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Abstract

We present synthetic Doppler maps of gaseous flows in semidetached binaries based
on the results of 3D gas dynamical simulations. Using of gas dynamical calculations
alongside with Doppler tomography technique permits to identify main features of the
flow on the Doppler maps without solution of ill-posed inverse problem. Comparison of
synthetic tomograms with observations makes possible both to refine the gas dynamical
model and to interpret the observational data.

Problem Setup

Traditional observations of binary systems are carried out using photometric and spectro-
scopic methodics. The former gives the time dependence of brightness in a specific band
I(t) and the latter can give the time dependence of wavelength of some Doppler-shifted line
λ(t). Given ephemeris ϕ(t) is known, the dependencies I(t) and λ(t) can be converted with
the help of Doppler formula to the light curve I(ϕ) and phase dependency of radial velocity
VR(ϕ).

During last ten years the observations of binary systems in the form of trailed spectro-
grams for some emission line I(λ, t) or in other terms I(VR, ϕ) become widely used. A method
of Doppler tomography [1] is suited to analyze the trailed spectrograms. This method pro-
vides obtaining a map of luminosity in the 2D velocity space from the orbital variability
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of emission lines intensity. The Doppler tomogram is constructed as a conversion of time
resolved (i.e. phase-folded) line profiles into a map on (Vx, Vy) plane. To convert the dis-
tribution I(VR, ϕ) to Doppler map I(Vx, Vy) we should use the expression for radial velocity
as a projection of velocity vector on the line of sight, i.e. VR = −Vx cos(2πϕ) + Vy sin(2πϕ)
(here we assume that Vz ∼ 0, the minus sign before Vx is for consistency with the coordinate
system), and solve an inverse problem that is described by integral equation (see Appendix
A of [1]):

I(VR, ϕ) =
∫ ∫

I(Vx, Vy)g(VR + Vx cos(2πϕ)− Vy sin(2πϕ))dVxdVy ,

where g(V ) is normalized local line profile shape (e.g., a Dirac δ-function), and the limits of
integration are from −∞ to +∞. This inverse problem is ill-posed and special regularization
is necessary for its solving (e.g. Maximum Entropy Method [1, 2], Fourier Filtered Back
Projection [3], Fast Maximum Entropy Method [4], etc., see also [5]). As a result we obtain
a map of distribution of specific line intensity in velocity space. This map is easier to interpret
than original line profiles, moreover, the tomogram can show (or at least gives a hint to)
some features of flow structure. In particular, the double-peaked line profiles corresponding
to circular motion of the gas (e.g. in accretion disk) become a diffuse ring-shaped region
in this map. Resuming, we can say that components of binary system can be resolved in
velocity space while they can not be spatially resolved through direct observations, so the
Doppler tomography technique is a rather power tool for studying of binary systems.

Unfortunately the reconstruction of spatial distribution of intensity on the basis of
Doppler map is an ambiguous problem since points located far from each other may have
equal radial velocities and deposit to the same pixel on the Doppler map. So the transfor-
mation I(Vx, Vy) → I(x, y) is impossible without some a priori assumptions on the velocity
field.

The situation changes drastically when one uses gas dynamical calculations alongside with
Doppler tomography technique. In this case we are not need to cope with the inverse problem
since the task is solved directly: ρ(x, y) & T (x, y) → I(x, y) and I(x, y) & Vx(x, y) & Vy(x, y) →
I(Vx, Vy) → I(VR, ϕ). Difficulties can arise when converting the spatial distributions of den-
sity and temperature ρ(x, y), T (x, y) into the distribution of luminosity of specific emission
line I(x, y). For thick lines the formation of line profile should be described by radiation
transfer equations (see, e.g., [6]), therefore to make our preliminary synthetic Doppler maps
we assume that the matter is optically thin. As a first approximation we adopt the line
luminosity as I = ρ and as I = ρ2T 1/2 [7, 8].

