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ABSTRACT

We carry out ray tracing through five high resolution simulations of a galaxy cluster to
study how its ability to produce giant gravitationally lensed arcs is influenced by the collision
cross-section of its dark matter. In three cases typical dark matter particles in the cluster core
undergo between 1 and 100 collisions per Hubble time; two more explore the long (“colli-
sionless”) and short (“fluid”) mean free path limits. We study the size and shape distributions
of arcs and compute the cross-section for producing “extreme” arcs of various sizes. Even
a few collisions per particle modify the core structure enough to destroy the cluster’s ability
to produce long, thin arcs. For larger collision frequencies the cluster must be scaled up to
unrealistically large masses before it regains the abilityto produce giant arcs. None of our
models with self-interacting dark matter (except the “fluid” limit) is able to produce radial
arcs; even the case with the smallest scattering cross-section must be scaled to the upper
limit of observed cluster masses before it produces radial arcs. Apparently the elastic col-
lision cross-section of dark matter in clusters must be verysmall, below 0.1 cm2g−1, to be
compatible with the observed ability of clusters to produceboth radial arcs and giant arcs.
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1 INTRODUCTION

Several recent observations indicate a potential problem with the
Cold Dark Matter (CDM) scenario of structure formation in that
they seem to contradict the numerically simulated density struc-
ture of CDM haloes. A first difficulty is posed by published rota-
tion curves of dwarf galaxies, which often rise linearly from the
centre to radii greater than∼ 1kpc. Such a rise implies a constant-
density core for the host dark-matter halo (Moore 1994; Flores &
Primack 1994), and is in conflict with the central density cusps
of the haloes found inN-body simulations, which are usually fit-
ted by a double power-law profile with central logarithmic slope
≃ 1→ 1.5 (Navarro, Frenk & White 1997, hereafter NFW; Moore
et al. 1999b). A second problem is related to the large numberof
low-mass subclumps found orbiting within simulated galaxy-size
haloes; with a naive scaling to the observed properties of dwarf
galaxies within the Local Group, the abundance of these subclumps
appears too high by a factor of 10 to 50 (Moore et al. 1999a; Klypin
et al. 1999).

A possible way to modify the CDM scenario to be compatible
with these observations has recently been suggested by Spergel &
Steinhardt (2000). They propose a model where the dark matter
is self-interacting but dissipationless. They argue that if the dark

matter particles have a sufficiently large cross-section for elastic
scattering, the strength of the central density concentration and the
abundance of orbiting subclumps can both be reduced. Collisions
between dark matter particles would destroy the central cusps and
lead to a gradual evaporation of small subclumps.

Self-interacting dark matter would also affect the structure
of galaxy clusters, making them more nearly spherical and re-
ducing the number of subclumps. These effects have been con-
firmed by several recent studies in which the halo propertiesin
cosmological simulations of collisionless cold dark matter and self-
interacting dark matter have been compared. For instance, Yoshida
et al. (2000b) and Davé et al. (2001) found that intermediate scat-
tering cross sections for dark matter particles produce haloes which
are less centrally concentrated than in a collisionless model and
have smoother and more spherical cores. Similar results have also
been obtained by Burkert (2000), Firmani et al. (2000,2001)and
Kochanek & White (2000), although they find different time scales
for the onset of core collapse, which transforms intermediate flat
cores into cores with density profiles∝ r−2.

It is natural to ask how self-interacting dark matter would af-
fect the strong gravitational lensing properties of galaxyclusters.
Strong lensing is a very powerful tool to probe the distribution of
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2 Meneghetti et al.

dark matter in cluster cores. From the location of multiple images
of background sources lensed by a cluster one can obtain a de-
tailed map of the mass distribution in the lens (Tyson, Kochanski
& dell’Antonio 1998). The morphology of long arcs observed in
the cluster fields yields important information on the core density
(Bartelmann et al. 1998). Finally, the location of radial arcs can put
strong constraints on the size and compactness of the lens cores
(e.g. Narayan & Bartelmann 1997).

The goal of this paper is to evaluate whether self-interacting
dark-matter models are compatible with the observed ability of
galaxy clusters to produce strong lensing events. Some recent work
has already addressed this issue. Miralda-Escudé (2000) argued
that the shallow cores produced by self-interacting dark matter
could not agree with current observations of lensing by clusters.
Wyithe, Turner & Spergel (2000) studied simplified analyticmod-
els of self-interacting dark matter haloes and found large collision
cross-sections to be incompatible with multiple imaging byclus-
ters. In this paper, we address the issue by using ray-tracing through
high resolution simulations to compute lensing cross sections for
arcs of various types. We study a set of simulations designedto
isolate the effect of collisions between dark matter particles on the
structure of an individual cluster.

