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ABSTRACT

RRd stars from the Magellanic Clouds form a well-defined bandin the Petersen diagram. We
explain this observed band with our evolutionary and pulsation calculations with assumed metallicity
[Fe/H]= (−2,−1.3) . Vast majority of RRd stars from LMC is confined to a narrower range of
(−1.7,−1.3) . The width of the band, at specified fundamental mode period,may be explained by
mass spread at given metallicity. The shape of the band reflects the path of RRd stars within the
RR Lyrae instability strip. We regard the success in explaining the Petersen diagram a support for our
evolutionary models, which yield, mean absolute magnitudein the mid of the instability strip,〈MV 〉 ,
in the range 0.4 to 0.65 mag implying distance modulus to LMC of 18.4 mag.

Key words: stars: variable, stars: oscillations, stars: RR Lyrae, stars: double-mode pulsations,

galaxies: Magellanic Clouds, stars: abundances

1. Introduction

RR Lyrae stars are objects of great importance for whole astrophysics. Double-
mode RR Lyrae stars (RRd), constitute relatively rare subtype. Nonetheless RRd
stars attract considerable attention because they provideus an additional precise
observable, which is the second period (see review of Kovács(2000a)).

Usefulness of double-mode pulsators was first realized by Petersen (1973).
Following his idea, the period data for double-mode pulsators are commonly rep-
resented in diagrams, called nowPetersen diagrams, in which the period ratio,
R = P1/P0 , is plotted against the fundamental mode period,P0 . Published ex-
amples of Petersen diagrams for RRd stars may be found in the following papers:
Nemecet al. (1985a), Clementet al. (1986), Walkeret al. (1994), Alcocket al.
(1997,2000b), Beaulieuet al. (1997). The Oosterhoff dichotomy is manifested in
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Petersen diagrams for RRd stars. Namely, RRd variables fromthe Oosterhoff I
globular clusters occur in systematically shorter period range than those from the
Oosterhoff II (Smith 1995).

Petersen diagram in its first application was used to derive mass and radius
estimates for Cepheids (Petersen 1978). The result was a huge discrepancy, known
as the double-mode Cepheid mass problem, between the massesderived in this way
and the evolutionary masses. The problem disappeared once the OPAL opacities
became available (Moskaliket al. 1992).

First comparison of the observed and theoretical Petersen diagrams for RR Lyrae
stars was made by Coxet al. (1980). No large discrepancy between observations
and models was found. The new opacities were first used to calculate period ratios
for RRd models by Cox (1991), later by Kovácset al. (1991,1992) and Bonoet
al. (1996). Kovács & Walker (1999) used data on RRd stars from globular clusters
to derive luminosities of RR Lyrae stars yielding support for a brighter luminosity
scale.

A large number of data on RRd stars became available as a byproduct of micro-
lensing surveys. Most of currently known RRd stars were observed by MACHO
collaboration (Alcocket al. 1997,2000b). Figure 1. shows Petersen diagrams for
all known RRd stars. The objects belonging to different stellar systems, galaxies
and globular clusters, are shown in separate panels with bigdots. We see that RRd
stars form quite a narrow curved band in the Petersen diagram. The objects from
LMC are spread all over the period range, which is 0.46−0.6 d. Short period end
in LMC is significantly more populated. We don’t see such a concentration for
the SMC objects which are more-or-less uniformly distributed, however in view of
much scarcer data this conclusion must be regarded preliminary. The data for the
Galaxy and dwarf galaxies Draco and Sculptor are too sparse to conclude anything
about properties of RRd stars in these systems. The objects from globular clusters
are localized in small parts of the band.

The goal of our paper is to explain the properties of the RRd band as defined
by the objects from LMC and SMC. From this we expect to learn something about
RR Lyrae star properties, particularly their luminosities, as well as about early his-
tory of star formation in the Magellanic Clouds. Furthermore, the abundant data on
RRd stars may yield us a useful constraint regarding the origin of double-mode pul-
sation. Although the double-mode pulsation has been successfully modeled (e.g.
by Feuchtinger (1998)), our understanding of its causes is not yet satisfactory.

