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ABSTRACT

The possibility that quasi-equilibrium self-gravitating galaxy-like

configurations exist in a tidal field is analyzed in this paper. More

specifically, we address the question of how to predict initial configurations

modeling galaxies that are able to survive environmental effects in a dense

environment for a Hubble time or so, provided thay dynamical friction is

neglected. For simplicity, the configurations in the tidal field have been taken

initially to be spherically symmetric and to have an isotropic velocity dispersion

tensor (t-limited King spheres); they orbit inside steady state, spherical halos,

as those that presumably surround compact galaxy groups and galaxy clusters.

Both circular and eccentric orbits have been considered. In both cases, the

initial quasi-equilibrium configurations have been built up taking into account

the external tidal field produced by the halo. It modifies the escape velocity

field of the configuration, compared with isolated configurations. The survival

of the configurations as they orbit inside the halos has been studied through

N-body simulations. As a general result, it has been found out that the

bulk of the models is conserved along 12.5 Gyears of evolution, and that the

low rates of mass losses they experience are consistent with those expected

when the adiabatic protection hypothesis is at work. So, solutions for galaxy

configurations in tidal quasi-equilibrium have been found, showing that tidal

stripping in quiescent phases does not seem to be very important, unless that

the density of the galaxy environment at its formation had been much lower

than that of the galaxy environment at the point of its orbit where the tidal

perturbation is maximum.

Subject headings: methods: analytical-celestial mechanics, stellar dynamics,
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galaxy dynamics
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1. Introduction

Dense halos of dark matter have first been detected in galaxy clusters and, then, in

many galaxy groups, through observations of X-ray diffuse emission of the gas component

surrounding the member galaxies (Boehringer 1997; Ponman et al. 1996). Also, some small

dwarf galaxies are known to be orbiting inside the dark halos of larger ones (e.g. Mateo

1998). Interactions with such dense environments can cause these galaxies several dynamical

effects (i.e. tidal heating, mass loss from tidal stripping, energy loss from dynamical friction,

among others) that could result in severe modifications, relative to isolated galaxies, of the

evolutionary history of both, individual galaxies and the systems they form. In fact, some

characteristic times and scales playing relevant roles in astrophysical processes, such as the

typical times for decay to the center of the halos, the rates of background enrichment by

processed gas and so on, could change appreciably, depending on the characteristics of the

environment (e.g., Gunn & Gott 1972; Merritt 1985; Moore, Lake, & Katz 1998).

The modelization of environmental interactions has been mainly carried out through

N-body simulations of the evolution of a theoretical galaxy model moving in an external

field (Barnes 1985; Funato, Makino, & Ebisuzaki 1993; Bode, Cohn, & Lugger 1993;

Bode et al. 1994; Garćıa-Gómez, Athanassoula, & Garijo 1996; Athanassoula, Makino,

& Bosma 1997 and references quoted therein). One of the main shortcomings of galaxy

models appearing in the literature is that, in most cases, galaxies are built up as if they

were isolated. However, to properly quantify the effects of environmental interactions, it

would be more convenient that the galaxy model, at the beginning of the simulation, takes

into account the external forces. Otherwise, it is difficult to disentangle which effects are

effectively due to interactions and which ones are spurious, due to an incorrect choice of the

initial galaxy model (see Gómez-Flechoso & Domı́nguez-Tenreiro 2000, hereafter GD00, for

a discussion). In this paper, we will focus on the choice of the initial galaxy model and on
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how this choice affects the later evolution of the galaxy as it orbits inside a halo. The effects

of the dynamical friction and the interactions between galaxies in groups and clusters will

be tackled in forthcoming papers.

King models (King 1965, 1966) provide a good framework to study equilibrium

self-gravitating configurations. They are based on distribution functions that depend on

the potential, Φ, causing the forces felt by the constituent particles. So, if the body is

isolated, the potential that enters in King distribution functions is Φ = ΦS, where ΦS is due

to the mass distribution of the self-gravitating configuration (hereafter, satellite); however,

when it moves through an external halo, then Φ = ΦS + Φext must be used instead, where

Φext is the potential causing the external force seen by the constituent particles. This force

also determines the limiting or tidal radius of a spherical configuration, rt, that can be

defined as the asymptotic distance at which constituent particles remain stably bound to

the satellite. In spite of this, most King models found in literature are constructed on the

assumption that Φ = ΦS and take rt as a free parameter, even if the body is not isolated

(Meylan & Heggie 1997; but see also Heggie & Ramamani 1995). The tidal radius is a

fundamental parameter of King models describing spherically symmetric satellites, when,

as due, the effects of the external field are explicitly taken into account (hereafter, t-limited

King models).

The stability of self-gravitating configurations relative to tidal perturbations is

equivalent to the stability of the orbits of its constituent particles. After the pioneering work

by King (1962), the problem of tidal limitations imposed on such configurations has been

studied in models provided by the circular and elliptical restricted three body problems

(Keenan & Innanen 1975; Jefferys 1976; Keenan 1981a and 1981b). When the configuration

is on a circular orbit, the problem can be worked out in some detail, as the equations of

motion of their constituent particles have one integral of motion, the Jacobi integral, EJ ,
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that can be used to define zero velocity surfaces in the configuration space. Stability against

escape for a given orbit is assumed when the corresponding zero velocity surface is closed

(Spitzer 1987; note that the zero velocity surface can be open and, nevertheless, the particle

does not escape over a given time interval). And so, the limiting radius, rt, has been defined

in terms of the distance, xe, from the satellite center to the inner Lagrange point of the

potential Φ = ΦS + Φext. However, in a tidal field zero velocity surfaces are not spherically

symmetric and, then, an ambiguity arises when one intends to determine the radius of

a spherically symmetric body embedded in a tidal field that has not this symmetry. So,

different authors make different choices. King (1962) takes rt = xe, while Keenan (1981b)

suggests that rt = 2xe/3 is preferable (see also Innanen, Harris, & Webbink 1983; Spitzer

1987; Lee 1990; Heggie & Ramamani 1995); these choices correspond to two semiaxes of the

Roche surface.