The plan of our paper is as follows. In Section 2 we describe
the cluster models used in the simulations and present the numeri-
cal method adopted to compute the lensing properties. We present
and discuss the results of our analysis in Section 3. Finally, our
conclusions are drawn in Section 4.

2 NUMERICAL SIMULATIONS

2.1 Cluster models

The cluster models used in this study are those described in Yoshida
et al. (2000a,b). They consist of a set of five different resimulations
of the same cluster-sized halo, which is the second most massive
object in the GIF-ΛCDM simulation of Kauffmann et al. (1999).
All simulations were performed with the GADGET code (Springel,
Yoshida & White 2000), in a flat model universe, with a matter
density parameterΩm = 0.3 and a cosmological constant ofΩΛ =
0.7. The Hubble constant is assumed to beH0 = 70kms−1 Mpc−1.
The CDM power spectrum was normalised so that therms matter
density fluctuations in spheres of radiusr = 8h−1 Mpc is σ8 = 0.9
(h is the value ofH0 in units of 100 km s−1 Mpc−1).

The first cluster of the series (hereafter called the S1 model)
is just a resimulation at higher resolution of the original GIF-
ΛCDM cluster, and was produced assuming standard collisionless
dark matter. Three other simulations (hereafter called W-models)
were carried out introducing elastic scattering between CDM parti-
cles. This was accomplished by the Monte-Carlo method proposed
by Burkert (2000), slightly modified by considering the pairwise
velocity difference in evaluating the scattering probability instead
of the one-point velocity dispersion. The three simulations dif-
fer in the value of the scattering cross section per unit massσ⋆:
0.1cm2 g−1, 1.0cm2 g−1 and 10.0cm2 g−1 were chosen. Hereafter,
we will refer to these models as S1Wa, S1Wb and S1Wc, respec-
tively, following the notation of Yoshida et al. (2000b). Finally,
Yoshida et al. (2000a) also considered the extreme case in which
dark matter particles are as strongly interacting as in the “fluid”
limit (see also Moore et al. 2000). In this last simulation, the time
evolution, starting from the same initial conditions as in the colli-
sionless original simulation, was followed solving the fluid equa-

Figure 1. Surface density profiles of the five halo models at redshiftz=
0.278. The horizontal dashed line indicates the critical surface density for a
lens at the same redshift and sources at redshiftz= 2. Note that large arcs
are formed at surface densities below the critical value because of the shear.

tions with the SPH technique. In the following, this model will be
referred to as S1F.

The resolution achieved in these simulations is quite
high. Most of them employ 0.5 × 106 particles in the cen-
tral, high-resolution region, where the particle mass ismp =
0.68× 1010h−1 M⊙. The gravitational softening length is set to
20h−1 kpc. All haloes have a similar final virial mass of 7.4×

1014h−1 M⊙.
For our lensing analysis, we picked the simulation snapshots at

redshiftz= 0.278 because this is close to the most efficient redshift
for strong gravitational lensing (e.g. Bartelmann et al. 1998).

The two-dimensional density profiles of the five cluster mod-
els at this redshift are shown in Fig. 1. The general trends inthe
profiles follow our expectations. As the scattering cross section of
the dark matter particles increases, the cluster density profile in the
inner region of the halo flattens. Note that the central density for
the model S1Wb is smaller by more than one order of magnitude
than that of the model S1.

The halo shape also depends onσ⋆. The principal axis ratios of
the five models, determined from the inertial tensors of the matter
at densities exceeding 100 times the critical value, are listed in the
third column of Table 1. The values clearly show that the haloes
are more spherically symmetric when the frequency of collisions
between the dark matter particles increases. In the fourth column
of Table 1, we also report the core radiusrc of the three haloes with
self-interacting dark matter, which we define as the distance from
the cluster centre where the surface density drops below half its
central value. For models S1Wb and S1Wc we typically find core
radii larger than 200h−1 kpc.
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Table 1. The main properties of the cluster haloes at redshiftz= 0.278.
Column 1: halo model; column 2: scattering cross section perunit massσ⋆;
column 3: axial ratios; column 4: core radiusrc, defined as the clustercentric
distance where the surface density falls below half its central value.