Application of Petersen diagrams as a probe of stellar properties is explained
in Section 2. In Sections 3. and 4. we provide some details regarding our model
and pulsation calculations, respectively. Interpretation of the RRd band based on
model calculation are presented in Section 5. In Section 6. we discuss absolute
magnitudes of RRd stars. Uncertainties of the theoretical Petersen diagram are
analyzed in Section 7.



2 A. A.

Figure 1: Petersen diagrams for RRd stars in various stellar systems. Data taken
from (number of objects in parentheses):LMC (181) – Alcocket al. (1997, 2000b),
SMC (26) – OGLE private communication (unpublished),Draco (10) – Nemec
(1985a),IC4499 (16) – Clementet al. (1986), Walker & Nemec (1996),M3 (5) –
Corwin et al. (1999),M15 (12) – Nemec (1985b), Jurcsik & Barlai (1990), Pur-
dueet al. (1995),M68 (12) – Walker (1994),Sculptor (1) – Kałużnyet al. (1995),
Galactic field (5) – Garcia-Melendo & Clement (1997), Clementiniet al. (2000).
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2. Petersen diagram astrophysics

One needs six parameters to calculate envelope structure and radial mode fre-
quencies. These are, for example: mass, luminosity, effective temperature, two
parameters for chemical composition (i.e.Y and Z ) and the mixing-length theory
parameter (α). We fixed the value ofX at 0.76 because possible small variations
about such a value have little effect on stellar properties.We also fixed the value of
α in our main surveys, however in Section 7. we discuss uncertainties connected
with the choice ofα . Also in Section 7. we discuss effects of choosing heavy
element composition different than the solar mix (Grevesse& Noels 1993) adopted
by us as a standard in pulsation calculations. We use this standard to translateZ to
[Fe/H]. This quantity is more customary than [M/H].

Figure 2. shows how the four remaining parameters affect position of the RRd
model in the Petersen diagram. The reference model may be regarded typical for
RRd stars in LMC. We may see that the parameter crucial for thevalue of period
ratio is Z , which is not a new observation. Next important parameter isluminosity,
L , and mass,M . However,M and L are strongly constrained byZ , as we will
see in next sections. Thus, we may regard the value of period ratio as a probe of
metallicity. If we assume that the mass of RR Lyrae star is determined byZ , which
is only approximately correct, then with the help of stellarevolution calculations,
which yield L(M,Teff,Z) (in fact, two of them because of the shape of the track), we
obtain a one-to-one correspondence between a trajectory inthe Petersen diagram
and theTeff(Z) dependence for RRd stars. In reality, we do not have uniqueM(Z)
dependence, thus we have a band rather than a single trajectory. Still, the shape
of the band must reflect primarily theTeff(Z) , or equivalently,L(Teff) relation for
RRd stars.

3. Evolutionary models

All the evolutionary tracks for He-burning stellar models used in the present
analysis, have been obtained by means of the FRANEC evolutionary code (Stra-
niero & Chieffi 1989, Cassisi & Salaris 1997, Castellaniet al. 1999), by adopting
canonical semiconvection for the treatment of mixing during the central He-burning
phase (Horizontal Branch, hereinafter HB).

The OPAL radiative opacities (Iglesias & Rogers 1996) have been adopted for
temperatures higher than 10,000 K, while for lower temperatures we have used the
molecular opacity tables provided by Alexander & Ferguson (1994). This choice
allows us to have a smooth match between the two different opacity sets. Both
high and low-temperature opacities have been computed by assuming a solar scaled
heavy element distribution (Grevesse 1991). As far as it concerns the equation of
state, we adopted the Straniero (1988) EOS supplemented at lower temperatures
with a Saha EOS. The outer boundary conditions have been fixedaccording to the
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Figure 2: The effect of the envelope parameters on the model position in the Pe-
tersen diagram. The central model is characterized by the following parameters:
X = 0.76, Z = 0.0007, logTeff = 3.842, logL/L⊙ = 1.705 andM = 0.69M⊙ .