No integral of motion exists when the satellite moves along a non circular orbit, as the

intensity of the tidal field changes periodically with time, being maximum at pericentric

passage. The question then arises of whether or not the energies of most constituent

particles are conserved to a good approximation so that local (i.e., depending on the

satellite orbital phase) tidal radii could be defined, as in the circular motion case, that

would translate into satellites in tidal quasi-equilibrium (note that, in the strict sense,

equilibrium configurations do not exist in a tidal field, because some degree of mass losses

can never be avoided). We see that more complications are added on the theoretical side

to the ambiguities appearing in the circular case. Observational data on the limiting radii

of globular clusters cannot clarify the situation either, as no clear conclusion has still been

reached on their possible dependence on the cluster orbital phase (Oh & Lin 1992; Oh, Lin,

& Aarseth 1992; Meziane & Colin 1996; Brosche, Odenkirchen, & Geffert 1999). In any

case, results on tidal equilibrium for globular clusters, where two-body heat conduction

plays an important role, could be not valid for galaxy-like configurations, that are essentially
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collisionless systems.

The purpose of this paper is to deepen into the understanding of tidal quasi-equilibrium

for self-gravitating galaxy-like configurations, in particular to predict initial configurations

for galaxy models which will survive environmental effects along a Hubble time or so.

The possibility to predict self-gravitating spherical collisionless configurations in tidal

quasi-equilibrium has been tested through Montecarlo realizations of the t-limited King

models. They are left to evolve in the corresponding external field, which has been

described by an analytical expression. Various possibilities have been explored about the

matching of the internal and external field of forces at the limiting radius of the galaxy

model. Most of the previous works on tidal quasi-equilibrium referred to globular clusters

moving in a galactic potential. As here we are mainly concerned with the influence of dense

environments (i.e., halos) on galaxy evolution, the halo density profiles used in our test are

those of dark halos appearing in N-body simulations of hierarchically clustering universes

(Navarro, Frenk, & White 1996), and the parameters of the galaxy models correspond to

those of typical ellipticals.

The paper is organized as follows: in §2 we give the general expression for the tidal

field caused by a spherical static halo in the harmonic approximation. In §3 we specify the

models and parameters of halos, orbits and galaxies used to make our study. The results of

this study are presented in §4. Finally, in §5, the summary and conclusions of the work are

given.

2. The Tidal Field Caused By A Spherical Static Halo: General Expression

As a first step to build up quasi-equilibrium initial configurations in a tidal field, in

this Section we derive the general expression for the tidal field caused by a spherical halo in



– 8 –

the harmonic approximation. Let us consider a satellite of mass MS distributed according

with a density profile ρS(r, t) embedded in a static, spherically symmetric extended halo

of total mass MH and density profile ρH(R). The satellite is assumed to move on an orbit

characterized by energy EH and orbital angular momentum per unit mass LH , relative to

an inertial system of reference. Let RS(t) and V S(t) be the instantaneous position and

velocity vectors of the center of mass of the satellite, relative to an inertial system, SO,

with origin at the center of potential, O, of the halo. Relative to the center of mass of the

system formed by both, the satellite and the halo, the center of potential, O, and the center

of mass of the satellite have position vectors

R
′

O =
−MS/MH

1 +MS/MH
RS = O(MS/MH)

R
′

S =
1

1 +MS/MH
RS = RS +O(MS/MH) (1)

Neglecting terms in MS/MH , the combined potential of the halo and the satellite has

spherical symmetry, and so, LH is conserved in SO. The satellite moves around the point O

with an instantaneous angular frequency Ω(t) = LH/R
2
S(t) (which is constant for circular

orbits). In a coordinate system, SΩ, that rotates at an angular speed Ω(t) with respect to

SO, the equation of motion for the mass center of the satellite is

d2RS

dt2
= −

[

Ω̇×RS + 2Ω× ṘS +Ω× (Ω×RS)
]

−∇ΦH(RS) (2)

where the first, second and third terms on the r.h.s. of Eq. (2) are the inertial force of the

rotation, the Coriolis force and the centrifugal force at RS and the last term is the force

caused by the mass distribution of the halo at point RS.

Let us now consider a bound particle P belonging to the satellite, whose position
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relative to S is r and the relative to O is RP (RP = RS + r). The equation of motion for

P in SΩ is

d2RP

dt2
= −

[

Ω̇×RP + 2Ω× ṘP +Ω× (Ω×RP )
]

−∇ΦH(RP )−∇rΦS(RP ) (3)

where the last term is the force on P caused by the mass distribution of the satellite.

From Eqs. (2) and (3) the equation of motion of P in the coordinate system, SS,

centered at S and that rotates with instantaneous angular speed Ω(t) with respect to SO is

d2r

dt2
= −

[

Ω̇× r + 2Ω× ṙ +Ω× (Ω× r)
]

−∇rΦS(r)−∇ΦH(RP ) +∇ΦH(RS) (4)

and a series development around RS gives, at first order in r/R:

d2r

dt2
= −[Ω̇× r + 2Ω× ṙ]−∇rΦS(r)−∇rΦ

tidal(r) (5)

where

Φtidal(r;RS,Ω) = βr2 + (α− β)

(

r ·RS

RS

)2

+ (γ − β)

(

r ·Ω

Ω

)2

(6)

and

α =
1

2
(Φ′′

H(RS)− Ω2) = 2πG(ρH(RS)−
2

3
ρH(RS))− Ω2/2

β =
1

2
(Φ′

H(RS)/RS − Ω2) =
1

2
(
4πG

3
ρH(RS)− Ω2) (7)

γ =
Φ′

H(RS)

