r of x, normalized by λ:

K(r) =
1

λ
E [N(x, r) | absorber at x] . (1)

Because of our assumption of homogeneity, the expected number of absorbers in equation (1) does

not depend on x. With q0 = 0.5 and Λ = 0, the comoving distance r between two absorbers at

redshifts z1 and z2 is r = 2c/H0 ×
∣

∣1/
√

1 + z1 − 1/
√

1 + z2

∣

∣.

In terms of the two–point correlation function ξ(r) (Peebles 1980, 1993), the reduced second
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moment measure is given by

K(r) = 4π

∫ r

0
u2 du [1 + ξ(u)] . (2)

If no correlations are present, then K(r) = 4
3πr3. Simply put, in this case the number of surrounding

absorber centers within distance r of x would not depend on the fact that there is an absorber center

at x, and would simply be equal to 4
3πr3λ. The quantity K(r)/(4

3πr3) ≡ 1+ρ(r) is then a measure

of the relative mean density of absorbers around other absorbers, averaged over scales less than

r. Thus the reduced second moment measure is essentially a volume–weighted integral of the

correlation function, whereas in the one–dimensional treatment of Quashnock & Stein (1999) it

is a distance–weighted integral. Even if one does not use across–line–of–sight information, it is

arguably more natural to study the three-dimensional reduced second moment measure.

The relative mean over–density, ρ(r), can be written in terms of the power spectrum, P (k),

the Fourier transform of the correlation function ξ(r), or equivalently, in terms of the dimensionless

power per logarithmic wavenumber, ∆2(k) ≡ k3P (k)/(2π2):

ρ(r) =

∫ ∞

0

dk

k
∆2(k)W (kr) , (3)

where W (kr) ≡ 3 (sin(kr) − kr cos(kr)) /(kr)3 is the window function for a top hat (hard sphere).

Thus the reduced second moment measure, K(r), is closely related to other second–order

measures such as the correlation function or the power spectrum, and it directly measures the

mean over–density of absorbers on scales less than r. However, it has a number of distinct and

desirable statistical properties which have been presented and discussed elsewhere (Quashnock &

Stein 1999; Stein, Quashnock, & Loh 2000).

2.2. Estimating K(r)

Here we outline our method of estimating K, taking into account all absorber pairs, deferring

the complete derivation of the estimators to the Appendix. We construct two estimators for K(r),

the first, K̂‖(r) (eq. [A7]), using only absorber pairs on the same line of sight, and the second,

K̂⊥(r) (eq. [A13]), using only absorber pairs from different QSO lines of sight.3 Both of these

are estimators for the same reduced second moment measure K(r) defined in equation (1); to the

extent that these estimators agree, they provide evidence that any clustering found is not due to

absorbers associated with the QSOs (see §1). Furthermore, we can combine the along– and across–

line–of–sight information to obtain an overall estimator K̂(r) (eq. [A14]), which should be more

accurate than either K̂‖(r) or K̂⊥(r), since we use all of the available information.

3Since there are no lines of sight in the sample that are within r0 = 0.5 h
−1 Mpc of each other, and since K(r)

is a measure of integrated correlation, it is not possible to compute K̂⊥(r0) directly, using only across–line–of–sight

information. However, we can sensibly consider K̂⊥(r)− K̂⊥(r0) for r greater than the minimum distance r0 between

lines of sight (see Appendix).
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In order to estimate K(r) defined in equation (1), one needs to estimate the average number

of neighbors within a distance r of a typical absorber. To understand the problems associated with

estimating this quantity, it is helpful to consider the simpler setting of observing a point process in

a single contiguous region of space. One possible way to estimate K(r) for a point process observed

in a window (or sample region) A with volume a is, for each point in A, count how many other

points in A are within r of it, sum these counts and then divide by an appropriate quantity that

cancels out the effect of the overall intensity of the process. Ripley (1988) calls such an estimator

the “naive” estimator. The problem with this estimator is that it tends to underestimate K(r)

because for a point within distance r of a boundary of A, one may not see all of the points of the

process that are within r of it (see Figure 1).

There are a number of methods of correcting for this “edge effect”(Ripley 1988; Baddeley 1998;

Stein 1993). In this work, we use the isotropic correction (Ripley 1988), which is computationally

well–suited to the setting of a process observed along lines of sight. To describe this correction,

consider the two–dimensional setting pictured in Figure 1. For a point at x ∈ A, if another point

y ∈ A is within distance r of x, then instead of giving this event a weight of 1 as in the naive

estimator, it is given weight w(x, |x−y|) equal to the reciprocal of the fraction α/2π of the circle of

radius |x− y| that is contained within A (see Figure 1). As with all of the various edge–correction

methods, we then have

E





∑

x 6=y

1{|x − y| ≤ r}w(x, |x − y|)



 = λ2aK(r) , (4)

where 1{.} is the indicator function, which is unity if the condition in brackets is true and zero

otherwise. To estimate K(r), we divide this sum by some estimate of λ2a. Denoting by N the total

number of points observed in A, we will use N(N − 1)/a as our estimator of λ2a.