T (τ) relation given by Krishna-Swamy (1966). Concerning the treatment of the
superadiabatic layers the mixing-length calibration provided by Salaris & Cassisi
(1996) has been adopted. The other physical inputs are the same as in Cassisi &
Salaris (1997).

We have computed evolutionary sequences of models for several metallicities,
but by adopting in all cases an initial helium abundance equal to Y = 0.23. All
the HB models correspond to a Red Giant Branch progenitor with mass equal to
0.8 M⊙ . In fact, the Zero Age HB structures have been constructed, for each fixed
metallicity, by using the helium core mass and the envelope chemical abundance
profile suitable for a RGB progenitor with this mass.

4. Pulsations

Our next step was to map evolutionary tracks into Petersen diagram. The en-
velope models were calculated for surface parameters takenfrom the evolutionary
tracks. The linear non-adiabatic periods were calculated with a standard pulsation
code (Dziembowski 1977). The envelopes were calculated with slightly differ-
ent physics than the evolutionary models. OPAL equation of state was adopted
in whole envelope. Although there are very small differences between HB tracks
computed with the OPAL compared to Straniero (1988) equation of state, the dif-
ferences in resulting periods could be significant. The depth of the envelope and
the spatial resolution were determined by the accuracy requirement of period ratios
on the level of 2× 10−4 . Convection was treated with standard MLT formalism.
In pulsation calculation we ignored the Lagrangian perturbation of the convective



Vol. 0 5

Z Mmin Mmax

0.0015 0.62 0.675
0.001 0.64 0.695
0.0005 0.665 0.715
0.0003 0.7 0.751
0.0002 0.735 0.785
0.0001 0.79 0.855

Table 1: The allowed masses of RR Lyrae stars in the selected effective temperature
range based on the evolutionary tracks.

flux.
We restricted our attention to the central part of the pulsational instability strip,

extending from logTeff = 3.815 (6531 K) to 3.855 (7161 K). In this region both
fundamental mode and first overtone pulsations are unstable. Feuchtinger (1999) in
his numerical simulations found either-or behavior in somewhat narrower temper-
ature range. In another paper Feuchtinger (1998) found a sustained double-mode
pulsation atTeff = 6820 K.

The segments of the evolutionary tracks from the selected temperature ranges
were mapped into the Petersen diagram. Examples are shown inFigure 3.

5. Properties of the RRd band

5.1. Constraints on mass from evolutionary models

Each of our evolutionary tracks is characterized by two parameters, i.e. mass
and heavy element abundance of the model (M , Z ). Our goal here is to determine
range ofM for specifiedZ , corresponding to the selected temperature range (Sec-
tion 4.). The track is considered allowed if the star spends sufficiently long time,ts ,
in this range. Figure 4. shows star lifetimes for models withZ = 0.0002 and a range
of masses. In Figure 5. we show the total time spent in the selected temperature
range (ts ) as function ofM and Z . We see that the time depends strongly onM .
In the cases of two stays in the selected temperature range, like for M = 0.74 M⊙

shown in Figure 4.,ts is the sum of two time intervals. For each value ofZ we see
sharp maxima ofts (tmax

s ). The values ofM corresponding to the maximum may
be described by the following mass-metallicity relation:

M/M⊙ = 0.709−0.128([Fe/H]+1.6). (1)

We regarded theM value as allowed ifts ≥ 0.2 tmax
s . The range of allowed masses

for eachZ is given in Table 1.
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5.2. Constraints on metallicity from Petersen diagram

We have seen in Figure 2. that two parameters most influencingthe period
ratio value areM and Z . In the previous section we showed that the mass range
is significantly limited for given metallicity. Hence, in practice the period ratio
determinesZ . We can thus determine its ranges by mapping tracks into the Petersen
diagram. Figure 3. shows tracks for 3 metallicities and corresponding masses.
Mapped tracks allow us to conclude that observed RRd star metallicities range
from 0.0002 to 0.001. The resulting RRd “island” inM − Z plane is shown in
Figure 6.