2RS
=

2πG

3
ρH(RS)
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with ′ ≡ d/dR and ρH(R) the mean halo density in a sphere of radius R. The

inertial force of rotation and the Coriolis force cannot be put as the gradient of a scalar

potential. Eq. (6) tells us that the tidal potential Φtidal(r) can be written as a contribution,

Φtidal
r (r) ≡ βr2, that gives rise to an isotropic radial force, F tidal

r , and contributions giving

rise to forces in the direction of RS and Ω. Taking in SS a cartesian coordinate system

with the X axis pointing towards RS, ex = RS/RS, the Z axis defined by ez = Ω/Ω and

ey such that ez × ex = ey, the tidal potential can be written as a quadratic form:

Φtidal(x, y, z) = αx2 + βy2 + γz2, (8)

giving rise to forces in the three orthogonal directions (hereafter, F tidal
R

, F tidal
Ω×R

and

F
tidal
Ω , respectively). In Figure 1 we represent the intensity of the three components of the

tidal force, for one of the models studied in this paper (see §3 and Table 3), as function

of RS. If the satellite is in circular motion then Ω2 = Φ′
H(RS)/RS, and Φtidal

r (r) = 0. In

the general case, β < 0 (β > 0) at the pericenter (apocenter) of the satellite orbit, while

α < 0 and γ > 0 anywhere in the orbit. So, the F
tidal
R

(F tidal
Ω ) force changes its intensity

being always disruptive (compressive), while the radial tidal force changes its sign and

intensity as the satellite travels, being maximally disruptive at the pericenter and maximally

compressive at the apocenter.

Defining an effective potential Φeff(r;RS,Ω) as the total potential felt by the P

particle,

Φeff(r;RS,Ω) = ΦS(r) + Φtidal(r;RS,Ω), (9)

then the energy (Jacobi integral)
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EJ =
1

2

(

dr

dt

)2

+ Φeff(r;RS,Ω) (10)

is not in general conserved

dEJ

dt
= −ṙ · (Ω̇× r) +

∂Φeff
∂t

. (11)

Note that in the reference system SS, ∂Φeff/∂t 6= 0 because ṘS(t) 6= 0. Then, if the

satellite is in circular motion, ṘS(t) = 0, Ω̇ = 0 and EJ is conserved along the trajectory of

the P particle.

The angular momentum of the P particle is in general not conserved in SS

dL

dt
= −r × (Ω̇× r)− 2r × (Ω× ṙ) + 2

β − α

R2
S

(r ·RS)r ×RS + 2
β − γ

Ω2
(r ·Ω)r ×Ω, (12)

except for particles that move in radial trajectories along the Ω axis.

3. Halos, Orbits and Galaxies

As an external field we have taken the potential due to a massive halo, with a mass

distribution corresponding to a density profile given by:

ρH,N(R)

ρcrit
=

δc
(R/RC)(1 +R/RC)2

. (13)

with ρcrit the critical energy density corresponding to a flat geometry. This is an accurate

analytical fit over two decades in radius and four orders of magnitude in mass to the

equilibrium density profiles of dark matter halos which form in high resolution N-body
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simulations in hierarchically clustering universes (Navarro, Frenk & White 1996). They are

characterized by two parameters: a scale radius, RC , and a characteristic dimensionless

density, δc, which in turn are correlated. Note that ρH,N(R)/ρH,N(R) takes values in

the interval (1.50 , 3.17) for 0 ≤ R
RC

≤ 2.5. This form of the profile has been chosen

because we intend to analytically describe halos with different masses, so that different

physical situations in which tidal forces play an important role can be globally considered.

Specifically, in this work we will study orbits inside halos typically corresponding to galaxy

clusters and galaxy compact groups (c and g halos, respectively). In Table 1 we give the

particular parameter values we have used. This corresponds to a mass inside the virial

radius, R200 (the radius inside which the overdensity is 200), of M200 = 1.74 × 1015 M⊙

and M200 = 2.1 × 1013 M⊙, that is, about the typical mass of a galaxy cluster and a

compact group, respectively. Note that the tidal field (and its radial gradient) produced by

a compact group like halo, at its characteristic length (RC = 40 kpc), is stronger than that

produced by a galaxy cluster like halo, at its typical RC = 600 kpc. Dark matter halos have

been represented analytically by a continuous function because we are mainly interested in

exploring the possibility that tidal quasi-equilibrium configurations are realized in Nature,

and not in studying the effects of the dynamical friction force between the galaxy and

the halo, that the fluctuating forces arising from their discrete character would cause.

Otherwise, tidal and dynamical friction effects could not have been properly disentangled,

as it is often the case in the literature.

The definition of the tidal radius is more sound from a physical point of view when

the satellite is in uniform circular motion (see § 4). So, as a first test, satellites have been

put on circular orbits for halos corresponding to galaxy clusters (c model). Small RS values

have been selected because the tidal effects are stronger in the central regions of the halo.

Also, general orbits have been considered, in this case for compact group-like halos (g

model). Parameters characterizing these orbits are listed in Table 2.
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Concerning galaxies, numerical simulations of the gravitational collapse in a

cosmological framework show that collapsed bodies are spherical symmetric in their relaxed

central zones. So, as a simplifying hypothesis, we will assume that the satellite galaxy is

spherically symmetric and has an isotropic velocity dispersion tensor. Note, however, that

these symmetries will only approximately hold for a satellite particles that move according

with Eq. (5), particularly those whose apocenters lie in the outskirts of the configuration.

Initially, self-gravitating spherically symmetric configurations will be taken to be

t-limited King spheres with an isotropic velocity dispersion tensor, i.e., King spheres with

their tidal radius determined by the tidal field. They are based on the so-called King-Michie

distribution function (DF), f(r, E), that is an approximative stationary solution of the

Boltzmann equation with a Fokker-Planck collision term (King 1965, 1966; Michie 1963).

