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ABSTRACT

I consider the growth of inhomogeneities in a low-density baryonic, vacuum

energy-dominated universe in the context of modified Newtonian dynamics

(MOND). I first write down a two-field Langrangian-based theory of MOND

(non-relativistic), which embodies several assumptions such as constancy of

the MOND acceleration parameter, association of a MOND force with peculiar

accelerations only, and the deceleration of the Hubble flow as a background

field which influences the dynamics of a finite size region. In the context of this

theory, the equation for the evolution of spherically symmetric over-densities

is non-linear and implies very rapid growth even in a low-density background,

particularly at the epoch when the putative cosmological constant begins to

dominate the Hubble expansion. Small comoving scales enter the MOND regime

earlier than larger scales and therefore evolve to large over-densities sooner.

Taking the initial COBE-normalized power spectrum provided by CMBFAST

(Seljak & Zeldarriaga 1996), I find that the final power-spectrum resembles that

of the standard ΛCDM universe and thus retains the empirical successes of that

model.

Subject headings: cosmology: dark matter– large scale structure– theory

1. Introduction

A primary motivation for cosmic non-baryonic dark matter with negligible pressure is

the necessity of forming the presently observed structure in the Universe without violating

the constraints on temperature fluctuations in the CMB. Basically, this is because structure

in the dark matter component on galaxy to super-cluster scales can begin growing via

http://arxiv.org/abs/astro-ph/0011439v2
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gravitational instability considerably before hydrogen recombination (Peebles 1982, Vittorio

& Silk 1984, Bond & Efstathiou 1984). This remains one of the powerful arguments against

a low density baryonic universe. Any alternative cosmology not including CDM must invoke

some mechanism other than conventional gravitational collapse in order to form structure.

McGaugh (1999) suggests that the modified Newtonian dynamics (MOND), proposed by

Milgrom (1983) as an alternative to dark matter on on galaxy and cluster scales, can provide

the needed mechanism and, further, that the consistency of the observed angular structure

of the temperature fluctuations in the CMB (Lange et al. 2000, Hanany et al. 2000),

with a pure baryonic universe (McGaugh 2000), may be viewed as support for MOND.

This speculation is based upon the general expectation that MOND, in providing stronger

effective gravity in the limit of low accelerations, would assist in structure formation.

MOND is an ad hoc modification of Newton’s law of inertia or gravity at low

acceleration. The original idea is contained in the statement that when the acceleration falls

below ao, a new physical constant with units of acceleration, then the effective gravitational

acceleration approaches
√
gnao where gn is the usual Newtonian gravitational acceleration.

Although this simple formula works remarkably well in describing galaxy rotation curves

consistently with the observed distribution of detectable matter (Sanders 1996, McGaugh

and de Blok 1998), it clearly lacks the generality to treat the problem of cosmological

density fluctuations.

A more consistent physical description of modified dynamics is provided by the

non-relativistic Langrangian-based theory of Bekenstein and Milgrom (1984, hereafter

BM). An obvious procedure, when treating the growth of density fluctuations, would be to

take the modified Poisson equation of BM and consider small fluctuations about a zeroth

order solution as in Newtonian cosmology. The problem is that, when applied to a finite

sphere as is usual in Newtonian cosmology, the zeroth order solution is not that of a linear

Hubble flow– the absolute distance cannot be factored out and it is not possible to describe

cosmology in terms of a universal scale factor. The cosmology is basically that described by

Felten (1984) and Sanders (1998), in which MOND alters the usual Friedmann solutions;

as soon as the cosmic deceleration over some physical scale falls below ao, then that entire

region begins to deviate from uniform Hubble flow. This leads to the eventual re-collapse of

any finite size region regardless of its original density or expansion velocity. In this picture

density fluctuations play no role. Apart from problems in principle (what determines the

point or points about which MOND collapse proceeds?), this cosmology leads to clear

contradictions with observations– recollapse in the present Universe occurs out to scales

of 30 Mpc. One might expect that in a proper theory, the basic Hubble flow remains

intact, and structure develops from the field of small density fluctuations as in standard

gravitational collapse.