We are now in the position to discuss metallicities of RRd stars in the Magel-
lanic Clouds. With the help of Figure 1. and 3.b we may conclude that most of
RRd stars in LMC haveZ values in the range of(0.0004,0.001) , which translates
to [Fe/H]= (−1.7,−1.3) . How this value is compared with determinations by oth-
ers? Kovács (2000a) quotes the [Fe/H] spread of(−1.9,−1.3) for all RRd stars
in LMC, what is essentially equivalent to an early estimate of Popielski & Dziem-
bowski (2000). Clementiniet al. (2000) find a wider range of [Fe/H] from their
spectroscopic data for RR Lyrae stars. They quote the(−2.28,−1.09) range. At
this point we wish to remind the reader that our [Fe/H] valuesare inferred assum-
ing the same heavy element abundances as in the sun. Therefore, caution is needed
when comparing those values with the spectroscopic ones.

Dolphin (2000) finds evidence for a strong star formation episode at [Fe/H]=
−1.63± 0.10 in LMC. The [Fe/H] values for LMC globular clusters containing
RR Lyrae stars are in the range(−2.11,−1.71) (Johnsonet al. 1999). We see in
Figure 1. that RRd stars from M3 and IC4499 occur in the regionof maximum
concentration of RRd stars from LMC. The values of metallicity are respectively
−1.57 and−1.5 (Smith 1995), which are close to the center of the metallicity
range inferred by us. On the other hand, RRd stars from M15 andM68 occur at
the high period end of the RRd band. The metallicities of these two clusters are
−2.15 and−2.09 (same source), lower by some 0.2 than those inferred by us. As
we discuss in Section 7., this discrepancy may be explained by too low value ofα
adopted in our pulsation calculation, but also could be due to uncertainty of [Fe/H],
which exceeds 0.15 (see for instance Rutledgeet al. (1997)).

5.3. Width and shape of the RRd band

The width of the RRd band at givenP0 may be explained by the mass spread
for specified metallicity. The estimate of the corresponding spread in period ratio,
∆R , is provided in Table 2. We may see that it ranges from 0.002 to 0.004, which
is even more than the width of the observed band (see Figure 3.b). In the same
figure we may see that the branch ambiguity is a relatively small contributor to the
spread in the period ratio.

To simplify further discussion of the shape, we adopt from now on a unique
M(Z) relation that is determined by the maxima shown in Figure 5. With this
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Figure 3: Selected evolutionary tracks in:a) the Hertzsprung-Russel diagram,
b) Petersen diagram. Ina) we use thick lines to denote parts of the tracks used in
pulsation calculations. Observed RRd stars are shown as dots inb). Vertical arrows
connect models with the same effective temperature, from the left: logTeff = 3.845,
3.835 and 3.818. Solid and dashed arrows correspond to the lower and upper
branch of the tracks, respectively.
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Figure 4: Stellar evolution lifetime from ZAHB versus temperature for different
mass RR Lyrae tracks. Lines are thicker within the instability strip.
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Figure 5: Model evolution lifetime in the selected temperature range for tracks of
different mass andZ .
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Figure 6: Allowed domain for RRd stars in theM −Z plane. Two slopingM(Z)
lines are determined by considering time spent in the selected temperature range.
Two horizontal lines follow from the observational Petersen diagram. Nonlinear
double-mode model (Feuchtinger 1998) is shown with a cross.