These DF are lowered Maxwellians, with a cut-off at the escape velocity to the border of

the configuration for the less bound particles at each position. This escape velocity can be

written as:

v2esc(r) = 2 (K − Φ(r)) (14)

where Φ(r, RS) is the total potential felt by the satellite particles and K is a

constant defining the zero point of the potential. In terms of the shifted energy,

ε(r) = Φ(r, RS) + v2/2 −K, the King-Michie DF is zero for ε(r) > 0 and for ε(r) ≤ 0 it is

given by:

f(r, v) = k exp[W (r)−W0][exp(−j2v2)− exp(−j2v2esc(r))] (15)

where j2 = 1/2σ2
0; σ0 is an approximation to the 1-dimensional velocity dispersion at

the center of the configuration; W (r) = 2j2 (K − Φ(r, RS)) is the dimensionless potential;
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W0 ≡ W (0) is a parameter of the model and k is a normalization constant. Standard

King-Michie spheres take Φ(r, RS) = ΦS(r) and they have rt as a free parameter. Other

free parameters for these isolated spheres are the dimensionless central potential, W0, the

approximate central velocity dispersion, σ0, the core radius, ro, and the total mass, MS .

Note that only three of them are independent (e.g. Binney & Tremaine 1987).

In an external field, rt is determined by the external forces and only two more

parameters for t-limited King models are left free. To our knowledge, no description of the

method to build-up King spheres with a prefixed rt can be found in the literature. So, we

will briefly comment on it. First, we note that inside a spherically symmetric satellite we

must have an isotropic potential. However, the tidal potential is not spherically symmetric,

therefore we need to approximate the inner tidal potential field, Φtidal(r;RS) (Eq. (8), to

an isotropic field, Φtidal
radial(r;RS) (see §4.1 for a discussion on the approximation). Now,

to build-up these t-limited King spheres, the Poisson equation for the satellite potential,

ΦS(r, RS), must be solved with a density given by the King-Michie DF (Eq. (15)), which,

on its turn, depends on the total potential Φ(r, RS) = ΦS(r, RS) + Φtidal
radial(r;RS)

ρS(r) =
∫

dvf(r, E) =
ρ0

Γ(5/2,W0)
exp [W (r)−W0] Γ(5/2,W (r)) (16)

where ρ0 = ρS(0) and Γ(α,W ) is the incomplete gamma function.

In order to solve the Poisson equation, appropriated boundary conditions have to

be specified. First, as usual, the net force at the center of the configuration must vanish
(

dW (x)
dx

)

x=0
= 0 and W (0) = W0. Moreover, given a satellite of mass MS, the tidal field

fixes its tidal radius and one must have M(xt) = MS, (or equivalently W (xt) = 0), where

xt = rt/ro and

M(xt) = 4πr3o

∫ xt

0
x2dxρS(W (x)). (17)
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To build-up t-limited King spheres in a given point, RS, of the satellite orbit,

characterized by EH and LH , the following practical procedure has been used: i) we choose

as free parameters of the configuration MS and ro, ii) the W0 parameter is determined by

the condition W (xt) = 0 and iii) Eq (17) and M(xt) = MS gives the central density, ρ0, and

then the relation (King 1966)

4πGr2oρo
σ2
0

= 9 (18)

gives j2 = 1/2σ2
0, that is, the σ0 parameter.

Once an orbit has been selected, the t-limited King models corresponding to the tidal

field at different points in the orbit have been obtained. The values of the satellite mass,

MS, and core radius, ro, used as input are MS = 2.2 × 1011M⊙, ro = 2.4 kpc for galaxy

models on c-type orbits, and MS = 1.3× 1011M⊙, ro = 1.2 kpc for galaxy models on g-type

orbits. Different models for the tidal radius have been considered (see §4). In Table 3 we

give these tidal radii and in Table 4 we give their corresponding W0 and σ0 values. Note

that both σ0 and MS are within the observationally allowed ranges for typical elliptical

galaxies.

Once the velocity DF (given by Eq. (15) with the corresponding parameters) and

the density profile (given by Eq. (16)) have been determined, a galaxy represented by a

Montecarlo realization of these velocity DF and density profile, with 10000 particles, has

been built up. Galaxies are non-rotating in the SS rotating frame and so the tidal potential

is time-independent as far as RS is constant along the orbit. These systems have been left

to evolve during a time interval of 12.5 Gyears, under the gravitational forces caused by

both, the particle configuration and the dark matter halo. A treecode algorithm (Hernquist

1987), modified to take into account the external force caused by the density distribution

given by Eq. (13) acting on each satellite particle, P, has been used to integrate the motion

equations. Note that the approximations discussed in §2 are not used at this stage; these
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approximations are only used to build up the initial configurations of the self-gravitating

satellites (see §4). The neglect of the stochastic forces caused by the discrete character

of the halo is not likely to substantially modify the results we obtain. The study of the

dynamical friction effects must be made for each particular case, however, no important

effects can be expected both for a cluster like halo of M200 = 1.74 × 1015 (see Klypin et

al. 1999, their Figure 7), or a compact group like halo when the velocity dispersion of the

orbiting galaxies is of the order of that of the halo itself (see Tables 2 and 4, and Eq. (53)

of Domı́nguez-Tenreiro & Gómez-Flechoso 1998, where it is shown that, when this is the

case, the dynamical friction timescales can be considerably longer than those predicted by

the popular Chandrasekhar 1943 formula).

4. Results

4.1. Satellite in uniform circular motion

In this case RS and Ω do not change, and α = 2πG(ρH(RS) − ρH(RS)), β = 0 and

γ = 2πGρH(RS)/3. EJ , and, consequently, εJ = EJ − K, are integrals of the motion

for the satellite particles as it orbits inside the halo. The gradient of the tidal potential,

∇rΦ
tidal(r;RS,Ω), makes a contribution to ∇rΦeff(r;RS,Ω) that has the same sign as

∇rΦS(r) along the z direction, while it has the opposite sign along the x direction (see Eqs.