– 3 –

In order to construct a reasonable MOND cosmology which has this attribute, one

must supplement the BM theory with several assumptions which may reasonably follow

from a more general theory. The first of these assumptions– also an aspect of the earlier

MOND cosmology– is that the MOND acceleration parameter, ao, which is comparable

to the acceleration in the outer regions of galaxies (≈ 10−8 cm/s−2), does not vary with

cosmic time. Numerically, ao ≈ cHo/6 which suggests that modified dynamics may reflect

the influence of cosmology on local particle dynamics. If ao varies as the Hubble parameter,

then the argumentation presented here would be incorrect. However, it is also possible that

ao is related to the cosmological constant (Milgrom 1999) and is independent of cosmic time.

If this is true then MOND plays no role in the evolution of the early radiation-dominated

Universe since cosmic deceleration greatly exceeds ao on relevant scales (e.g. the Jeans

length). In the later matter-dominated, pressureless evolution, the cosmic deceleration on

co-moving scales corresponding to galaxies or clusters falls below ao and one might expect

modified dynamics to affect the formation of such structure.

The second assumption directly concerns the problem of the zeroth order Hubble flow;

we wish to construct a theory in which MOND plays no role in the absence of fluctuations,

and the background cosmology is essentially unaltered. In other words, MOND should

apply only to peculiar accelerations– the accelerations developing from inhomogeneities–

and not to the overall Hubble flow; i.e., no MOND in a homogeneous Universe. This

assumption can find some justification in the context of a stratified scalar-tensor theory in

which MOND phenomenology results from a scalar force that becomes dominant in the

limit of low scalar field gradients (Sanders 1998).

The third assumption concerns the influence of the Hubble flow on the internal

dynamics of an otherwise isolated spherical region. In modified dynamics, and any covariant

extention thereof, it must be the case that the internal dynamics of a sub-system is

influenced by the presence of an external field– the “external field effect” (Milgrom 1983).

This is essentially an observational requirement on MOND imposed by the absence of

discrepancies in Galactic star clusters. In other words, the underlying theory should not

respect the equivalence principle in its strong version. With respect to cosmology, it is not

clear how the external field effect would come into play, but I assume here that, for an over-

or under-dense spherical region, the deceleration or acceleration of the Hubble flow is the

one and only external field which influences the development of the inhomogeneity. Because

the de-acceleration of the Hubble flow increases linearly with scale, fluctuations on small

comoving scales are affected by MOND earlier than those on larger scale. One might expect

this to lead a hierarchical scheme of structure formation, with smaller objects forming first.
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2. A non-relativistic Lagrangian-based theory for MOND

It is possible to realize these three assumptions in a non-relativistic theory of modified

dynamics. Following BM I write down the Lagrangian for a theory of MOND, as a

modification of Newtonian gravity. Although the theory is also ad hoc, this approach

has several advantages: As a Lagrangian-based theory it enjoys the usual properties of

conservation and consistency; moreover, the assumptions described above are not arbitrarily

inserted into an equation for the growth of fluctuations but are introduced at a more basic

level. This means that the growth equation can be derived self-consistently from the field

equations as in the Newtonian case, and the free parameters of the problem are evident.

Finally, the results may actually constrain the sort of theory upon which MOND is to be

ultimately based.

Because this is a MOND equivalent of Newtonian cosmology, the theory described here

need not be fully covariant. The two-field scalar theory is described by the Lagrangian

Lf = −ao
2

κ

[

X + (βX
1

2 +
2

3
Y

1

2 )Y
]

(1)

with

X =
(∇φ1)

2

ao2
(2)

and

Y =
(∇φ2)

2

ao2
(3)

where φ1 is a scalar field which we wish to identify with Newtonian gravity and φ2 is a

second field which we identify with a MOND force. Here κ = 8πG and the fundamental

acceleration ao is put in by hand but may be related to the cosmological constant in the

underlying theory. This is similar to the two-field version of BM theory. The first term

(X) is just the usual Lagrangian of a scalar field, but the second term is anomalous and

includes the MOND Lagrangian as in BM theory (Y 1.5). However, there is an additional

coupling between the two fields, (Y X0.5) where β is a parameter, of order unity, describing

the strength of the coupling.