Model σ⋆ a : b : c rc

[cm2 g−1] [h−1 kpc]

S1 - 1:0.58:0.54 40
S1Wa 0.1 1:0.63:0.60 110
S1Wb 1.0 1:0.67:0.65 245
S1Wc 10.0 1:0.86:0.85 400
S1F - 1:0.95:0.81 35

2.2 Lensing properties of the clusters

Our method to study the lensing properties of galaxy clusters has
been described in detail in Meneghetti et al. (2000). Compared to
that paper, only few parameters are changed here; therefore, we
only give a brief description here and refer the reader to theoriginal
paper for further details. For a general introduction to thetheory of
gravitational lensing, see, e.g. Schneider, Ehlers & Falco(1992),
Narayan & Bartelmann (1997) and references therein.

Starting from a cluster simulation, we construct cluster lenses
as follows. We centre the cluster in a cube of 3h−1 Mpc side length
and obtain the three-dimensional density fieldρ by interpolating
the mass density within a regular grid of 2563 cells, using the
Triangular Shape Cloudmethod (TSC; see Hockney & Eastwood
1988). We then produce three different surface-density fieldsΣ per
cluster by projectingρ along each of the three coordinate axes.
This yields three lens planes per cluster, which we considerin-
dependent cluster models for the present purpose. As long asthe
TSC smoothing kernel is sampled by sufficiently many particles,
smoothing and projecting can be interchanged, so that smoothing
the three-dimensional density prior to projecting it is equivalent to
projecting first and then smoothing the two-dimensional density.
We checked and confirmed that changing the grid resolution upby
a factor of two yields surface-mass densities with indistinguishable
lensing properties.

The surface density fields are then scaled by the critical sur-
face mass density for lensing, which depends on the cosmological
parameters and on the lens and source redshifts. We recall that the
redshift for the lensing cluster iszL = 0.278, and we put all sources
to zS = 2. This choice is motivated by the fact that galaxy clusters
at redshifts between 0.2 and 0.4 are most efficient strong gravita-
tional lenses for sources at redshiftsz>∼ 1. Although real sources
are distributed in redshift, putting all of them at a single redshift is
admissible because the critical surface density changes very little
with source redshift if the lens redshift is substantially smaller, as
is the case here.

Scaling with the critical surface density yields three two-
dimensional convergence fieldsκ for each cluster. We then propa-
gate a bundle of 2048×2048 light rays through the central quarter
of each of these fields. Their deflection angles, directly obtained
from the convergence, are used to compute the shearγ and the ele-
ments of the Jacobian matrixA, which describes the local properties
of the lens mapping. It is symmetric and can thus be diagonalised.
Its two eigenvalues are

λt = 1−κ− γ and λr = 1−κ+ γ . (1)

Radial and tangential critical lines are located where the con-
ditions

λt = 0 and λr = 0 (2)

are satisfied, respectively. The corresponding caustics inthe source
plane, close to which sources are imaged as large arcs, are obtained
applying the lens equation to the critical curves. All lens properties
are computed on grids with an angular resolution of 0.19′′ on the
lens plane, so that lensed images are properly resolved.

The sources are initially distributed on a regular grid in the
source plane. Their spatial density is iteratively increased near
caustic curves. Placing a larger number of sources where thelens
strength is highest increases the probability of producinglong arcs
and thus the numerical efficiency of the method. In the following
statistical analysis, it is then necessary to compensate for this arti-
ficial increase by assigning to each image a statistical weight pro-
portional to the inverse of the resolution of the grid on which its
source was placed.

Sources are assumed to be elliptical, with axis ratios randomly
drawn from the interval[0.5,1], and area equal to that of a circle of
1′′ diameter. We checked that changing the average source size does
not affect our final results.

For the classification of images we follow the technique in-
troduced by Bartelmann & Weiss (1994), which was also used in
Meneghetti et al. (2000).