(8)). The effective potential has a saddle point at positions L±
X = (±xe, 0, 0) where

x3
e = −

GMS

2α(RS)
, (19)

These points are Lagrange points, where the net force on a satellite particle vanishes,

when terms of second order in r/RS or higher are neglected, as in Eq. (5). The equipotential

surface Φeff(r;RS,Ω) = Φeff((xe, 0, 0);RS,Ω) is the corresponding Roche surface; this is
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the last closed zero velocity surface relative to the conserved Jacobi integral EJ .

As pointed out in §1, the limiting radius, rt, is usually defined in terms of the xe

distance: while King (1962) takes rt,K = xe, Keenan (1981b) proposes rt,Kee = 2xe/3. As a

first step to study quasi-equilibrium configurations, we have built-up t-limited King spheres,

with limiting radii equal to both, rt,K and rt,Kee, and moving along a circular orbit (with

parameters as specified in Table 2) inside a cluster-like halo, characterized by parameters as

specified in Table 1. The zero point of the potential for these spheres has been taken to be:

K(RS) = Φeff((xe, 0, 0);RS,Ω) = −
3GMS

2xe(RS)
(20)

In this way we ensure that the zero velocity surface for εJ = 0 particles (i.e., the

less bound ones) is also the limiting surface of the configuration (ideally defined as the

equipotential surface where the less bound particles and with minimum angular momentum

have their apocenters, see Gómez-Flechoso 1997 for a discussion).

To test out that the results on the evolution of the galaxy models presented in this

paper are free from two-body effects, the evolution of isolated King models, corresponding

to the galaxy models in Tables 3 and 4, has been followed in control simulations. After 12.5

Gyears, no two-body effects have been detected in any case at a significant level. As an

illustration, in Figures 2 we plot the evolution of the radii enclosing a 75% and a 95% of the

isolated satellite initial mass, normalized to the corresponding limiting radii and referred to

the center of density of the galaxy, for one c-model (Figures 2a and 2b) and one g-model

(Figures 2e and 2f).

Let us now turn to the behavior of the galaxy models orbiting on circular orbits inside

the halo. In Figures 2a and 2b we show the evolution of the radii enclosing a 75% and a

95% of the satellite total initial mass, MS, for c-Kee and c-K galaxy models, normalized to
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the corresponding tidal radii. These radii are referred to the center of density of the galaxy.

In these Figures, we see that, for both prescriptions, the increase of these radii is nearly

imperceptible, and in fact, the comparison with the behavior of the isolated King model

indicates that the almost negligible rate of orbit expansion can be entirely accounted for as

a result of two-body heating.

Another way to quantify the diffusion in position space is to analyze the evolution of

M(r, t)/MS, the mass inside radius r, normalized to the initial satellite mass, MS. This is

plot in Figure 3 for the c-Kee model at t = 0, 6.25 and 12.5 Gyrs. This Figure indicates

that at t= 6.25 Gyrs, only the 0.8% of the initially bound particles are beyond the tidal

radius (similar result is obtained for c-K model). At the end of the simulation, the 2.3% of

the particles are at r > rt. However, these minor changes result from two-body evolution,

and, moreover, in any of c models, the innermost volumes of the galaxies (inside a sphere

of, say, r/rt ≃ 0.3) are absolutely not affected by the evolution.

Let us now analyze the evolution of the particle velocity distribution. The average

velocity dispersion of particles that remain at the configuration does not appreciably

change. In Figure 4a we represent M(> v, t)/MS(t) ,i.e., the fraction of particles hotter

than a given v, versus v normalized to the initial 3-D velocity dispersion at several times

for the c-Kee prescription (escapers have not been included). No evolution is detected at a

significant level for this model. The behavior of the c-K model is similar.

The anisotropy parameter for a given particle sample, βan = 1 − σ2
θ/σ

2
r , where σθ (σr)

is the tangential (radial) velocity dispersion for the sample in consideration, quantifies how

much a given velocity distribution deviates from one with an isotropic velocity dispersion

tensor, that would have βan = 0. In Figure 5 we show the evolution of the βan parameter

for configuration particles outside the radius enclosing the 67% of the bound (i.e., excluding

escapers) mass at each time. Both models exhibit similar amounts of anisotropy (roughly
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≃ 0), indicating that the evolution of the external orbits (the most affected by the tidal

field) is negligible.

The negligible amount of change along 12.5 Gyears of evolution indicates that both

the c-K and c-Kee models are quasi-equilibrium configurations in the cluster tidal field. As

explained above, rt,K and rt,Kee correspond to the semiaxes of the galaxy Roche surface

along the OX and OY directions, respectively. To gain some insight into the physical basis

of this quasi-stable configuration, let us recall that for a spherically symmetric system, the

escape velocity to the border of the configuration at position r can be written:

vesc(r;RS) = (2|K(RS)− ΦS(r)− Φtidal
radial(r;RS)|)

1/2 (21)

once the isotropic approximation Φtidal
radial(r;RS) for the tidal potential is considered. A

stable configuration needs to have zero escape velocity at its limiting radius, vesc(rt;RS) = 0.