The coupling of these two fields to matter is described by the interaction Lagrangian,

Li = −
[

(ρ− 2ρΛ)φ1 + δρφ2

]

(4)

where ρ is the actual density and δρ is the deviation of the density from its mean value

(i.e., ρ =
∑

miδ
3(r− ri(t)); and δρ = ρ − Π(τ) where Π is the cosmological density which

is only a function of cosmic time τ). The first term describes the coupling of Newtonian

gravity to ordinary matter and the vacuum energy density. The second term describes
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coupling of the anomalous field to density fluctuations in the ordinary matter and is also

a modification of BM theory to suit the requirements of cosmology. The non-standard

coupling to fluctuations embodies the second assumption described in the Introduction:

there is no anomalous MOND force in the absence of fluctuations. This ansatz– the most

questionable step in the present procedure– probably would not be necessary in a fully

covariant theory where spatial gradients in a scalar field develop only in the presence of

density gradients.

The theory is complete when we include the usual matter Lagrangian

Lm =
∑

i

miṙi
2δ3(r− ri(t)) (5)

where ri is the position of a given particle. Then, the dynamics of the theory come from the

action

S =
∫

(Lf + Li + Lm)d
3x. (6)

Taking the extremum of the action with respect to variations in the fields, as usual, one

finds the field equations

∇ ·
[1

2
βaoû1

(∇φ2

ao

)2

+∇φ1

]

= 4πG(ρ− 2ρΛ) (7)

∇ ·
{[ |∇φ2|

ao
+ β

|∇φ1|
ao

]

∇φ2

}

= 4πGδρ. (8)

Here û1 is a unit vector in the direction of ∇φ1. Similarly, a stationary action with respect

to variations in particle position yields the usual particle equation of motion:

d2ri
dt2

= −∇φ1(ri)−∇φ2(ri); (9)

Note that this is MOND as a modification of gravity and not of inertia.

This is a true one-parameter theory of MOND. One might think that the strength

of the coupling of φ2 to matter might also be adjustable through the introduction of

some additional unitless parameter, α (i.e., the interaction Lagrangian would then contain

αδρφ2). But then α can always be absorbed in a rescaling of the acceleration parameter ao;

in fact, this must happen because of the requirement of MOND that the force about a point

mass asymptotically approach
√

GMao/r2. Therefore β is the only possible free parameter

of the theory; this is a “minimalist” MOND theory in the sense that there are no arbitrary

functions and only one adjustable parameter.

In the limit where β → 0, eq. 7 reduces to the Poisson equation, and φ1 can be

identified with the Newtonian potential. In the absence of fluctuations (δρ = 0), ∇φ2 = 0
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and the theory becomes entirely Newtonian. Thus combined with the equation of motion

for a finite uniform sphere, eq. 7 yields the usual Friedmann equation for the time evolution

of the dimensionless scale factor of the sphere. Assuming, as in Newtonian cosmology, that

the scale factor of the finite sphere is identical to that of the cosmology, the usual linear

Hubble flow is recovered. However, in the presence of fluctuations, the second field, the

MOND force, contributes to peculiar accelerations. Because of the coupling of the two

fields (eq. 8), the zeroth order Hubble de-acceleration over a finite size region appears as a

background field in the determination of the MOND peculiar accelerations (the external

field effect).

Eqs. 7 and 8 can be readily solved for ∇φ1 and ∇φ2 in the case of a spherically

symmetric mass distribution representing a bound object such as galaxy (with δρ = ρ).

Reasonable rotation curves result when 2 < β < 4. For smaller values of β, rotation curves

are not flat but gradually decline to the asymptotic MOND value ((GMao)
0.25) and for

larger values, rotation curves rapidly decline and then rise to this asymptotic value.

3. The growth of fluctuations

Here I use the notation and units from Sanders (1998): x is the dimensionless scale

factor in terms of the present scale factor; ẋ/x is the Hubble parameter in terms of the

present Hubble parameter (Ho); and the cosmic time is in units of the Hubble time, 1/Ho.