Even recognizing that absorbers have a finite volume, we get to observe absorbers in almost

none of the ball of radius r around any absorber, when estimating the three–dimensional K function.

Thus, whereas with observations in a single contiguous region, w(x, |x − y|) often equals 1 (i.e.,

when x is not within |x− y| of the boundary of A), for an absorber catalog observed along lines of

sight, w(x, |x−y|) will always be much bigger than 1. The exact form of the weight function is given

in the Appendix. As one should expect, the weight is inversely proportional to the cross section

of the absorbers, or equivalently, to d2. Fortunately, our estimator for λ2 will also be inversely

proportional to d2, so the factor of d2 cancels when estimating K(r).

Quashnock & Stein (1999) used what is known as the rigid–motion estimator to correct for

edge effects when estimating the one–dimensional reduced second moment function. To apply the

rigid–motion method to an estimate that uses across–line–of–sight information, for every observed

distance between pairs of absorbers less than the maximum distance at which we wish to estimate

K, we would have to apply a three–dimensional rigid motion to the lines of sight, calculate the

amount of overlap between the old and new set of lines, and then average this amount over all

possible directions. It is not clear how one could do this accurately in practice. Since we have
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no evidence regarding which estimator is statistically superior in the present setting, we use the

computationally much simpler isotropic estimator.

3. Results

We have used equation (A7) and equation (A14) to estimate the reduced second moment

measure, K(r), for 276 QSO lines of sight, obtained from the Vanden Berk et al. catalog. A total

of 345 C IV absorbers have been selected from this heterogeneous catalog, using selection criteria

(Quashnock, Vanden Berk, & York 1996; Quashnock & Vanden Berk 1998) designed to obtain as

homogeneous a data set as possible. We refer the reader to these papers for a detailed description

of the selection criteria.

Figure 2 shows both K̂‖(r) (dashed line) and K̂(r) (solid line), divided by their Poisson expec-

tation value, 4
3πr3, for the entire C IV absorber catalog. These resultant quantities have expectation

value of very nearly unity if there is no clustering of absorbers (see the Appendix). Figure 2 shows

that the two estimates agree very well (within their estimated errors, see below) over all distances

r from 5 to 300 h−1 Mpc, with K̂‖(r) just slightly larger than K̂(r) between 30 and 140 h−1 Mpc.

Note that, along the same line of sight, the number of absorber pairs separated by very large

distances is small, because of the finite comoving length of the lines of sight (the median length is

350 h−1 Mpc [Quashnock & Stein 1999]); thus, in Figure 2, for distances r of 170 h−1 Mpc and

greater, K̂‖(r) is noticeably less smooth than K̂(r). Examination of the numbers of absorber pairs

along and across lines of sight indicates that it is at such distances that the across line of sight

information dominates the total information available. In Table 1, we show the number of absorber

pairs in the data set, for pairs along and across lines of sight, as a function of pair separation r,

in 10 h−1 Mpc bins. We also show the cumulative number of pairs for separations < r. For pair

separations r > 170 h−1 Mpc, there are more additional absorber pairs across different lines of sight

than along the same line of sight, whereas for pair separations r < 100 h−1 Mpc, the opposite is

true. These two numbers delineate the regimes where, in the Vanden Berk et al. catalog, clustering

information arises primarily from pairs across and along lines of sight, respectively. In particular,

Table 1 shows that the sample is too sparse to significantly compare clustering along and across

lines of sight on scales of less than 100 h−1 Mpc.

If the centers of absorbers form a homogeneous Poisson process in three dimensions, i.e., if they

are unclustered, then their intersections with the lines of sight form independent one–dimensional

Poisson processes, provided their size d is sufficiently small compared to the scales of interest (see

Appendix). Thus it is straightforward to simulate the distribution of K̂‖(r) and K̂(r) under the

assumption that the C IV absorbers are unclustered.

In Figure 3, we show the 95% region of variation about the expectation value of unity of,

respectively, K̂‖(r) (dashed line) and K̂(r) (solid line), divided by their Poisson expectation value,
4
3πr3, for 10,000 simulated data sets of unclustered absorbers with the same arrangement of lines
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and average number of absorbers as the Vanden Berk et al. catalog. Their averages (dotted lines)

are very near the true value of unity, indicating that both estimators are very nearly unbiased in

this case. We find that the two estimators have essentially the same region of variation on scales up

to ∼ 150 h−1 Mpc; beyond that, the range is smaller for K̂(r), reflecting the additional information

contributed by pairs of absorbers across different lines of sight.