3 RESULTS

3.1 Distributions of image properties

In this section, we present and compare the statistical properties
of the images of background sources lensed by the models of our
cluster sample. For each image, we compute the lengthl (defined
as the maximum length of the circular segment passing through
the image), the widthw (found by fitting the image with several
geometrical figures; for further details, see Meneghetti etal. 2000),
and the length-to-width ratiol/w. For the following analysis, we
combine the results of two sets of lensing simulations, in which we
used the same lenses but changed the distribution of the background
sources by drawing different orientations and axial ratios. With this
procedure we confirm the robustness of the results and improve
the statistics. Searching for large arcs, we can neglect theimages of
unlensed or even weakly lensed sources. Therefore, we can exclude
those images from the analysis whose area is smaller than twotimes
the area of their unlensed sources, which also avoids uncertainties
in the automatic arc classification and parameter estimation. The
number of images in the final analysed samples ranges between
11,252 for model S1Wc and 24,695 for model S1F.

We plot the distributions of arc properties in Fig. 2. The his-
tograms show the number of arcs observed in the field of the five
cluster models as a function of their length (top panels), width
(middle panels) and length-to-width ratio (bottom panels). Each
column refers to a different model. From left to right: the pure col-
lisionless case S1, the three models S1Wa, S1Wb and S1Wc (with
cross section of 0.1, 1.0, and 10.0cm2 g−1, respectively), and the
“fluid” limit model S1F. To facilitate the comparison, we show in
Fig. 3 the 0, 1, 10, 50, 90, 99, and 100 percentiles of the distribu-
tions plotted in Fig. 2.

Regarding arc lengths, we find that model S1 produces a
higher number of long arcs than the collisional W-models. More-
over, as shown in the top left panel of Fig. 3, the highest percentiles
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Figure 2. Histograms of the image lengths (top panels), widths (middle panels) and length-to-width ratios (bottom panels). Images, whose area is smaller than
two times the area of the unlensed source, are not consideredhere. Each column refers to a different model; from left to right: the pure collisionless case S1,
the three models S1Wa, S1Wb and S1Wc, and the “fluid” limit model S1F.

(i.e. the largest arc lengths in the sample), change significantly go-
ing from S1 and S1Wa to S1Wb and S1Wc. This is easily under-
stood in terms of the different density profiles of the modelsin
the inner regions of the cluster. S1 has a steeper profile, andso it
reaches a higher central surface density than models S1Wa, S1Wb
and S1Wc. The tangential critical curve is located whereλt = 0,
i.e. whereκ = 1− γ, andκ is just proportional to the lens surface
density. Therefore, the curve shrinks as the surface density pro-
file flattens. Consequently, the probability of producing long arcs
is highest for model S1, which has the longest tangential critical
curve.

Models S1Wb and S1Wc do not produce arcs longer that∼3′′,
hence these models are unable to strongly distort background im-
ages. Their central surface density is<∼ 55% and<∼ 50% of the
critical value, respectively, and the shear is reduced by the reduc-
tion of subhaloes and the increased axial symmetry caused bydark-
matter interaction. Consequently, the combination of convergence
and shear never succeeds to produce critical lines, regardless of the
projection considered. At the opposite end, the fluid limit case S1F
yields a number of long arcs larger than S1 because the extremely
high density in the centre of this cluster pushes the tangential criti-
cal curve outward and extends it.

The distribution of image widths is also sensitive to the size of
the interaction cross section. The zero-percentile (giving the width

of the thinnest arcs in the sample) moves to higher widths asσ⋆

increases, indicating that S1 produces thinner arcs than the W-
models. As demonstrated by Kovner (1989) and Hammer (1991),
the radial extension of a tangential arc is magnified by a factor of
order µr ∼ [2(1− κ)]−1 relative to its original size. Therefore, if
κ <
∼ 0.5 at the tangential critical line, tangential arcs are demag-

nified in width. This condition can be achieved only if the central
density of the lens is particularly high with a steep surface-density
profile, as is the case for model S1F, or if the lens has an aspher-
ical mass distribution or pronounced substructures (Bartelmann &
Weiss 1994; Bartelmann et al. 1995). In fact, these lens features
both contribute to pushing the critical curves outward, where κ is
lower. As the steepness of the density profile and the predominance
of substructures both decrease going from model S1 to the W-
models, the observed increase of the zero-percentile shownin the
second panel of Fig. 3 is consistent with our expectations. The lack
of substructures in model S1F is compensated by the very dense
core, providing this cluster with the capability of producing very
thin arcs.