We also should emphasize the complexity of Doppler maps analysis for eclipsing binaries
(see, e.g., [9]). The synthetic Doppler map produces the line emissions from any site of binary
and suggests that they are visible at all orbital phases, in other words there are no eclipses
and occultations of emission regions. Clearly, eclipsing systems violates that assumption.
Usually, when dealing with observations, the eclipsed parts of trailed spectrograms are nat-
urally excluded from input data for construction of Doppler tomograms. But conversion of
gas dynamical simulation results into Doppler maps suggests using of full set of data. Thus
when analyzing of synthetic Doppler maps for eclipsing binaries we should take in mind that
some features can be occulted on some phases even for optically thin case.
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Figure 1: The adopted coordinate system with phase angles of observer in a binary system. The x and y

coordinates are expressed in terms of the separation A. The red asterisk is the accretor. The donor-star is
shadowed. The critical Roche lobe and ballistic trajectory of a particle moving from L1 are shown by a solid
lines. Orbital rotation of the binary is counter-clockwise.

3D gas dynamical simulations: the model and results

The full description of the used 3D gas dynamical model can be found in [10]. Here we pay
attention only to the main features of the model.

Let us consider the semidetached binary system with mass of accretor M1, mass of donor-
star M2, separation A, and velocity of orbital rotation Ω. These parameters are connected
by third Kepler’s low A3Ω2 = G(M1 +M2). To describe the gas flow in this binary system
we used the 3D system of Euler equations. The calculations were carried out in the non-
inertial Cartesian coordinate system rotating with the binary system. To close the system
of equations, we used the equation of state of ideal gas P = (γ − 1)ρε, where γ is the ratio
of heat capacities. To mimic the system with radiative losses, we accept in the model the
value of adiabatic index close to unit: γ = 1.01, that corresponds to the case close to the
isothermal one [11, 12].

To obtain numerical solution of the system of equations we used the Roe–Osher TVD
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Figure 2: The distribution of density over the equatorial plane. The x and y coordinates are expressed
in terms of the separation A. Arrows are the velocity vectors in observer’s frame. The red asterisk is the
accretor. The dashed-dotted line is Roche equipotential passing through L1. The yellow dotted line is the
tidally induced spiral shock. Gas dynamical trajectory of a particle moving from L1 to accretor is shown
by a white line with circles. Another gas dynamical trajectory is shown by a red line with squares (see also
Fig. 6).

scheme of a high approximation order [13, 14] with Einfeldt modification [15]. The original
system of equations was written in a dimensionless form. To do this, the spatial variables were
normalized to the distance between the components A, the time variables were normalized
to the reciprocal angular velocity of the system Ω−1, and the density was normalized to
its value1 in the inner Lagrangian point L1. We adopted the computational domain as
a parallepipedon [− 1/2A . . . 1/2A] × [− 1/2A . . . 1/2A] × [0 . . . 1/4A] (due to the symmetry
of the problem calculations were conducted only in the top half-space). A sphere with
a radius of 1/100A representing the accretor was cut out of the calculation domain. The
boundary conditions were taken as ‘free outflow’ on the accretor star and on the outer edges
of computational domain. In gridpoint corresponding to L1 we injected the matter with
parameters ρ = ρ(L1), Vx = c(L1), Vy = Vz = 0, where c(L1) is a gas speed of sound

1Because the system of equations can be scaled to density and pressure, the density scale was chosen
simply for the sake of convenience.
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Figure 3: The texture of flow the equatorial plane (in corotation frame), i.e. visualization of velocity
vectors field using Line Integral Convolution Method [20]. The white asterisk is an accretor. See Fig. 4 for
the explanation of a blue line.

in L1 point. As the initial conditions we used rarefied gas with the following parameters
ρ0 = 10−5 · ρ(L1), P0 = 10−4ρ(L1)c

2(L1)/γ, V 0 = 0.
Analysis of considered problem shows that the gas dynamical solution is defined by

three dimensionless parameters [16–18]: mass ratio q = M2/M1, Lubow-Shu parameter
ǫ = c(L1)/AΩ [16], and adiabatic index γ. The value of adiabatic index was discussed above
and we used the value γ = 1.01. Analysis of our previous results [17, 18] shows that the
main characteristic features of 3D gas dynamical flow structure are qualitatively the same in
wide range of parameters q and ǫ. Therefore for model simulation we chose them as follows:
q = 1, ǫ = 1/10.

The results of calculations will be presented in coordinate system (see Fig. 1) which is
widely used in Doppler mapping. The origin of coordinates is located in the center of the
accretor, ‘x’-axis is directed along the line connecting the centers of stars, from accretor
to the mass-losing component, ‘z’-axis is directed along the axis of rotation, and ‘y’-axis
is determined so that we obtain a right-hand coordinate system (i.e. ‘y’-axis points in the
direction of orbital movement of the donor-star). In Fig. 1 we put digits showing the phase
angles of the observer in binary system. We also show a critical Roche lobe with shadowed
donor-star and ballistic trajectory of a particle moving from L1 point to accretor.