To properly interpret the results in Figure 2, one needs some measure of the uncertanties in the

estimates. Quashnock & Stein (1999) obtained approximate confidence intervals by bootstrapping,

or resampling, lines of sight. Such a procedure makes no use of the relative locations of the lines

of sight and is nonsensical when applied to an estimator using across–line–of–sight information. A

bootstrapping procedure based on resampling regions of the sky would be more appropriate in the

present setting, but the problems of handling edge effects and the uneven spatial distribution of

lines of sight complicate matters, so it is unclear how well such a procedure would work.

To provide a rough idea as to the uncertainty of our estimators of K(r), we use a crude but

simple approach. We divide the sky into eight regions, each containing nearly the same total length

of lines of sight. We then compute the sample standard deviation of the eight estimators of K(r)

in the eight regions, assume that the standard deviation σ for the estimator based on all of the

data will be smaller by a factor of
√

8 and then use the overall estimate plus or minus 2σ as our

confidence interval.

4. Discussion

It is clear that Figure 2 shows strong evidence of clustering on scales up to 100 h−1 Mpc

(q0 = 0.5), and possibly beyond. In addition, K̂‖(r) and K̂(r) essentially agree on the magnitude

of the reduced second moment measure up to this distance. This is to be expected, since, as is

clear from Table 1, there are very few additional pairs of absorbers coming from different lines of

sight on these scales. Thus, the sample is too sparse to significantly compare clustering along and

across lines of sight on scales of less than 100 h−1 Mpc.

On scales greater than 100 h−1 Mpc, however, there are significantly more additional pairs of

absorbers from different lines of sight, and it becomes possible to compare their clustering along and

across lines of sight. Since K(r) is an integrated measure of clustering on scales from zero to r, it is

necessary to look at estimates of differential quantities like K(r2) − K(r1) (with r2 > r1) in order

to examine clustering on scales strictly between r1 and r2. We have investigated the significance of

clustering scales greater than 100 h−1 Mpc by examining the quantity

K̂(r2) − K̂(r1)
4
3π(r3

2 − r3
1)

− 1 =

∫ r2

r1
ξ(u)u2 du

1
3(r3

2 − r3
1)

≡ ξ(r1, r2) . (5)

The quantity ξ(r1, r2) is the estimated average volume–weighted correlation function on scales be-

tween r1 and r2. If the latter two are reasonably close to each other, then ξ(r1, r2) is an approximate
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measure of the correlation function ξ(r) on the average scale r = (r1 + r2)/2. Similarly, we define

the quantities ξ‖(r1, r2) and ξ⊥(r1, r2) by replacing K̂ in equation (5) above by K̂‖ and K̂⊥, re-

spectively. These two quantities are estimates of the average volume–weighted correlation function

that use only along– or cross–line–of–sight information, respectively. We have examined clustering

on scales r greater than 100 h−1 Mpc by computing ξ, ξ‖, and ξ⊥ for a sliding window that is 50

h−1 Mpc wide and centered on r.

Figure 4 (solid lines) shows all three quantities, ξ(r− 25, r + 25) (top panel), ξ⊥(r− 25, r + 25)

(middle panel), and ξ‖(r − 25, r + 25) (lower panel), for scales r between 100 h−1 Mpc and 300

h−1 Mpc. Their approximate 95% regions of variation (again estimated by dividing the QSO sample

into eight subsamples corresponding to eight different regions of the sky) are also shown (dashed

lines). All three curves are quite similar, showing evidence of clustering on scales r between 100

h−1 Mpc and 150 h−1 Mpc, and all agree with each other within their approximate confidence

regions.

What is particularly striking, however, is that ξ⊥ (computed with pairs coming from different

lines of sight) essentially agrees within the errors with ξ‖ (computed with pairs coming from the

same line of sight); thus, the additional cross–line–of–sight information strengthens the evidence

for clustering on scales from 100 h−1 Mpc to 150 h−1 Mpc. Although the evidence for clustering

across lines of sight is, on its own, only marginally significant, it is consistent with the amplitude

and scale of clustering of absorbers along lines of sight; indeed, if anything it hints at being even

stronger on these scales.