This condition ensures the stability of the configuration because the inner escape velocity field

of the King model satisfies the boundary conditions imposed by the tidal field, so that the

effective potential vanishes at rt. But taking rt = rt,K = xe, the vesc(rt;RS) = 0 condition and

Eq. (21) demand that at rt the tidal potential is Φ
tidal
radial(rt;RS) = α(RS)r

2
t = Φtidal

radial,α(rt;RS),

with α(RS) given by Eq. (19); taking rt = rt,Kee = 2xe/3 the tidal potential at rt must

be Φtidal
radial(rt;RS) = β(RS)r

2
t = Φtidal

radial,β(rt;RS) (= 0 for circular orbits). By continuity

requirements, the limiting radii prescription in the c-K and c-Kee models can thus

now be looked at as a result of two different choices of the Φtidal
radial(r;RS) potential

field under the condition that vesc(rt;RS) = 0, namely Φtidal
radial,α(r;RS) = α(RS)r

2 and

Φtidal
radial,β(r;RS) = β(RS)r

2. A third possible choice for the Φtidal
radial(r;RS) potential is to take

Φtidal
radial,γ(r;RS) = γ(RS)r

2 that results, under the condition of zero escape velocity at rt,

in a limiting radius, rt,γ, corresponding to the semiaxis of the galaxy Roche surface along

the OZ direction. Hereafter, the limiting radii satisfying the zero escape velocity condition
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for a given choice of Φtidal
radial(r;RS) will be termed after this choice. In Table 3 (first row)

we give the corresponding numerical values for models of the galaxy under consideration,

and of the halo and circular orbit as specified in Tables 1 and 2. Note that rt,α (or

rt,K) > rt,β (or rt,Kee) > rt,γ. For completeness, in Table 3 we also give the limiting radii,

rt,M, corresponding to the case where Φtidal
radial(r;RS) is taken to be the monopolar component

of the tidal field potential expansion (Eq. (6)) into spherical harmonics, namely:

Φtidal
radial,M(r;RS) = (α(RS) + β(RS) + γ(RS))r

2/3. (22)

The tidal radius rt,M represents a kind of average radius of the Roche surface. The

results described above concerning the near-constancy of the configuration along 12.5

Gyears, both for the rt,K and rt,Kee choices, with mass losses compatible with that expected

from two-body heating, suggests that the ambiguity in the precise prescription for rt,

has no consequences, with the different choices being essentially equally good, provided

that the initial configuration is a quasi-equilibrium one. This non-evolving character of

quasi-equilibrium collisionless self-gravitating configurations as they move on circular orbits

inside a tidal field, can be easily understood in the framework of the adiabatic protection

hypothesis (see §4.2), because the time-independent character of the tidal field in the

rotating SS frame would imply zero escape rates.

4.2. Satellite in General Motion

If the satellite is not in circular motion, the intensity of the tidal forces changes as the

satellite orbits, being maximum (minimum) at pericenter (apocenter) passage (see Figure 1

for an illustration). Moreover, in the SS frame, a force term in F
Ω̇
= −Ω̇× r appears that

cannot be expressed as the gradient of a potential; however, the disruptive effects of the
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tidal forces are more important than those of this term for almost all the satellite particles

along the orbit2, and particularly so at pericenter where this term vanishes, so that it can

be safely neglected in this work in what concerns the set-up of the initial configurations

(this term is not neglected in the numerical models, where, as explained above, the exact

force produced by the halo on each satellite constituent particle has been considered).

Because Φeff (RS) is not constant, neither EJ nor εJ are conserved, as deduced from Eq.

(11). The effective potential Φeff changes with a timescale given by the anomalistic period

of the satellite, T , (i.e., the time interval between two successive pericenter passages).

When a particle of energy E orbits inside a time-dependent potential with sideral

period τ , its energy can be increased or decreased as time passes; in most cases, the

average energy of a particle system in a time-dependent potential tends to increase (see

Spitzer 1987). The relative energy change in a given orbit per revolution can be very small

if T/τ > 1. In fact, it has been shown (Kruskal 1962) that it goes to zero faster than

any power of T/τ , as, for example, does an exponential function of −AT/τ (with A a

dimensionless constant of order unity, see Spitzer 1987), provided that the T and τ periods

are not commensurate quantities, otherwise resonance phenomena can occur (Weinberg

1994). So, an energy gain occurs when T < τ and it would result in an orbit expansion.

If this happens for an important fraction of the satellite constituent particle orbits, the

satellite will expand and loss mass at a rate similar to the expansion rate. On the contrary,

if T > τ for most of the constituent particles (or T > tdyn, where tdyn is a dynamical time

measuring an average period for the satellite constituent particles), then only moderate

satellite heating can be expected: the system is said to be adiabatically protected. In any

2The heating due to F
Ω̇
can only produce the loss of a reduce number of particles that

have a large internal angular momentum parallel to the angular momentum of the satellite

orbit
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case, as mass loss rates are similar to the satellite expansion rate due to tidal heating, it

can be expected that the relative mass losses of a galaxy with a dynamical time scale tdyn

orbiting with a period T go to zero approximatively as exp(−AT/tdyn).

Now, let us point out that only when mass losses are unimportant, that is, when the

system is adiabatically protected, is quasi-equilibrium in a tidal field a physically sound

concept: tidal quasi-equilibrium demands low mass losses as the satellite orbits. But in this

case the energies of most satellite particles will be conserved to a good approximation, and,

then, the equilibrium tidal radius can be calculated following the same physical reasoning

as discussed in §4.1, namely rt(RS) must be taken to be the radii of the Roche surface along

the three axis, or, equivalently, must be taken such that the escape velocity field of the King

model satisfies the conditions imposed by the external tidal field (vesc(rt(RS);RS) = 0, with

vesc(r;RS) given by Eq. (21) and with the different choices for the isotropic component

of the tidal field as discussed in §4.1). Moreover, in this case, a new ambiguity appears

concerning the matching procedure, as the external potentials, and, consequently, xe,

depend on the satellite orbital phase RS. The most natural choice is to take Req
S = Rp

(Req
S is the point of the orbit where the initial configuration is built up), because the

system suffers a kick at pericenter passage. In this work other possibilities have also

been considered to quantify how much the system evolution depends on the orbital point

where the initial equilibrium configuration is built up: Req
S = Ra (apocenter distance) and

Req
S = R0 (radius of the circular orbit with the same energy EH as the eccentric orbit under

consideration). Table 3 summarizes the different possibilities we have considered and gives

the corresponding limiting radii rt.