The morphology of gaseous flows in considered binary system can be evaluated from
Figs 2, 3 and 4. In Fig. 2 the distribution of density over the equatorial plane and velocity
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Figure 4: The texture of flow the Y Z slice along a blue line in Fig. 3. Empty region corresponds to
cross-section of the stream from L1.

vectors are presented. In this Figure we also put a gas dynamical trajectory of a particle
moving from L1 to accretor (a white line with circles) and a gas dynamical trajectory passing
through the shock wave along the stream edge (a red line with squares, see also Fig. 6). In
Fig. 3 we present the so called texture figure in equatorial plane which is visualization of
velocity vectors field using Line Integral Convolution Method [20]. In Fig. 4 the similar tex-
ture is presented for Y Z slice along a blue line in Fig. 3. Empty region in Fig. 4 corresponds
to cross-section of the stream.

Analysis of presented results as well as our previous studies [21, 22] show the significant
influence of rarefied gas of circumbinary envelope on the flow patterns in semidetached
binaries. The gas of circumbinary envelope interacts with the stream of matter and deflects
it. This leads, in particular, to the shock-free (tangential) interaction between the stream
and the outer edge of forming accretion disc, and, as the consequence, to the absence of ‘hot
spot’ in the disc. At the same time it is seen, that the interaction of the gas of circumbinary
envelope with the stream results in the formation of an extended shock wave located along
the stream edge (‘hot line’). From Figs 2 and 3 it also seen that spiral shock tidally induced
by donor-star appears (dotted line in Fig. 2). Appearance of tidally induced two-armed spiral
shock was discovered by Matsuda [19, 23, 24]. Here we see only one-armed spiral shock. In
the place where the second arm should be we see the strong gas dynamical interaction of
circumbinary envelope with the stream causing the formation of rather intensive shock along
the outer edge of the stream. This gas dynamically induced shock probably prevents the
formation of second arm of tidally induced spiral shock.
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Figure 5: The adopted velocity coordinate system with phase angles of observer in a binary system. The
critical Roche lobe and ballistic trajectory of a particle moving from L1 point to accretor are shown by a
solid line. The red asterisk is the accretor. The donor-star is shadowed.

An analysis of the flow structure in Y Z plane (Fig. 4) shows that a part of the circum-
stellar envelope interacts with the (denser) original gas stream and is deflected away from
the orbital plane. This naturally leads to the formation of ‘halo’. Following to [10], one can
define ‘halo’ as that matter which: i) encircles the accretor being gravitationally captured;
ii) does not belong to the accretion disc; iii) interacts with the stream (collides with it and/or
overflows it); iv) after the interaction either becomes a part of the accretion disc or leaves
the system.

Described gas dynamical features of flow structure are good candidates to be observed
using Doppler mapping technique.
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Synthetic Doppler maps: methodics

The Doppler maps show the distribution of luminosity in the velocity space. Each point
of flow has a three-dimensional vector of velocity U = (Ux, Uy, Uz) in observer’s (inertial)
frame. In the case when observer is located in the orbital plane of the binary the Doppler
map’s coordinate (Vx, Vy) will coincide with Ux and Uy. To define these coordinates for the
case of inclined system we have to find a projection of vector U on the plane constituted by
vectors n and n×Ω, where n is a direction from the observer to binary.

The line emissivity in the velocity space can be written as:

I(Vx, Vy) ∼
∫

O

∫

Ux

∫

Uy

I(x, y, z)δ(Ux(x, y, z) sin i+ Uz(x, y, z) cos i− Vx)

δ(Uy(x, y, z) sin i+ Uz(x, y, z) cos i− Vy)dOdUxdUy ,

where dO = dxdydz, i – inclination angle. Usually Uz ≪ Ux, Uy in the most dense parts of
the flow therefore we can neglect the third component of velocity Uz. This assumption allows
us to take off ‘sin i’ beyond the integral and to simplify the expression. Using Vx/ sin i and
Vy/ sin i as coordinates for Doppler map will hide the dependency on the inclination angle.