Z ∆M
(

∂R

∂M

)

P0

∆R

0.001 0.055 0.0667 0.0037
0.0005 0.050 0.0500 0.0025
0.0003 0.051 0.0467 0.0024
0.0002 0.050 0.0428 0.0021

Table 2: Mass spread effect on the Petersen diagram band width at constantP0 .

restriction we may write

P0,k = P0,k(Z,Teff), (2)

R k = R k(Z,Teff), (3)

where k = 1,2 identifies the branch of the track. After eliminatingTeff , we get
the Petersen relationsR k = R k(P0,Z) . In Figure 3.b we see that for givenZ , the
separation reflecting the two choices ofk , is well within the observed width. Thus,
the shape of the RRd branch reflects theTeff(Z) dependence for RRd stars.

Adopting central values ofR at given P0 , we may invert Eq. (2) and (3)
to obtain Teff(Z) . In this case, the branch ambiguity is significant. Using our
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evolutionary tracks and Eq. (1) we found

logTeff = 3.8347+0.0363([Fe/H]+1.6) for the upper branch,
logTeff = 3.8315+0.0377([Fe/H]+1.6) for the lower branch.

(4)

Successful nonlinear models of double-mode pulsation should explain these
phenomenological relations. At this stage we cannot say whether it is metallicity
or luminosity that matters, since the two parameters (Teff , [Fe/H]) are correlated.
With the use of evolutionary tracks we can determine the correspondingTeff on L
relations, which give the locus of RRd stars in the HR diagram. The result is

logL/L⊙ = 1.723−2.684(logTeff −3.835) for the upper branch,
logL/L⊙ = 1.703−2.124(logTeff −3.835) for the lower branch.

(5)

These two relations are shown in Figure 7. In the same figure weshow lines
separating different behavior of RR Lyrae stars from observations and theory.

Figure 7: Different pulsational behavior or RR Lyrae in HR diagram. Solid lines
encompass observational fundamental mode domain (Géza Kovács - private com-
munication). The two short-dashed lines, which are from model calculations of
Kolláth et al. (2000), show blue edges for first overtone and fundamental mode
pulsators (FOBE and FUBE respectively). The two dashed lines show relations
given in Eq. (5). Position of the model for which Feuchtinger(1998) found a sus-
tained double-mode pulsation is shown with a cross.
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The RRd localization between RRc and RRab stars was found observationally
by Walker (1994) in his work on RR Lyrae in M68. It is supportedby recent work
of Bakos & Jurcsik (2000) for M3.

It is important to notice that inclination,−d log(L/L⊙)/d logTeff , of the bi-
modality strip is significantly smaller than the inclination of all other characteristic
lines shown in Figure 7. According to current understanding, the bimodal behavior
is caused by specific property of convection (see e.g. Kolláth & Buchler (2000)).
Convection also determines the red edge of the instability strip, thus we would
expect a similar inclination of the two lines. That the theory fails to explain in-
clinations of the characteristic lines is not a new problem.Indeed, as Kolláthet
al. (2000) pointed out there is a large disagreement between theobservational and
theoretical lines separating first overtone and fundamental mode pulsators. The bi-
modality strip from recent model calculations of Kolláthet al. (2000) is drastically
different than the one determined by us. Apparently, there is still a need for further
improvement in nonlinear modeling of RR Lyrae star pulsation.

6. Double-mode pulsators and absolute magnitudes of RR Lyrae stars

Kovács & Walker (1999) used period and photometric data to determine the
absolute magnitudes of RRd stars from three globular clusters. This was a novel
approach to the important and still vividly debated problemof absolute magnitudes
of RR Lyrae stars. Different methods yield results, that maydiffer as much as 0.3
mag. Kovács & Walker (1999) found RR Lyrae stars brighter by 0.2÷ 0.3 mag
than inferred by means of the Baade-Wesselink method. Theirresult was amongst
those indicating higher luminosity of these stars.