Such clustering on 100 h−1 Mpc to 150 h−1 Mpc scales had been hinted at in the one–

dimensional work of Quashnock & Stein (1999), and has been confirmed by the three-dimensional

analysis here. This argues against claims that all of the apparent line–of–sight clustering on these

scales is due to significant contamination along the line of sight by absorbers that are actually

physically associated with the QSO (see §1). Figure 4 shows no evidence on clustering on scales

between 150 h−1 Mpc and 300 h−1 Mpc, using any of the three estimators; on scales greater than

150 h−1 Mpc, the absorbers appear to be distributed in a manner that is consistent with isotropy.

Note that beyond 200 h−1 Mpc, ξ has appreciably smaller estimated variability than ξ‖; this shows

how using the full three–dimensional estimator K̂(r) can improve the measurement of clustering

on very large scales, even for this modest–sized catalog.

Of course, the lines of sight in the Vanden Berk et al. absorber catalog are rather sparse, and

there are still only 345 lines that were analyzed here. The limited size of that catalog, as well as

its heterogeneity, precludes a final, strong statement of the statistical significance and amplitude

of the clustering on scales between 100 h−1 Mpc and 150 h−1 Mpc.

As soon as data are available, we will undertake a new effort at analyzing the clustering of

heavy–element absorbers in the Sloan Digital Sky Survey (hereafter SDSS), now underway (Mar-

gon 1999). The SDSS QSO Absorption–Line Catalog (hereafter the SDSS Catalog) will include

heavy–element absorption–line systems found in the spectra of about 100,000 QSOs, with absorbers
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ranging in redshift from z = 0.5 to z ∼> 5. The SDSS Catalog will be of order 300 times larger than

the Vanden Berk et al. catalog; furthermore, it will be a homogeneous catalog with fixed selection

and detection criteria for the entire sample. Also, the density (number of QSOs per solid angle on

the sky) of probing lines of sight will be of order 300 times higher.

Because the SDSS Catalog will have much greater density of lines of sight than the catalog

analyzed here, we should expect a much larger fraction of the information about clustering of

absorbers from pairs across different lines of sight. Using simulations, we have estimated how much

smaller the standard errors of the estimators will be in the 300–times larger SDSS Catalog; in

particular, we have investigated how the standard errors will be reduced by using the full three–

dimensional estimator and all the cross–line–of–sight information in the 300–times denser SDSS

Catalog.

To do this, we have made simulations of randomly placed absorbers and examined how the

standard errors of the estimators change if the lines of sight are present at an intensity comparable

to that which will be achieved in the SDSS Catalog. We define a region of space similar to that to

be probed by the QSO lines of sight of the SDSS Catalog: that section of a cone with half–angle

of 45◦ and Earth at its tip, which is bounded by comoving distance 2000 < r < 3300 h−1 Mpc

(corresponding to redshift 1.25 < z < 4) from Earth. Lines of sight are placed randomly in this

region of space, with a uniform distribution of comoving lengths between 250 and 450 h−1 Mpc

similar to that in the Vanden Berk et al. catalog (Quashnock & Stein 1999). Mock catalogs

were created, with total number, m, of lines of sight equal to 100, 1000, 10,000 and 100,000, and

absorbers randomly placed on all these lines with the same average number of absorbers per unit

comoving length as that observed in the Vanden Berk et al. catalog. The catalogs were generated

by simulating a one–dimensional Poisson process on the lines of sight. A set of 10,000 of these

unclustered mock catalogs were made for each m except for m = 100,000, for which 100 mock

catalogs were made.

The variances of the reduced second moment estimators K̂‖(r) and K̂(r) (the average, or

expectation value, is, in all cases, very near the true value of 4
3πr3) were computed for each m, for

5 < r < 300 h−1 Mpc. We find, not surprisingly, that the standard error of K̂‖(r) decreases with

the total number of lines m as 1/
√

m; however, this reduction in standard error is constant over

r. For K̂(r), there is an additional reduction for larger r. In Figure 5, we show the ratio of the

standard error of K̂(r) for m = 1000 (short-dashed line), 10,000 (long-dashed line), and 100,000

(solid line), to that of K̂(r) for m = 100. As the number of lines of sight increases, there is a

continued reduction in the standard error for larger distances, due to the additional and relatively

more important number of absorber pairs from across different lines of sight.

This is displayed more dramatically in Figure 6, where we show the relative improvement, or

ratio, of the standard errors of K̂(r) to K̂‖(r) for m = 100 (dotted line), 1000 (short-dashed line),

10,000 (long-dashed line), and 100,000 (solid line). With 100,000 lines of sight, using K̂(r) instead

of K̂‖(r) results in an additional factor of 2 to 20 reduction of the standard error on scales of 30 to
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200 h−1 Mpc, in addition to the factor of
√

300 reduction from the larger sample size, effectively

increasing the sample size by an extra factor of 4 to 400 at large distances.