Note that several models in this Table have similar rt values: a) those with

rt(R
eq
S ) ≃ rt,β(Rp) (g-p-β, g-p-γ and g-p-M models), b) those with rt(R

eq
S ) ≃ 1.5rt,β(Rp)

(g-p-α, g-R0-β, g-R0-γ and g-R0-M models), c) those with rt(R
eq
S ) ≃ 2rt,β(Rp) (g-R0-α,
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g-a-β, g-a-γ and g-a-M models), and finally, d) the g-a-α galaxy model whose rt(R
eq
S ) is

about 3.5rt,β(Rp). In Table 4 we give other galaxy parameters of interest (see §3) for the

models in Table 3. In particular, an average dynamical timescale tdyn = (3π/16Gρ)1/2

(Binney & Tremaine 1987) for these models is given in this Table.

These different models have been left to evolve as they orbit inside a compact group-like

halo (see Table 1) following an eccentric g-like orbit (see Table 2) during 12.5 Gyears.

Accordingly with the discussion above, it can be expected that the relative mass losses for

these different models at any given time be approximatively proportional to exp(−AT/tdyn)

if adiabatic protection is at work in these simulations. To show that this is the case,

in Figure 6 we have plot T/tdyn versus the logarithm of ∆MS/MS after 12.5 Gyears of

evolution for the g-model galaxies in Table 3, where ∆MS is the total mass lost in escapers

at 12.5 Gyears and MS is the initial satellite mass. A very good linear relation appears.

It corroborates the adiabatic protection hypothesis, that for a galaxy on circular motion

predicts zero mass losses (because T = ∞), as we have found in §4.1.

Let us now describe different quantitative aspects of the satellite evolution. In Figure

7 we plot the MS(t)/MS evolution for six g-models in Table 3 (MS(t) is the bound mass

at time t, defined as the mass of the system whose total internal energy E < 0). Note

that mass losses are quite linear and regular. No evidences of the perigalactic passages

can be seen because of the small amount of mass losses at each passage. This Figure is an

illustration that g-models in Table 3 exhibit different degrees of mass losses accordingly

with the classification above: a) those with rt(R
eq
S ) ≃ rt,β(Rp) that loss very few mass in

12.5 Gyrs of evolution (≃ 1.0%); b) those with rt(R
eq
S ) ≃ 1.5rt,β(Rp), that have up to a

5.8% of escapers; c) those with rt(R
eq
S ) ≃ 2rt,β(Rp), where the mass losses are not negligible

(g-R0-α and g-a-β galaxy models, with a 12.8% and 14.6% of escapers at 12.5 Gyrs); and,

finally, d) the g-a-α galaxy model, where mass losses are more significant (33.5%).
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Figures 2 for the g-p-β, g-p-α, g-a-β and g-a-α galaxy models (c, d, e and f), indicate

that the mass loss is maximum for the g-a-α model, where the shell corresponding to the

25% outsiders is lost at t ≃ 7 Gyrs, and minimum for the g-p-β galaxy, where the radius

enclosing the 95% inner particles had not yet crossed rt,β at t ≃ 12.5 Gyrs. The g-p-α and

g-a-β models show an intermediate behavior. Other models, not shown in the Figure 2 (see

Table 3), exhibit different evolutionary trends according with the classification above.

These trends are confirmed by Figure 3, where we can see that the inner regions of

the configuration (say, r/rt < 0.2) are not very much affected by the tidal forces for g-p-α

model.

The analysis in the velocity space indicates that σ for particles that remain at the

configuration does not change significantly; also, the percentage of particles in each velocity

bin remains roughly constant along the 12.5 Gyears of evolution. All the g-models in Table

3 have a similar qualitative behavior, but heating is maximum for the g-a-α model and

minimum and negligible for the g-p-β model. An average behavior is exhibited by the g-p-α

model (see Figure 4b).

The anisotropy evolution (Figure 5) confirms these findings and is, for any g-model in

Table 4, always indicative that particles on more elongated orbits are more likely to escape

(Keenan 1981a, 1981b).

The results so far described indicate that once a quasi-equilibrium galaxy model is

built-up at a given point of its orbit, the configuration does not appreciably change as

the galaxy orbits, except for mass losses. The system does not relax towards the different

equilibrium solutions corresponding to the different points of its trajectory.



– 25 –

5. Summary and Conclusions

In this paper we address the issue of the existence of quasi-equilibrium self-gravitating

configurations in a quiescent tidal field, that is, the possibility that self-gravitating

configurations exist that are able to survive for a Hubble time or so in a given dense

environment without being tidally stripped or disrupted. More specifically, we have tried

to answer the question of how to build-up such configurations with their limiting radius

determined by the tidal field and their remainder characteristics described by parameters

that can be fixed a priori.

As the simplest hypotheses, the tidal field produced by a static, spherically symmetric,

dense, extended halo has been considered. Also for simplicity, the configurations have

been taken initially to be spherically symmetric and to have an isotropic velocity tensor

(t-limited King spheres). They orbit inside the halos. Both circular and eccentric orbits

have been considered. In both cases, quasi-equilibrium self-gravitating configurations

have been built-up by taking as tidal radii the radii of their Roche surface along different

axes, or, equivalently, by defining the escape velocity field of the configuration taking into

account the requirements imposed by the tidal field produced by the external halo. The

gravitational field inside the configuration is spherically symmetric, while the tidal field

has no this symmetry and one has to resort to a choice of its radial component. So, an

ambiguity arises when matching the internal and external fields of forces at rt. Different

possible choices have been considered. In the case of an eccentric orbit the tidal field

depends on the orbital phase and a new ambiguity arises regarding the orbital position

where the matching is made. Here also different possibilities have been explored.

To study the survival of the configurations, we have evolved Montecarlo realizations

of t-limited King galaxy models, orbiting in the tidal field produced by a dark cluster-like

halo (for circular orbits) or galaxy group-like (for eccentric orbits) halo. These galaxies
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have been taken to be collisionless systems, i.e., such that heat transport and relaxation

cannot proceed through two-body encounters, but through the oscillations of their collective

self-consistent potential.