In our investigation we make a different use of RRd stars. Instead of photo-
metric data, we use evolutionary tracks. Following Kovács &Walker (1999) we
assume that the luminosities of RRd stars are representative for the whole popu-
lation of RR Lyrae stars. Choosing evolutionary track at each Z for the central
mass value, we may inferL at the RRd temperatures. We recall the [Fe/H] is the
customary counterpart ofZ , based on Grevesse & Noels (1993). With the help of
Kurucz (1999) tabular data, we derived

〈MV 〉= 0.452+0.162([Fe/H]+1.6) for the upper branch,
〈MV 〉= 0.546+0.240([Fe/H]+1.6) for the lower branch.

(6)

The luminosities given in these equations are close to the high luminosity end of
the debated range.

Somewhat higher luminosities for RR Lyrae stars were derived by Carrettaet
al. (2000), who relied on the main sequence fitting. He quotes thefollowing result,

〈MV 〉= (0.45±0.12)+ (0.18±0.09) ([Fe/H]+1.6). (7)
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Demarqueet al. (2000) combining their evolutionary tracks with photometric data
on globular clusters obtained

〈MV 〉= 0.55+0.21 ([Fe/H]+1.6), (8)

which is not too different from our estimate.
There are three distinct methods which lead to the significantly lower RR Lyrae

star luminosities. Gould & Popowski (1998) used the statistical parallax method to
infer

〈MV 〉= 0.77±0.13 at [Fe/H]≈−1.6. (9)

Udalski et al. (1999) in their determination of the absolute magnitudes relied on
the distance to LMC, determined by the red-clump method, andtheir photometry
of RR Lyrae stars. They found the mean value of 0.71±0.07. Smith (1995) quotes
two results obtained by means of the Baade-Wesselink method,

〈MV 〉= 0.76+0.16 ([Fe/H]+1.6) after (Joneset al. 1992),
〈MV 〉= 0.72+0.20 ([Fe/H]+1.6) after (Cacciariet al. 1992).

(10)

We should stress however, that more recent analysis of the observational material
suggests higher luminosity values

〈MV 〉= 0.63+0.21 ([Fe/H]+1.6) after (Fernley 1994),
〈MV 〉= 0.50+0.28 ([Fe/H]+1.6) after (McNamara 1997).

(11)

Having determined mean luminosities of RR Lyrae stars we mayprovide our esti-
mates of distance modulus to LMC. In this we must rely on measurements of visual
magnitudes. Mean visual magnitude of RRd stars from the MACHO data is 19.33
mag (Alcocket al. 2000a). From Eq. (6), adopting [Fe/H]=-1.5, we get average
absolute magnitude of 0.52 mag, which implies(m−M)LMC = 18.81 mag. If in-
stead of MACHO we adopt OGLE mean visual magnitude (Udalskiet al. 1999),
we get (m−M)LMC = 18.42 mag. The OGLE mean value refers to a sample of
various types of RR Lyrae pulsators, but we have no evidence,there is a systematic
difference in luminosities between RRd stars and the whole population of RR Lyrae
stars. These numbers may be compared with(m−M)LMC = 18.53 mag, derived by
Kovács (2000a), by means of the method developed by Kovács & Walker (1999).
Kovács (2000b) application of a similar method to double-mode Cepheids from
SMC implies, after using distance modulus difference between SMC and LMC of
0.51 mag (Udalskiet al. 1999),(m−M)LMC = 18.54 mag. A recent measurement
of the LMC distance modulus based on the Red-Clump method (Romanielloet al.
2000), as well as other works based on different distance indicators - referenced
therein, supports also a long-distance scale.
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7. Uncertainties

We have seen that the Petersen diagram is indeed a powerful tool for diagnosing
evolutionary models of RR Lyrae stars and for determining metallicities in stellar
systems. The tool, however, requires high precision in calculated period ratios,R .
A 10−4 difference in the period ratio corresponds to 3% differencein Z . Let us
recall that the whole range of period ratios for RRd stars is 0.742÷ 0.748. It is
not difficult to reach the numerical accuracy of 2×10−4 in calculated period ratios
within the linear non-adiabatic treatment. Typical difference between non-adiabatic
and adiabatic period ratios is 0.002.