From the middle panels in Fig. 2 and the middle panel of Fig. 3
(100-percentile), it can also be seen that the number of thick arcs
decreases as the interaction cross sectionσ⋆ grows. The width dis-
tribution for S1Wb and S1Wc reflects the fact that these two mod-
els produce only weak distortions on the images of the background

c© 0000 RAS, MNRAS000, 000–000



Giant cluster arcs as a constraint on the scattering cross-section of dark matter 5

Figure 3. Percentiles of the arc length, width, and length-to-width ratio
distributions are shown at the levels of 0% (open triangles and dashed lines),
1% (filled triangles and dotted lines), 10% (filled pentagonsand dotted-
dashed lines), 50% (filled squares and solid lines), 90% (open circles and
long-dashed lines), 99% (filled circles and dotted lines) and 100% (heavy
open circles and dashed lines). The figure shows the lengths (or widths or
length-to-width ratios) below which fall 0, 1, 10, 50, 90, 99, and 100 per
cent of the simulated arcs for the different cluster models.For instance, it
can be read off the top panel that all arcs produced by model S1are shorter
than 25′′.

sources, that is, both image lengths and widths are only slightly
changed with respect to their intrinsic values. On the otherhand,
the higher central surface density of the S1, S1Wa and S1F models
makes them critical for strong lensing.

Finally, and consistently with the previous discussion on arc
lengths and widths, the distributions of the image length-to-width
ratios show that, when the dark matter particles interact more fre-
quently and the density profile becomes shallower, the number of
arcs with large length-to-width ratio decreases. That is not the case

for model S1F, where the density profile is even steeper than in
model S1, causing the creation of many very long and thin arcs.

3.2 Lensing cross sections for long and thin arcs

We now compute absolute lensing cross section of the clusters for
long and thin arcs. Arc cross sections for a propertyQ are defined
as the area in the source plane within which a source has to liein
order to be imaged as an arc with propertyQ. We consider here the
cross sections for arcs with length-to width ratio larger than three
different thresholds, namely:

Q1 : (l/w)> 5

Q2 : (l/w)> 7

Q3 : (l/w)> 10

In particular, the images which satisfy conditionQ3 are commonly
called giant arcs (Wu & Hammer 1993). We are particularly in-
terested in arcs with large length-to-width ratio because they have
been observed in many galaxy clusters, and their statisticshas been
used in previous studies in an attempt to constrain cosmological
parameters (Bartelmann et al. 1998 and references therein).

Each cluster model provides six estimates of its strong-lensing
cross sections, two for each projection since we performed simula-
tions with two source distributions. We average all measurements
in order to obtain the mean cross sections for each cluster model.
The lensing cross sections of the five models are listed in Tab. 2.
Models S1Wb and S1Wc have vanishing cross sections even for
arcs satisfying conditionQ1, given that, as shown in Fig. 3, they do
not produce arcs with length-to-width ratio larger than∼ 3.5.

We find that model S1 has cross sections larger than model
S1Wa. In particular, the cross sectionsσQ2 and σQ3 of the first
model are more than one order of magnitude larger than those of
the second. This feature suggests that a galaxy cluster consisting
even of very weakly interacting dark matter should produce at least
ten times fewer giant arcs than one made of collisionless particles.
Compared to the other models, S1F has very large cross sections,
in agreement with the results shown earlier.

As a consequence of the lower curvature in the effective lens-
ing potential, arcs produced by flatter profiles tend to be more
strongly magnified. However, the corresponding change in the
magnification bias is expected to have a very small effect on the
previous results for two reasons. First, such arcs would then be
very thick, while the observed ones are generally thin and some-
times unresolved in the radial direction even when observedfrom
space. Second, the magnification bias depends on the colour selec-
tion, because the number-count slope does, and unless only very
blue or very red objects are selected, the bias is negligiblefor arcs.

A comparison of the cross sections listed in Tab. 2 for the col-
lisionless simulation (S1) shows that the cluster almost exactly re-
produces the average cross section found in the cluster sample used
by Bartelmann et al. (1998) for a lens redshift of 0.28. In addition,
we checked whether different realisations of the same cluster had
comparable large-arc cross sections. To do so, we took the clus-
ter mass distributions at different output redshifts (z= 0.20, 0.13
and 0.06) and computed their lensing properties when placed at a
redshift of 0.28. For the given cosmological parameters, the linear
growth factor changes by less than 20% between redshifts 0.28 and
0.06, so that the effect of cluster growth is unimportant. We find
only a modest growth in the large-arc cross sections when using the
cluster mass distributions at redshifts 0.20 and 0.13. Between red-
shift 0.13 and 0.06, however, the cluster undergoes a merger event
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Table 2. Lensing cross sections of the five halo models. Column 1: halomodel; column 2: cross sectionσQ1 for arcs withl/w > 5; column 3: cross section
σQ2 for arcs withl/w > 7; column 4: cross sectionσQ3 for arcs withl/w > 10; column 5: cross sectionσQR for radial arcs. All cross sections, given in units
of (Mpc/h)2, are averaged over the three projections of each cluster andtwo source-plane realisations for each projection.