The adopted dimensionless coordinate system for Doppler maps is shown in Fig. 5. We
also put in Fig. 5 digits (the same as in Fig. 1) showing the phase angles of observer in binary
system. The transformation of the donor-star from spatial to velocity coordinate system is
very simple as it is fixed in the corotating frame. Every point r fixed in the binary frame
has a velocity Ω × r in corotation frame. This is linear in the perpendicular distance from
the rotation axis and therefore the shape of the donor-star projected on the orbital plane
is preserved (see Fig. 5). Since the velocity of each point of donor-star is perpendicular to
the radius vector, all points of donor-star are rotated by 90◦ counter-clockwise between the
spatial (see Fig. 1) and velocity coordinate diagrams [1].

Figure 5 depicts in velocity coordinates a critical Roche lobe with shadowed donor-star
and ballistic trajectory of a particle moving from L1 to accretor. On the velocity plane the
accretor has coordinates (0,K1), where K1 = −AΩM2/(M1 +M2) or in dimensionless form
(for adopted value of q = 1) K1 = − 1/2.

Synthetic Doppler maps: analysis

As it was mentioned earlier we used both I = ρ and I = ρ2T 1/2 to build synthetic Doppler
maps. The synthetic Doppler map calculated with I = ρ is presented in Fig. 6. This map
shows the intensity integrated over the z-coordinate, i.e. taking into account all z-layers of
computational grid. Figure 7 presents the Doppler map corresponding to I = ρ2T 1/2. The
comparison of results presented in Figs 6 and 7 shows that all characteristic features are
the same for different prescriptions of I, therefore for further analysis we will use results for
I = ρ.

For the sake of comparison we have marked different features of flow structure and put
these marks both in spatial and on velocity coordinates. Let us consider results presented
in Figs 2 and 6. As it follows from these figures stream from L1 (first part of curve marked
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Figure 6: Synthetic Doppler map for I = ρ. The secondary Roche lobe (a bold green line) and the accretor
(a red asterisk) are also shown. The white line with circles and red line with squares show gas dynamical
trajectories in the velocity coordinates (see Fig. 2).

by white line with circles) transforms to a spiral arm in the 2-nd and 3-d quadrants of the
Doppler map. Shock wave caused by interaction of circumbinary envelope with the stream
is located along the stream edge in spatial coordinates. Three last points (marked by larger
symbols) of curves with circles and squares in Fig. 2 are the examples of two flowlines
passing through the shock. The position of this shock on Doppler map is an spiral arm
starting approximately from the center of donor-star in the direction of negative Vx. This
arm lies above the arm caused by stream from L1.

To analyze other features we have marked the corresponding sites both in spatial and
velocity coordinates (see Fig. 8a,b). This comparison is a straightforward problem since
we simply choose from all sites of gas dynamical flow structure those that fall in specific
places on the Doppler map and mark them. It is seen that tidally induced spiral shock
(dashed line in Fig. 2) or more precisely the dense post-shock zone (blue squares in Fig. 8a)
produces bright arm in the first quadrant of Doppler map. It is important to note that gas
of circumbinary envelope overflowing the stream (cyan diamonds and green up triangles)
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Figure 7: Synthetic Doppler map for I = ρ2T 1/2.

significantly increase the luminosity of the zone of Doppler map located below the zone
corresponding to the stream. Analysis of other features can be conducted by comparison of
Figs 8a and 8b as well (magenta circles, yellow stars and red asterisks).

Doppler maps: observations

Doppler tomography of binaries is widely and actively used now. Since pioneer work by
Marsh and Horne [1] a lot of Doppler map observations were made (see, e.g., [25–28]). Just
to give to reader the idea on observable Doppler maps we present here in Fig. 9 two Doppler
maps of HeII λ 4686Å for IP Peg obtained by Morales-Rueda, Marsh and Billington [25].
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Figure 8: (Upper panel) Density and velocity distribution in equatorial plane with marked sites. (Lower
panel) Synthetic Doppler map corresponding to the equatorial plane with the same marks.
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Figure 9: Doppler maps of HeII λ 4686Å for IP Peg [25]. This figure is reproduced under the kind
permission by L.Morales-Rueda.

Conclusions

Three-dimensional gas dynamical simulations of flow structure in semidetached binaries allow
to build synthetic Doppler maps. In turn it gives a possibility to identify main features of
the flow on the Doppler map without solution of ill-posed inverse problem. Comparison
of synthetic tomograms with observations makes possible both to refine the gas dynamical
model and to interpret the observational data.
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