It is the line density (number of lines of sight per solid angle on the sky, or the number of

QSOs per square degree) that determines the relative efficiency of K̂(r) to K̂‖(r), not the total

number of lines m. This is also shown in Figure 6, where we show the ratio of the standard errors

of K̂(r) to K̂‖(r), this time for m = 100 lines of sight, but where the angular density of lines is 10

times (short-dashed and dotted line) and 100 times (long-dashed and dotted line) higher than the

initial density; i.e., the solid angle of the conic region described above is 10 and 100 times smaller,

respectively. Figure 6 shows that increasing the density of lines by a given factor has the same

effect on the relative efficiency of K̂(r) to K̂‖(r) as does simply increasing the total number of lines

of sight by that same factor. Of course, the overall size of the standard errors is governed by the

total number of lines m (see Fig. 5).

These comparisons of the errors in K̂(r) and K̂‖(r) are based on unclustered mock catalogs.

We are investigating, in ongoing simulations, how different the actual relative improvement might

be in a catalog of clustered absorbers such as the SDSS Catalog. Using a simple model of voids

and clusters (Loh 2001) that mimics the correlation structure of the Vanden Berk et al. catalog,

we have made 1000 clustered mock catalogs with 100 and 1000 lines of sight. We find, for example,

that for r = 300 h−1 Mpc, the ratio of the standard errors of K̂(r) to K̂‖(r) is 0.629 and 0.230 for

unclustered catalogs with 100 and 1000 lines of sight, respectively (see Fig. 6), and 0.669 and 0.270

for clustered catalogs with the same numbers of lines. This indicates that the relative improvement

that arises from using cross–line–of–sight pairs in clustered catalogs is still dramatic and is only

slightly less so (6% and 17% change in the above two cases) than for unclustered catalogs. Thus,

we expect use of the full three–dimensional estimator to substantially increase clustering sensitivity

in the SDSS Catalog, with a relative improvement that is only slightly less dramatic than what

is shown in Figure 6 (solid line). We hope to present more detailed results elsewhere, with much

larger numbers of lines of sight (Loh 2001).

5. Conclusions

We present two estimators, K̂‖(r) and K̂(r), for the three–dimensional reduced second moment

for one–dimensional data (absorber redshifts) along QSO lines of sight. The first estimator uses

absorber pairs along the same lines of sight, whereas the latter includes data from across different

lines of sight. We apply our algorithm to a sample of 345 C IV absorbers with median redshift

〈z〉 = 2.2, from the spectra of 276 QSOs, drawn from the catalog of Vanden Berk et al..

We confirm the existence of significant clustering of C IV absorbers on comoving scales up to

100 h−1 Mpc (q0 = 0.5), and find that the additional cross–line–of–sight information strengthens

the evidence for clustering on scales from 100 h−1 Mpc to 150 h−1 Mpc. This argues against claims

that all the apparent clustering on these scales is due to significant contamination along the line of
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sight by absorbers that are actually physically associated with the QSO. However, the limited size

of that catalog, as well as its heterogeneity, precludes a final, strong statement of the statistical

significance and amplitude of the clustering on scales ∼> 100 h−1 Mpc. Also, the sample is too

sparse to significantly compare clustering along and across lines of sight on scales of less than 100

h−1 Mpc. There is no evidence of absorber clustering along or across lines of sight for scales from

150 h−1 Mpc to 300 h−1 Mpc.

We show that with a 300–times larger catalog, such as that to be compiled by the Sloan

Digital Sky Survey (100,000 QSOs), use of the full three–dimensional estimator and cross–line–

of–sight information will substantially increase clustering sensitivity. We find that standard errors

are reduced by a factor 2 to 20 on scales of 30 to 200 h−1 Mpc, in addition to the factor of
√

300

reduction from the larger sample size, effectively increasing the sample size by an extra factor of 4

to 400 at large distances. Thus, use of the full three–dimensional reduced second moment estimator

will significantly advance our ability to describe and analyze large–scale clustering of absorbers,

and hence visible matter, from the SDSS Catalog.
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the extensive catalog of heavy–element absorbers used in this study. We wish to thank Massimo

Mascaro and Ken Wilder for the help they provided with the computer simulations we made. This
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and by NSF grant DMS 99071127 (M. L. S. and J. M. L.).

A. Three–dimensional reduced second moment estimators K̂‖(r), K̂⊥(r) and K̂(r)

Let L denote the set made up of the m QSO lines of sight, Li the ith line, N the total number

of absorbers, and λ the intensity of the absorber center process, or mean number of absorbers per

unit comoving volume. We use ∂Bs(x, u) to represent a shell of inner radius u, centered at x and

with thickness s, vR(.) to indicate measure in R dimensions and #{.} the number of elements in

a set. When summing over absorber pairs, we use
∑‖ to represent a sum over pairs on the same

lines of sight only,
∑⊥ a sum over pairs across lines of sight only and

∑

a sum over all pairs.