Model σQ1 σQ2 σQ3 σQR

S1 6.93×10−3 4.82×10−3 2.20×10−3 8.13×10−4

S1Wa 1.46×10−3 2.37×10−4 1.26×10−4 0
S1Wb 0 0 0 0
S1Wc 0 0 0 0
S1F 3.83×10−2 2.36×10−2 1.14×10−2 1.02×10−2

with a clump of 1013h−1M⊙ and subsequent relaxation, which in-
creases its central density and therefore also the large-arc cross
section. The effect of the merger on the lensing cross section is
larger for the collisional than for the collisionless model. The in-
falling clump increases surface mass density and shear. Since the
surface density profile of the collisional cluster is flatterthan that
of the collisionless cluster, this increase in lensing efficiency af-
fects a larger region in the cluster centre. While the ratio between
the large-arc cross sections between the S1 and S1Wa models is
roughly an order of magnitude during quiescent periods, it is re-
duced to approximately five during the merger event. For similar
reasons, it is important to mention that the presence of a dominant
central galaxy could affect our different models in different ways,
being more effective on top of the flatter models. As a consequence,
the differences between collisional and collisionless cases could be
reduced. A detailed study of this effect is in progress.

Nonetheless, we can conclude (1) that the chosen cluster is
typical for clusters in theΛCDM cosmology, and (2) that the large-
arc cross section for the mildly collisional model S1Wa falls sub-
stantially below that of the collisionless model S1 for different re-
alisations of the same cluster.

3.3 Radial arcs

In this subsection, we analyse the capability of our models to pro-
duce radial arcs. Such arcs have been observed in several galaxy
clusters. For instance, two radial arcs exist in the core of MS 0440
(Gioia et al. 1998). From X-ray observations, the mass of this clus-
ter within∼ 350h−1 kpc was estimated to be 0.65×1014h−1 M⊙,
which is similar to that of the cluster we analyse here.

The appearance of radial arcs and their position within the
lensing cluster depend on both the slope of the projected mass pro-
file and on the central density of the lens. The surface density must
surpass a critical value in order for the radial critical curve to appear
where the eigenvalueλr = 1−κ+ γ of the Jacobian matrix is zero.
Moreover, the steeper the density profile is, the closer to the cen-
tre the radial arcs tend to move (Williams, Navarro & Bartelmann
1999). The observed location of radial arcs close to the cluster mass
centres suggests that the core radii of the host clusters must be quite
small (Mellier, Fort & Kneib 1993; Smail et al. 1996; Hammer et
al. 1997; Gioia et al. 1998). Due to the different slopes of the den-
sity profiles of the cluster models, we thus expect to find quite large
differences in their capacity to form radial arcs (see e.g. Molikawa
& Hattori 2000).

The radial magnificationµr at each point of the lens plane is
given by the inverse of the radial eigenvalue of the Jacobianlensing
matrix, µr = 1/λr. From the convergence and the shear, computed
as explained in Sect. 2.2, we obtainµr at each of the 20482 grid
points of the lens plane. We show in Fig. 4 how these radial magni-

Figure 4. Histograms of the radial magnificationsµr at each point on the
lens plane for the five cluster models: S1 (solid line), S1Wa (dotted line),
S1Wb (dashed line), S1Wc (long-dashed line) and S1F (dot-dashed line).

fications are distributed for the five cluster models. Each histogram
combines contributions from all three projections of each cluster.
As can be noted, values ofµr exceeding 103 are reached only by
models S1 and S1F, while models S1Wa, S1Wb and S1Wc can
only produce weak radial distortions.

Using the tangential and radial eigenvalues of the Jacobian
matrix, we can also identify the radial arcs from the complete sam-
ple of distorted images, and this enables us to compute the lensing
cross sections for radial arcs. For their automatic detection, we as-
sumed that radial arcs must lie on the radial critical curve or very
close to it. Therefore, we searched those images containingat least
one pixel for which the radial eigenvalue is≤ 0.15 and the tangen-
tial eigenvalue is≥ 0.6. These values were chosen in order to avoid
misclassifications of radial arcs.