The Friedmann equation for the evolution of the scale factor (derivable from the above

theory in the absence of fluctuations) may then be written

(

ẋ

x

)2

=
Ωr

x4
+

Ωm

x3
− k

x2
+ ΩΛ, (10)

where Ωr is the present density parameter in radiation (and other relativistic particles),

Ωm is that of ordinary matter (baryonic and CDM), ΩΛ in vacuum energy density, and

k = Ωr + Ωm + ΩΛ − 1 is the curvature constant.

In the Newtonian treatment of the development of density fluctuations, one may

consider the time-evolution of a single Fourier component (δk) of the fluctuation field in

isolation. This works, as long as the fluctuations are small, because Newtonian theory is

linear; with modified dynamics, which is fundamentally non-linear, this is not obviously the

case. Therefore, I consider the evolution of a sub-horizon spherical region in the Universe

having mass M and an average over (under)-density ∆ =< δρ/ρ >r. This mean over-density

may be also identified with the mass variance over some comoving scale– a quantity which

is calculable from the power spectrum of Gaussian fluctuations (Padmanabhan 1993). I
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take the total radius of the region to be ro + r1 where ro is the radius in absence of the

over-density. To first order

∆ = −3r1
ro

. (11)

Differentiating this expression twice with respect to time we find

∆̈ + 2
ẋ

x
∆̇ +

ẍ

x
∆ = −3

r̈1
ro
. (12)

With Newtonian dynamics the peculiar acceleration would be given by

r̈1 = −2GM

3ro2
∆+ΩΛr1 (13)

while, in the late matter and vacuum energy-dominated regime, the Hubble flow deceleration

is
ẍ

x
= −GM

ro3
+ ΩΛ. (14)

Combining eqs. 13 and 14 in eq. 12 we find the usual Newtonian expression for the linear

evolution of fluctuations:

∆̈ + 2
ẋ

x
∆̇ =

3Ωm

2x3
∆. (15)

To consider how MOND may alter the growth of fluctuations, I make use of the

two-field theory described in the previous section to determine the peculiar acceleration in

eq. 12 (r̈1). For the spherical mass distribution, application of the Gauss theorem to eq. 7

yields
β

2

g2
2

ao
û1 + g1 = −4πGρ

3
(ro + r1)(1 + ∆) +

8πGρΛ
3

(ro + r1). (16)

where g1 = −dφ1/dr and g2 = −dφ2/dr. I set g1 = gb + δg1 where the gb is the zeroth-order

background field given by

gb =
4

3
πGro(2ρΛ − ρ) (17)

and δg1 is the small fluctuation about this background. Given the zeroth order Hubble

expansion and the usual definitions of density parameters, eq. 17 may also be written

gb = −λcHo
2
[Ωm

2x2
− ΩΛx

]

(18)

where λc is the comoving scale corresponding to ro (i.e., ro = xλc).

Using eq. 11 to eliminate r1, eq. 16, to first order in ∆ becomes

δg1 +
β

2

g2
2

ao
û1 = −8πGro∆

9
(ρ+ ρΛ) (19)
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Because of the coupling of φ2 to inhomogeneities, the fluctuations in the MOND field g2 are

always small. Therefore, to lowest order, eq. 19 reduces to

δg1 = −A∆ (20)

where

A =
λcHo

2

3

[Ωm

x2
+ ΩΛx

]

(21)

This is just the usual expression for the perturbed Newtonian force.

Application of the Gauss theorem to eq. 8 yields

|g2|g2 + β|g1|g2 = −4πaoG

3
(ro + r1)∆ = −B∆ (22)

where

B =
aoΩmλcH

2
o

2x2
∆ (23)

to first order in ∆. With eq. 20, this reduces to

|g2|g2 + βg2
∣

∣

∣gb − A∆
∣

∣

∣ = −B∆ (24)

Thus we have two algebraic expressions for the perturbed force fields δg1 and g2 in

terms of the over- or under-density ∆: eq. 20 for the Newtonian field and eq. 24 for the

MOND field. We cannot immediately dismiss the second order term in eq. 24. Due to the

presence of the cosmological constant, the background field, gb, will become vanishingly

small over some range of scale factor, and then the left-hand-side of eq. 24 only contains

second order terms. However, this quadratic equation for g2 is readily solved:

g2 = ±0.5β
∣

∣

∣gb − A∆
∣

∣

∣∓ 0.5
√

β2(gb − A∆)2 ± 4B∆ (25)

where the upper sign applies to over-densities (∆ > 0) and the lower sign to under-densities

(∆ < 0).