We have to give the absorbers some physical size so that there is a non–zero probability of

intersection between an absorber and the lines of sight. For simplicity, we assume the absorbers

are balls of identical radius d. The clustering we seek to measure is the clustering of the point

process of the centers of absorbers. Although we do not need to specify d, our method requires

an approximation that is accurate when d is much smaller than the distances over which we are

interested. Define Q = πd2v1(L), where v1(L) is the total length of the lines, so Q is effectively the

volume of space within which we can observe the center of an absorber.

Throughout we assume that K(r) is continuous in r. To estimate K(r), we first estimate

λ2QK(r) and then divide by an estimate of λ2Q. Estimating λ2QK(r) involves taking each absorber
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in turn and counting the number of absorbers within a distance r. Suppose we have an absorber

observed at x on some line of sight. Let another absorber be observed at y on a possibly different

line of sight, with |x − y| ≤ r. Its center must lie within d of y. There are generally many other

absorbers within r of x that are not observed simply because they lie too far away from the lines

of sight. To take into account this edge effect each absorber pair (x, y) is given a weight.

To demonstrate how appropriately chosen weights deal with the problem of edge effects when

estimating λ2QK(r), we first show that equation (4) of §2.2 holds. Define 1(0,r](u) = 1{0 < u ≤ r}
and denote the empty set by φ. When observations are in a contiguous window A with volume a

and ∂B0(x, r) ∩ A 6= φ for all x ∈ A,

E





∑

x 6=y

1(0,r](|x − y|)w(x, |x − y|)



 (A1)

= λ2

∫

A

∫ ∞

0

∫

∂B0(0,1)
1(0,r](u)1A(x)1A(x + (u,Ω))w(x, u)u2dΩ dK(u) dx (A2)

= λ2

∫

A

∫ ∞

0
1(0,r](u)1Au

(x)4πu2dK(u) dx (A3)

= λ2a

∫ r

0
4πu2dK(u) (A4)

= λ2aK(r) (A5)

where in equation (A2), (u,Ω) are the spherical coordinates of y − x. In equation (A3), Au is the

set of points in A such that ∂B0(x, u) ∩ A 6= φ, which is simply A when ∂B0(x, u) ∩ A 6= φ for all

x ∈ A.

The step from equation (A3) to (A4) holds only for u less than the circumradius of A. Ohser

(1983) suggested adding a factor to the estimator so that this step to (A4) is valid at larger distances.

This factor is simply the ratio of the volumes of A and Au. This extension is not of much practical

value when A is a single contiguous region, but it is critical for the line–of–sight catalog, since we

would otherwise be restricted to estimating K at distances at most one half the shortest line of

sight in the catalog.

Equations (A1)–(A5) demonstrate that estimating λ2aK(r) involves taking shells ∂Bdu(x, u)

with u < r for each point of the process x ∈ A, counting and weighting the number of other points

in these shells and integrating over u. We now seek to mimic this procedure for absorbers observed

along lines of sight. We first consider the simpler case of K̂‖(r), in which only pairs of absorbers

along the same line of sight are counted. Define L(x) to be the line on which the absorber at x

lies. For each pair (x, y) lying on the same line and less than r apart, we set

w(x, |x − y|) = 4d−2|x − y|2du/v1(∂Bdu(x, |x − y|) ∩ L(x)) (A6)

= 4d−2|x − y|2/C‖

where C‖ = C‖(x, |x− y|) = #{∂B0(x, |x− y|)∩L(x)}. In the denominator of equation (A6), L(x)

is used and not L, since only absorber pairs on the same line of sight are considered. Thus C‖ takes



– 14 –

the value 1 or 2. The estimate of λ2QK(r) using only absorber pairs on the same line is then

∑‖

x 6=y

1(0,r](|x − y|)4|x − y|2
d2C‖

· Q

πd2v1(A
‖
|x−y|)

where A
‖
|x−y| = ∪m

k=1{x ∈ Lk : ∂B0(x, |x − y|) ∩ Lk 6= φ}) is the subset of L containing points that

are a distance |x−y| from at least one other point on the same line. Ohser’s extension is the factor

πd2v1(A
‖
|x−y|)/Q, the proportion of such points in L. Taking N(N − 1)/Q to be the estimate of

λ2Q, we obtain

K̂‖(r) =
∑‖

x 6=y

1(0,r](|x − y|)4|x − y|2
d2C‖

· Q2

N(N − 1)πd2v1(A
‖
|x−y|)