The cross sections for radial arcs,σR, averaged over the six
simulations performed for each cluster, are listed in the fifth col-
umn of Table 2. We found that only models S1 and S1F are able
to produce radial arcs, while the W-models are not. The results for
model S1Wa are particularly interesting because this cluster seems
to have a sufficiently high surface density to produce giant arcs, but
not enough to radially distort the background galaxies.
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Giant cluster arcs as a constraint on the scattering cross-section of dark matter 7

Figure 5. Lensing cross sections of cluster model S1Wb as a function of
the rescaling factorf . The three panels show the cross sections for arcs
with l/w > 5 (σQ1 , top frame),l/w> 7 (σQ2 , middle frame) andl/w> 10
(σQ3 , bottom frame). The dashed and dotted lines in each panel indicate
the lensing cross sections of cluster models S1 and S1Wa, respectively. The
cross sections are given in units of(Mpc/h)2.

3.4 Rescaling the clusters

Our results show that models S1Wb and S1Wc cannot produce long
and thin arcs at all. Although the mass of these clusters is already
fairly large, we have checked whether an even more massive cluster
with density profile similar to that of S1Wb could efficientlyform
this kind of arcs. To this end, we rescaled the cluster mass bya
variable factorf > 1.

The virial radiusRvir of a halo scales asRvir ∝ M1/3, where
M is the virial mass of the halo. To obtain a halo of massf ×M
which is dynamically stable, we also need to rescale distances by a
factor f 1/3. This means that, while the three-dimensional densityρ
remains fixed, the halo surface density is enhanced by a factor f 1/3.
For this reason we expect that, increasing its mass, clusterS1Wb
will eventually become able to produce strong lensing effects.

We therefore perform a new set of lensing simulations, choos-
ing mass scaling factorsf equal to 3, 5, 7, and 10. We plot in Fig. 5
the cross sections of these rescaled clusters, as a functionof the
rescaling factorf . In this plot, upper, middle and lower panels refer
to the lensing cross section for length-to-width ratios larger than 5,
7, and 10, respectively. The dashed and dotted horizontal lines cor-
respond to the equivalent cross sections for models S1 and S1Wa.

We can infer from this figure that a cluster with the same den-
sity profile as our model S1Wb must have a mass of at least∼ 5.5
(∼ 4.5) times larger than the mass of our present cluster, in orderto
achieve the same strong lensing efficiency of model S1 (S1Wa).

In the same spirit, we also rescale the mass of cluster S1Wa,
to determine when it starts producing radial arcs. We multiply the
cluster mass by a factor of two and found that only one out of three
projections of the rescaled cluster was efficient in formingradial
arcs. However, the cross section of the rescaled cluster,σR= 2.68×
10−5, is still one order of magnitude lower than that of model S1.

Finally let us comment that our method to rescale the clusters is
approximate. In fact, rescaling the mass should in principle affect
the collision rate. Yoshida et al. (2000b) estimated the number of
collisions between dark matter particles per Hubble time asNcoll =
ρσ⋆V, whereρ is the three-dimensional density andV is the particle
velocity. SinceV ∝ M1/2, the number of collisions would increase
by a factor f 1/2 when the cluster mass is rescaled by a factorf .
Since our rescaling technique keepsNcoll constant while the cluster
mass is increased by a factorf , the result practically corresponds
to an effectiveσ⋆ reduced by a factorf 1/2. This means that we are
even over-estimating the lensing efficiency of thef -scaled clusters
and our previous conclusions can be considered conservative.

4 SUMMARY AND CONCLUSIONS

Self-interacting dark matter was suggested as a solution tothe
problems (1) that dwarf galaxies are observed to have flat cores,
while they should have density cusps according toN-body simu-
lations, and (2) that simulations tend to produce more substructure
in galaxies than there seems to be. In essence, the dark-matter self-
interaction flattens density cusps, increases radial symmetry, and
damps substructure; all of which are ‘desired’ effects.