From eq. 9, the total acceleration of a spherical shell is

r̈o + r̈1 = gb + δg1 + g2. (26)

Given that r̈o = gb (the Friedmann equation), then

r̈1 = δg1 + g2. (27)

Substituting eqs. 27, 21 and 20 into eq. 12, the growth equation becomes

∆̈ + 2
ẋ

x
∆̇ =

3Ωm

2x3
∆− 3g2

xλc

(28)
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with g2 given by eq. 25 supplemented by eqs. 23, 21 and 18. This is the basic equation for

the evolution of spherically symmetric over- or under-dense regions of the Universe in the

context of the assumed two-field theory of modified dynamics. If ao → 0, then the final

term (the MOND field g2) vanishes and the equation is identical to eq. 15 for the Newtonian

growth of perturbations. The second term dominates only when |gb| < ao.

This second order differential equation is non-linear, even in the regime where ∆ is

small. The non-linear term in eq. 28 (or in g2 given by eq. 25) only becomes important when

gb → 0, but this does happen within a Hubble time in a Universe having a cosmological

constant comparable to Ho
2. It is also noteworthy that, unlike the Newtonian case, the

growth of an over-density depends upon the comoving scale. This is primarily because

smaller comoving scales enter the MOND regime earlier; specifically, the scale factor at

which a fluctuation enters the MOND regime, given by the condition that |gb| = ao, is

xc =

√

Ωmλc

2ao
Ho (29)

in the matter-dominated regime.

4. Numerical results

4.1. The growth of inhomogeneities

Using a fourth order Runge-Kutta technique, I have numerically integrated eq. 28

for the growth of over-densities in McGaugh’s (2000) vacuum energy dominated baryonic

Universe: Ωm = Ωb = 0.034, ΩΛ = 1.01, h = 0.75. The calculations are initiated at

x = 1.37 × 10−3 or at a redshift of 730 which is roughly the epoch of matter-radiation

equality (in this low density Universe matter-radiation equality occurs after hydrogen

recombination). In all calculations I take ao = 1.2 × 10−8 cm s−2 (scaled to Ho = 75 km

s−1 Mpc−1) as determined by fitting to the observed rotation curves of nearby galaxies

(Begeman et al. 1991). Smaller values of the coupling between the Newtonian and MOND

fields, β, yield more rapid growth. As β → 0 the background field effect vanishes and only

the peculiar accelerations enter the MOND equation. In that case the non-linear term in

the growth equation always dominates and the growth of fluctuations is much too rapid.

With respect to matching the form of galaxy rotation curves β should lie between 2 and 4.

In all calculations described below I take β = 3.5.

Fig. 1 illustrates the growth of spherically symmetric over-densities having comoving

radii of 20, 40 and 80 Mpc. The initial over-density is assumed to be ∆i = 2× 10−5 which
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is comparable to the COBE-normalized fluctuation amplitude on these scales in standard

cosmology (Bunn & White 1997). The solid lines follow the MOND evolution of ∆ as a

function of scale factor (eq. 28). The dotted line is the standard Newtonian evolution (eq.

15).

It is evident that, in the standard model of structure formation by gravitational

instability, a region with this initial over-density could not grow to the non-linear regime

by the present epoch. The COBE-normalized fluctuations in a baryonic universe, with Ωb

of a few 10−2, could not possibly develop into the observed large scale structure. On the

other hand, with modified dynamics, the growth becomes nearly exponential from the time

a region enters the low acceleration regime up to the point where the cosmological term

dominates in the Friedmann equation. The most rapid growth occurs at the point where

gb → 0 and the non-linear term dominates; thus the cosmological constant, by permitting

the background cosmological acceleration to vanish, actually promotes the rapid growth of

fluctuations.

The development of non-linear structure on the scale of tens of Mpc would certainly

seem possible. The fact that the smaller scale fluctuations enter the non-linear regime

earlier is consistent with a hierarchical scheme (with galaxies forming before clusters), as

suggested in Sanders (1998). However, unlike the scenario sketched there, the underlying

Hubble flow remains intact.