=
∑‖

x 6=y

1(0,r](|x − y|)4π|x − y|2v1(L)2

C‖N(N − 1)v1(A
‖
|x−y|)

(A7)

We now show that the estimator of λ2QK(r) using pairs along the same line of sight has an

unbiasedness property similar to the one found in (A1)–(A5) as d → 0:

E





∑‖

x 6=y

1(0,r](|x − y|)4|x − y|2
d2C‖

· Q

πd2v1(A
‖
|x−y|)



 (A8)

= λ2

∫

R3

∫ r

0

∫

B0(0,1)

1L(x)1L(x + (u,Ω))4u2

d2C‖
· Q

πd2v1(A
‖
u)

u2dΩ dK(u) dx (A9)

= λ2Q

∫

R3

∫ r

0

1
A

‖
u

(x)4u2

d2C‖
·
πd2C‖ + o(d2)

πd2v1(A
‖
u)

dK(u)dx (A10)

= λ2Q

∫ r

0

4u2

d2C‖
(πd2C‖ + o(d2))dK(u) (A11)

= λ2QK(r) + o(d2) = λ2v1(L)πd2K(r) + o(d2). (A12)

Note that when an absorber is observed at x on some line, its center need not be on the line.

In fact, this occurs with probability zero. All we can infer is that the center is nearby, at most

distance d away. Accordingly, we take 1
A

‖
u

(x) to mean that an absorber center is located so that

the center of its interval of intersection with a line of sight is in A
‖
u , and thus the integral over x

in (A10) yields πd2v1(A
‖
u) rather than v1(A

‖
u). Since we do not observe exactly where the centers

of the absorbers are, all of our estimates of K(r) have some small inherent uncertainty that does

not disappear as the size of the observation region increases. Specifically, as the observation region

grows, our estimates of K(r) converge to some average of K(u) for u ∈ [r− d, r + d]. This does not

pose a problem whenever r is much greater than d.

We next derive a similar expression for K̂⊥(r), the estimator for K(r) using only across–line–

of–sight information (see §2.2 for a discussion of its validity). For any absorber x, we consider
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absorbers y that lie within a distance r on a different line of sight. Both the assigned weight and

Ohser’s extension have to be changed. Define the set Sx = Sx(|x−y|) = ∂B0(x, |x−y|)∩ (L\L(x)),

the set of intersections between ∂B0(x, |x − y|) and L\L(x). For the absorber pair (x, y), the

assigned weight is

w(x, |x − y|) = 4d−2|x − y|2du/v1(∂Bdu(x, |x − y|) ∩ (L\L(x)))

= 4d−2|x − y|2/C⊥

where C⊥ = C⊥(x, |x − y|) =
∑

s∈Sx

(cos θs)
−1 and θs is the angle between the line of sight on

which s lies and the line joining s and x. Figure 7 shows why the factor of (cos θs)
−1 is used.

Referring to Figure 7, note that although absorber y is observed on line of sight k, the intersection

between ∂Bdu(x, u) and line of sight i is included in the computation of the weight, since the

weight is inversely proportional to the volume of the region in which the appearance of an absorber

center would yield an observed location of the absorber in the shell of radius u and thickness du

centered at x. For an estimator that uses only across–line–of–sight information, the intersection

between ∂Bdu(x, u) and L(x), the line containing x, is not taken into consideration. The estimate

of λ2QK(r) is
∑⊥

x,y

1(0,r](|x − y|)4|x − y|2
d2C⊥

· Q

πd2v1(A⊥
|x−y|)

where A⊥
|x−y| = ∪m

k=1{x ∈ Lk : ∂B0(x, |x− y|)∩ (L\Lk) 6= φ}. Ohser’s extension is πd2v1(A
⊥
|x−y|)/Q

and is the proportion of points in L that are a distance |x − y| from at least one other point on

another line. This yields as an estimate of K(r),

K̂⊥(r) =
∑⊥

x,y

1(0,r](|x − y|)4π|x − y|2v1(L)2

C⊥N(N − 1)v1(A⊥
|x−y|)

(A13)

With appropriate changes, i.e. C‖ and A
‖
u replaced by C⊥ and A⊥

u , steps (A8)–(A12) hold for

K̂⊥(r) − K̂⊥(r0), where r0 is the shortest distance between different lines of sight in the catalog.