However, it was shown before that asymmetries, steep density
profiles, and existence of substructures are essential for the ability
of galaxy clusters to produce pronounced strong-lensing features
like large arcs. This is due to several reasons. First, lenses need to
exceed the critical surface mass density in order to form critical
curves, which are mandatory for large arcs. Second, asymmetries
in lenses increase the gravitational tidal field, or shear, which helps
to make them critical for multiple imaging. Asymmetric clusters
can be critical at lower surface mass densities than symmetric clus-
ters. Third, observed arcs are generally thin, i.e. little magnified or
even demagnified in the radial direction. For this to be the case,
the surface mass density needs to be lower than about half thecrit-
ical surface density at the location of the arcs. Together with the
requirement that the surface density be supercritical in lens centres,
this implies that density profiles have to be steep.

In other words, the introduction of self-interaction between
dark-matter particles is expected to have a pronounced, potentially
‘undesirable’ impact on the ability of clusters to produce large arcs:
it is exactly the desired effect of the self-interaction, namely to
make clusters flatter, rounder, and smoother, that on the other hand
threatens to destroy their strong-lensing capabilities. In this paper,
we have investigated this effect on the second-most massivecluster
in a cosmologicalΛCDM simulation, and produced the following
results:

• The introduction of self-interaction even with a small cross
section ofσ⋆ = 0.1cm2 g−1 reduces the cluster cross section for the
production of large arcs by about an order of magnitude compared
to the collisionless case.
• Upon further increase of the interaction cross section, theclus-

ter becomes entirely uncritical and cannot produce arcs anymore,
despite the otherwise favourable conditions in terms of cluster mass
and redshift.
• The cross section for radial arcs vanishes even for the smallest

interaction cross section considered.
• The cluster with an interaction cross section ofσ⋆ =

1.0cm2 g−1 would require about five times more mass to reach
the cross section for large tangential arcs of the cluster with σ⋆ =
0.1cm2 g−1, and about 6−8 times more mass to restore the cross

c© 0000 RAS, MNRAS000, 000–000
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section of the collisionless cluster. Due to the steepness of the clus-
ter mass function, the spatial number density of such clusters at the
redshift considered is more than six orders of magnitude smaller
than that of the original cluster.

• The strong-lensing cross section of the cluster model inves-
tigated here is almost identical to the average cross section found
in a sample of clusters simulated earlier in theΛCDM cosmology
(Bartelmann et al. 1998). Also, the cross sections obtaineddo not
change significantly when the cluster model is taken at different
output times and placed at the original lens redshift ofz= 0.28.

At a length-to-width ratio ofl/w ≥ 10, the abundance of ob-
served arcs brighter thanR= 22.5 is ∼ 0.2−0.3 per cluster with
X-ray luminosity≥ 2×1044ergs−1. Extrapolated to the whole sky,
there should be∼ 1500− 2300 such arcs. Numerically simulated
clusters in a (cluster-normalised)ΛCDM model fall short by about
an order of magnitude of producing this number of arcs (Bartel-
mann et al. 1998). It may be possible that massive central cluster
galaxies can increase the arc optical depth ofΛCDM clusters suf-
ficiently to reconcile it with observations (Williams et al.1999).
However, a further reduction of the strong-lensing cross section
by an order of magnitude due to even mild dark-matter interaction
seems problematic in view of the observed arc abundance.

Although the inability to produce radial arcs of the clusters
with interacting dark matter is a potentially important piece of in-
formation, it is currently impossible to draw any firm conclusions
from comparisons with data. Radial arcs have so far been reported
in five galaxy clusters (MS 2137, Fort et al. 1992; A 370, Smailet
al. 1996; MS 0440, Gioia et al. 1998; AC 114, Natarajan et al. 1998;
A 383, Smith et al. 2000), all of which are located near brightgalax-
ies in the cluster centre. It is currently unclear what exactly the
influence of the galaxies on the occurrence of the radial arc is, and
how the presence of luminous galaxies near cluster centres prevents
the detection of more radial arcs. A statistical comparisonof pre-
dicted and observed radial-arc numbers therefore appears prema-
ture. In principle, the ratio of the clustercentric distances of radial
and tangential arcs could be used to constrain the cluster density
profile, but in practice at least redshift estimates of the arc sources
would have to be available.

Of course, our simulations are insufficient for statistically
sound statements on the total arc cross section of a given cluster
population. However, given the massive impact of dark-matter in-
teraction even with the smallest cross section considered,we con-
clude that the dark-matter self-interaction hypothesis may be in se-
vere conflict with the abundance of large arcs unless the interaction
cross section is very small.
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