4.2. The power spectrum of fluctuations

Through use of eq. 28 it is straightforward to determine the present power spectrum

of fluctuations generated by MOND growth. The initial COBE-normalized power spectra

is provided by CMBFAST (Seljak & Zeldarriaga 1996) at the epoch of matter-radiation

equality (z = 730) in the McGaugh universe (assuming the primordial fluctuation spectrum

to be standard Harrison-Zeldovitch, n=1). A measure of over- (under-) density on various

scales is the mass-variance, ∆k
2, per unit interval in log wavenumber; this is related to the

power spectrum as

∆k
2 = 2π2k3P (k) (30)

(Padmanabhan 1993). I follow the evolution of these over-densities with amplitude ∆k

on a sub-horizon scale again by numerical integration of eq. 28. Super-horizon growth of

large regions is followed crudely by considering the density evolution of sub-universes with

the curvature constant appropriate to a given initial ∆k. When a spherical region enters

the horizon, eq. 28 is immediately applied for the subsequent growth. This method is not

precise for those regions which enter the horizon in the matter dominated era (z < 700)
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but should yield an accurate representation of the MOND power spectrum for smaller scale

fluctuations (k > 0.01).

I convert the final over-densities back to the power spectrum by again applying eq.

30. The resulting power spectrum at the present epoch is shown by the solid curve in

Fig. 2. The oscillations with wave number are the relic of the acoustic oscillations frozen

into the plasma at the epoch of recombination (in dark matter-dominated models these

are suppressed). Also shown in the same figure is the power spectrum that would result

from the identical initial spectrum but with only Newtonian growth (dotted curve). The

abrupt decrease in power where k > 0.05 is due to Silk damping (photon diffusion) of the

fluctuations on scales smaller than about 20 Mpc by the epoch of recombination (Silk 1968).

Even with Silk damping there is large amplification of the power spectrum at these

small scales due to effect of modified dynamics. On scales smaller than 10 Mpc the structure

has already become highly non-linear (∆k > 1), and the calculated power spectrum is not

to be trusted.

Also shown on the same figure is the zero redshift power spectrum of fluctuations in

the context of the standard ΛCDM model. This, less the oscillations, is very similar to

the MOND power spectrum on currently measurable scales (k > 0.01). In other words,

MOND in a pure baryonic universe mimics quite closely the power spectrum in this favored

dark matter model on scales of 10 to 100 Mpc; i.e., the phenomenological successes of

the standard model are retained. In particular, the usual measure of the amplitude of

inhomogeneities in the present Universe, σ8 is found to be 1.5 from the MOND power

spectrum, which is about 50% larger than that of the ΛCDM model.

4.3. Peculiar velocities

One may also consider the predicted peculiar velocities as a test of this scenario

(bearing in mind the obvious dangers of assumed spherical symmetry and non-linearity on

the scale of 10 to 20 Mpc).

The estimation of peculiar velocities follows from the continuity equation as in the

usual treatment (Peebles 1999). Taking the first time derivative of eq. 11, we find

ṙ1 = −ro∆̇

3
− ∆roHo

3
. (31)

The peculiar velocity at r = ro + r1 is then just

Vp = (ṙo + ṙ1)−Ho(ro + r1), (32)
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which, again after use of eq. 11, becomes

Vp = −ro∆̇/3. (33)

On the comoving scale of the Virgo cluster (Hro ≈ 1300 km/s), the over-density of galaxies

is roughly ∆ ≈ 2 (Strauss et al. 1992). Choosing an initial ∆ on this comoving scale to

match the present observed over-density of galaxies, I find from numerical integration of eq.

28 that vp = 450 km/s. This is larger than present estimates, although widely disparate

values have been reported (Tonry et al. 2000). Although somewhat larger values of the

coupling parameter β can result in less vigorous stirring of the local Universe, it is probably

premature to tinker with the crude MOND theory described here.