The treatment of convection has some effect on calculated periods. Undoubt-
edly, theα effect onR cannot be ignored. The period ratio values are affected by
the difference in the envelope structure implied by change in α . In Figure 8. we
illustrate the effect ofα on the interpretation of the Petersen diagram. We com-
pare there model results obtained withα = 1, which was the adopted standard in
our pulsation calculations, withα = 2, close to the values adopted in evolutionary
track calculations. The choice ofα = 2 in pulsation calculation implies shift of
upper limit of Z from 0.001 to 0.00125 ([Fe/H] from−1.3 to −1.2) and the shift
of the lower limit of Z – from

Details of heavy element composition are another effect of potential signifi-
cance. In our calculations we used the standard solar mixture (Grevesse & Noels
1993). Kovácset al. (1992) studied the effect of using different mixtures. Specifi-
cally, they considered an oxygen enhanced mixture. Using tabular data of Kovács &
Walker (1999) we found that with such a mixture, the maximum value ofZ for RRd
stars should be about 0.002 instead of 0.001, quoted by us in Section 5.2. How-
ever, the change in the metallicity parameter, [Fe/H], isn’t high and amounts to
about−0.15.

The uncertainty of nonlinear effect on the value of period ratio is the most
difficult to estimate. The problem was first investigated by Bono et al. (1996)
and recently revisited by Kolláth & Buchler (2000). These authors found that the
period ratio shift due to nonlinear effect is less than zero,in most cases, and may
be as large as−8×10−4 . We will use the value of−4×10−4 , which corresponds
to typical amplitudes of RR Lyrae stars. Thus we have to add a 4×10−4 correction
to infer the linear period ratio value from observations. This correction translates
to 10% decrease in the inferred value ofZ (0.05 decrease in [Fe/H]).

8. Summary

We have seen that the Petersen diagram for RRd stars in the Magellanic Clouds
may be explained by standard model calculations. The calculations involved evo-
lutionary models of horizontal branch stars and linear non-adiabatic calculations of
radial pulsation periods. The agreement has been achieved assuming metal abun-
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Figure 8: The effect of mixing length theory parameter,α , on model position in
the Petersen diagram. Results of pulsation calculations with α = 1 (solid lines) are
compared with that calculated withα = 2 (dashed lines). Dots correspond to RRd
data.

dances consistent with other determinations.
This successful explanation of the Petersen diagram may be regarded as a test

of our models. These models yield mean absolute magnitudes,〈MV 〉 ≈ 0.5 mag.
Hence we support the brighter luminosity scale for RR Lyrae stars.

The range of metallicity needed to explain the whole extent of RRd band is
[Fe/H]= (−2,−1.3) for both Magellanic Clouds. While in SMC the objects appear
to be uniformly distributed in this range, in LMC we see a strong concentration in
the range(−1.7,−1.3) .

We have discussed uncertainties in our inference on metallicities following
from the uncertainty of calculated values of period ratios.Its primary sources are
treatment of convection and nonlinear effects as well as ambiguity of the heavy el-
ement abundance. All these effects contribute to uncertainty of [Fe/H] on the level
of 0.5. All of them should and can be reduced.

The observed width of the RRd band in the Petersen diagram maybe explained
by the spread in masses at given metallicity. Petersen diagrams provide a stringent
constraint on RRd temperatures. As expected, these temperatures correspond to
the mid of the RR Lyrae range. In detail however, there is a difference between our
RRd path in the HR diagram and that found by nonlinear modeling. Our RRd strip
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is significantly more inclined than the blue and red edges of the instability strip.
The path from nonlinear simulations has inclination more than 90 degrees.
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