The estimate of K(r) which uses all absorber pairs is now not difficult to obtain. This estimate

is not simply a sum of K̂‖(r) and K̂⊥(r). It is true that it involves a sum of all absorber pairs,

both along and across lines of sight. However, in each term of the sum, the expression for Ohser’s

extension and the assigned weight are different. For absorber pair (x, y), the probed volume that

contributes to the weight is now a sum of that probed by L(x) and L\L(x): w(x, |x − y|) =

4d−2|x− y|2/(C‖ +C⊥). The set of points with at least one other point |x− y| away is now a union

of the two sets A
‖
|x−y| and A⊥

|x−y|, which is A|x−y|. With these adjustments, we have

K̂(r) =
∑

x 6=y

1(0,r](|x − y|)4π|x − y|2v1(L)2

(C‖ + C⊥)N(N − 1)v1(A
‖
|x−y| ∪ A⊥

|x−y|)
. (A14)

Even when using K̂(r), the fraction of volume of ∂Bdu(x, u) probed by the absorber catalog is

very small and thus the weights are always much larger than 1. Nevertheless, even in the moderate
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size catalog used here, there is sufficient information to enable us to obtain useful estimates of the

three-dimensional reduced second moment measure at large distances.
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x
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α

A

z
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r

Fig. 1.— Example of an unobserved point (open dot) within distance r of another point z. Also

shown is an observed point y within distance r of x. This point is given a weight w(x, |x− y|) equal

to the reciprocal of the fraction α/2π of the circle that is contained within the sample region A.
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Fig. 2.— Estimates of the reduced second moment measure, K̂‖(r) (dashed line) and K̂(r) (solid

line), divided by their Poisson expectation 4
3πr3, together with the latter’s approximate 95% con-

fidence region (dotted line; see text), for the 276 QSO lines of sight, containing a total of 345 C IV

absorbers obtained from the Vanden Berk et al. catalog.
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Fig. 3.— The 95% regions of variation of K̂‖(r) (dashed line) and K̂(r) (solid line), divided by

their Poisson expectation value, 4
3πr3, for 10,000 simulated data sets of unclustered absorbers with

the same total number of lines and average number of absorbers as the Vanden Berk et al. catalog.

The averages for both estimators (dotted lines) are very near their expectation value of unity.
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Fig. 4.— Average volume–weighted correlation functions (solid lines) ξ(r − 25, r + 25) (top panel),

ξ⊥(r− 25, r +25) (middle panel), and ξ‖(r− 25, r +25) (bottom panel), for 100 < r < 300 h−1 Mpc,

for the 276 QSO lines of sight and 345 C IV absorbers of the Vanden Berk et al. catalog. Their

approximate 95% regions of variation are also shown (dashed lines; see text).
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Fig. 5.— Ratio of the standard errors of K̂(r) for m = 1000 (short-dashed line), 10,000 (long-dashed

line), and 100,000 (solid line), to that of K̂(r) for m = 100, for mock unclustered catalogs. Note

the continued reduction in the standard error on larger scales.
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Fig. 6.— Ratio of the standard errors of K̂(r) to K̂‖(r) for m = 100 (dotted line), 1000 (short-

dashed line), 10,000 (long-dashed line), and 100,000 (solid line), with mock unclustered catalogs.

Also shown is the same ratio, for m = 100 lines of sight, but where the angular density of lines is

10 times higher (short-dashed and dotted line) and 100 times higher (long-dashed and dotted line).
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Fig. 7.— Schematic showing how to obtain the weights for K̂⊥(r) and K̂(r) in a two–dimensional

setting. Absorbers are observed at x and y, and are separated by distance u = |x − y| ≤ r; d is

the assumed radius of all absorbers. For K̂⊥(r), the weight w(x, y) is inversely proportional to the

sum of the volumes of the two singly hatched regions. Note that the thickness of the shaded region

through line of sight i is dr/ cos θs. For K̂(r), the weight w(x, y) is inversely proportional to the

sum of the volumes of the three hatched regions.
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Table 1. Number of absorber pairs as a function of pair separation r

Number in bin Cumulative Number

r (h−1 Mpc) along lines across lines along lines across lines

10 63 0 63 0

20 21 8 84 8

30 26 5 110 13

40 30 3 140 16

50 22 5 162 21

60 31 3 193 24

70 17 5 210 29

80 17 7 227 36

90 11 3 238 39

100 15 6 253 45

110 9 16 262 61

120 16 9 278 70

130 12 10 290 80

140 14 8 304 88

150 13 9 317 97

160 6 7 323 104

170 18 11 341 115

180 2 15 343 130

190 10 9 353 139

200 6 13 359 152

210 2 16 361 168

220 3 19 364 187

230 4 15 368 202

240 8 9 376 211

250 2 10 378 221

260 5 9 383 230

270 1 12 384 242

280 5 17 389 259

290 4 18 393 277

300 1 16 394 293