5. Conclusions

Here I show that MOND provides the possibility of overcoming the problem of

structure growth in a low-density baryonic Universe. In the context of the simple

two-field non-relativistic theory of modified dynamics presented here, we see that when

the background deceleration of the Hubble flow over a given scale falls below the critical

MOND acceleration, ao, then the growth of structure on that scale is greatly enhanced

relative to the Newtonian expectation. The growth of over-densities on smaller scale is

even more enhanced due to the fact that smaller regions enter the MOND regime earlier;

the early growth of small-scale fluctuations can compensate for the effect of Silk damping

on these scales. Thus the resulting power spectrum, apart from the oscillations, closely

resembles that of the favored ΛCDM cosmology. On the scale of galaxies (1.5 Mpc), even

though the typical initial over-density is on the order of 2 × 10−10, the fluctuation grows

to the non-linear regime by a redshift of 2.5. Thus MOND would appear not only to

explain the observed large scale structure, but also provide a mechanism for early galaxy

formation. This is all achieved with the value of ao determined from galaxy rotation curves.

The minimalist MOND theory has not been fine-tuned in any sense to match the observed

power spectrum; the single adjustable parameter β lies within the range which is consistent

with the observed form of galaxy rotation curves.

Of course, these conclusions depend upon the approximate validity of the assumed

theory described in section 2. This theory, and assumptions embodied therein, guarantee

that the early, radiation-dominated evolution of the universe is identical to that of the

standard model, that the basic Hubble flow is unaffected by MOND, and that fluctuations

on the scale of galaxies to super-clusters enter the MOND regime, determined by the

background Hubble flow, sufficiently early (but not too early) to assure growth to the

present amplitude.
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Because of the necessity of such an ad hoc theory in the absence of a more fundamental

covariant theory, it is perhaps premature to compare in detail the predicted power spectrum

or peculiar velocities with observations. In particular, the oscillations (Fig. 2) may not

actually be evident in the evolved power spectrum due to non-linear aspects of the

theory which are ignored here– specifically, not only individual Fourier components but

also over-dense spherical regions cannot be considered in isolation (larger scale peculiar

accelerations contribute to the background field). The detailed results shown in Figs. 1 and

2 should be taken as a demonstration that MOND, in a low-density baryonic universe, can

provide a vigorous growth of fluctuations– growth which is sufficiently rapid to lead to the

large scale structure observed at the current epoch.

Finally, I re-emphasize that the presence of a dynamically significant cosmological

constant plays a necessary role in the rapid growth of structure with this version of modified

dynamics. The MOND growth of inhomogeneities accelerates at the epoch when gb ≈ 0

due to the dominance of the non-linear term in eq. 28 (only possible with a cosmological

constant comparable to Ho
2). This adds a new aspect to an anthropic argument originally

given by Milgrom (1989): we are observing the Universe at an epoch when ΩΛ has only

recently emerged as the dominant term in the Friedmann equation because it is only then

that structure formation proceeds rapidly.

If the evidence in support of a baryonic-Λ universe continues with further observations

of the CMB angular power spectrum, then some unconventional mechanism for the

formation of structure must be invoked. Here it is evident that modified dynamics, with a

well-documented success in explaining the kinematic observations of galaxies and clusters

without dark matter, may also successfully address the problem of structure formation in a

low-density baryonic universe.
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for helpful criticisms, and the referee, Jim Peebles, whose numerous critical remarks led to

a considerable improvement in the content and presentation of this paper. Finally I am
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cosmologies.
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Fig. 1.— The growth of spherically symmetric over-densities, ∆, in a low-density baryonic

universe as a function of scale factor in the context of the two-field Langrangian theory of

MOND. The solid curves correspond to regions with comoving radii of 20, 40 and 80 Mpc.

The dotted line is the corresponding Newtonian growth. With MOND smaller regions enter

the low-acceleration regime sooner and grow to larger final amplitude. The vertical dashed

line indicates the epoch at which the cosmological constant begins to dominate the Hubble

expansion in the assumed model cosmology

Fig. 2.— The present power spectrum of fluctuations in the low density baryonic universe

where the growth is determined by the MOND modified gravity theory (solid curve). The

initial amplitudes are taken from the COBE-normalized provided by CMBFAST at the epoch

of matter-radiation equality. Also shown (dotted curve) is the power spectrum which would

result from Newtonian growth of the same initial fluctuation spectrum. The dashed curve is

the power spectrum in the standard ΛCDM cosmology. In all cases h=0.75.