The general result of the simulations, irrespective on how the matching has been made,

is that the bulk of the models are conserved along 12.5 Gyears of evolution both for circular

and eccentric orbits, even if some mass losses occur in some cases. A good linear relation

between the ratio of the galaxy anomalistic period to its dynamical timescale, T/tdyn, and

the logarithm of the relative mass losses for the different galaxy models has been obtained,

suggesting that adiabatic protection is at work in these simulations. In the case of galaxies

on circular orbits, the adiabatic protection hypothesis predicts zero mass losses; the results

of our simulations for circular motion are also in agreement with this prediction, once the

almost imperceptible two-body effects are considered. In the case of eccentric orbits, if

the galaxy configuration closely corresponds to the tidal equilibrium solution at its actual

environment, no important oscillations of the potential produced by tidal forces can be

expected, and, in fact, our simulations show that once the satellite particles are distributed

in positions and velocities according to the equilibrium solution at one given point of

the satellite orbit, they approximately remain so as the satellite orbits, except for the

marginally bound particles, in which case most of them are lost to the configuration. Even

if continuous mass losses are important in some cases, the system does not relax towards the

equilibrium solutions corresponding to the different positions of the satellite, presumably

because these different equilibrium solutions are not far enough to produce strong collective

potential oscillations.

Configurations corresponding to equilibrium at pericenter, where the tidal forces are

maximum, are those that suffer from less escape (they are hyperstable solutions at the

other points of the orbit) and anisotropy development. Among the simulations presented in
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this paper, the maximum mass losses occur when the component of the tidal force in the

RS direction is chosen as radial component of these forces and the initial configuration is

prepared at the apocenter (≃ 33.5% along 12.5 Gyrs). But, as stated above, it is mainly

the T/tdyn ratio that determines the evolution rates and mass losses.

The results described so far suggest that the configuration of spheroidal galaxies is

fixed at its formation, determined by its mass, energy content and the environment at that

moment. After formation, only moderate tidally induced evolution can be expected for a

galaxy living in environments of density similar to that of its environment at formation.

These results also suggest that a continuous slow mass loss along long periods can occur,

without destroying the system, if the density of the environment at formation is lower than

that of the environment at galaxy pericenter passage. The galaxy will be easily destroyed,

however, should it be placed at an external field whose corresponding equilibrium tidal radii

is much smaller than the limiting radius of the actual galaxy (see GD00 for a discussion).
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FIGURE CAPTIONS

Fig. 1.— The intensity, at r = rt, of the components of the tidal force in the RS,Ω ×RS

and Ω directions, normalized to the intensity of the F S(rt) force, for the g-p-β model

(i.e., rt = rt,β(Rp)), as a function of RS. A negative value means that the tidal forces

are disruptive. For galaxy particles placed at distance r from the galaxy center, the ratios

of the intensities in the RS and Ω directions are obtained by multiplying the values in this

Figure by (MS/MS(r)) (r/rt,β(Rp))
3.

Fig. 2.— Evolution of the radius enclosing the 75% (left panels) and the 95% (right panels) of

the galaxy total initial mass, MS , normalized to the tidal radii corresponding to each model.

Several galaxy models, moving on either circular (c) or eccentric (g) orbits, are shown (see

Tables 3 and 4), and also galaxy models that evolve in isolation (iso).

Fig. 3.— The total galaxy mass inside radius r, normalized to the galaxy total initial mass,

MS, for t = 0, t = 6.25 and t = 12.5 Gyrs corresponding to c-Kee and g-p-α galaxy models.

Radii are given in units of their respective tidal radii (see Tables 3 and 4 and text).

Fig. 4.— The fraction of the galaxy total mass, with velocity higher than v at t = 0, t = 6.25

and t = 12.5 Gyrs, for (a) c-Kee and (b) g-p-α galaxy models. Velocity is normalized to the

3-D initial velocity dispersion. Escapers have not been taken into account.

Fig. 5.— The evolution of the anisotropy parameter βan corresponding to the 33% more

distant particles among those that have not escaped at time t. Results for the two c-type

and several g-type models in Table 3 are shown.

Fig. 6.— The ratio of the anomalistic period of the galaxy model, T , to its dynamical time,

tdyn, versus the logarithm of its relative mass loss in 12.5 Gyears for the 12 g-type models in
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Table 3.

Fig. 7.— Evolution of the fraction of the galaxy initial mass, MS, that remains at the

configuration, for several g-model galaxies (see Tables 3 and 4).
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Table 1. Halo parameters

δc RC R200 M200

(kpc) (kpc) (1013 M⊙)

Compact Group (g) 1.9× 105 40 620 2.1

Galaxy Cluster (c) 9× 103 600 3300 174
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Table 2. Orbit parameters

Orbit Ra Rp R0 v(Ra) T LH EH

(kpc) (kpc) (kpc) (km/s) (Gyr) (kpc km/s) ([km/s]2)

Galaxy Cluster (c) 120 120 120 964 0.75 115680 −4.65× 105

Compact Group (g) 100 35 69.2 265 0.60 26500 −5.24× 105

Note. — R0 is the radius of the circular c-type orbit, or the radius of the circular orbit

with the same energy as the eccentric g-type orbit.
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Table 3. Tidal radii of the galaxy models

K or α Kee or β γ Monopolar

c 22.69 15.28 13.75 15.28

g-p 9.85 7.24 6.33 7.08

g-R0 15.78 10.56 9.85 10.80

g-a 25.82 16.10 15.74 16.99
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Table 4. Galaxy parameters

g-p g-R0 g-a

c-Kee c-K α β γ α β γ α β γ

Wo 3.79 3.88 3.53 3.50 3.41 4.68 4.60 4.56 5.65 5.59 5.58

σo (km/s) 273 263 309 317 327 248 256 259 209 215 216

tdyn (Myrs) 120 220 63 40 32 128 69 63 267 132 127
















