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ABSTRACT

Thermal and chemical evolution of primordial gas clouds irradiated with far-

ultraviolet (FUV; hν < 13.6 eV) radiation is investigated. In clouds irradiated by

intense FUV radiation, sufficient hydrogen molecules to be important for cooling are

never formed. However, even without molecular hydrogen, if the clouds are massive

enough, they start collapsing via atomic hydrogen line cooling. Such clouds continue

to collapse almost isothermally owing to successive cooling by H− free-bound emission

up to the number density of 1016cm−3. Inside the clouds, the Jeans mass eventually

falls well below a solar mass. This indicates that hydrogen molecules are dispensable

for low-mass primordial star formation, provided fragmentation of the clouds occurs at

sufficiently high density.

Subject headings: cosmology: theory — early universe — galaxy formation — molecular

processes — stars: formation

1. Introduction

Since the dawn of evolutionary cosmology, great efforts toward understanding the formation

of the first structures have been made by many authors (e.g., Saslaw & Zipoy 1967; Peebles &

Dicke 1968; Matsuda, Sato, & Takeda 1969; Doroshkevich & Kolesnik 1976; Carlberg 1981; Palla,

Salpeter, & Stahler 1983; Kashlinsky & Rees 1983). In particular, partly stimulated by observa-

tional advances and by the consequent detectability of the first stars by next-generation facilities,

this area is being vigorously investigated these days (e.g., Haiman, Thoul, & Loeb 1996; Ostriker

& Gnedin 1996; Tegmark et al. 1997; Yamada & Nishi 1998; Bromm, Coppi, & Larson 1999; Abel,

Bryan, & Norman 2000; Fuller & Couchman 2000). Those studies have repeatedly emphasized the

key role played by molecular hydrogen.

The role of H2 in the cosmological context is twofold. First, small primordial clouds whose

virial temperature is 1000 . Tvir . 8000K can cool and start collapsing via H2 line cooling after

virialization (e.g., Haiman et al. 1996). Second, the Jeans mass inside a collapsing primordial cloud
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is eventually reduced to much less than a solar mass as a result of H2 cooling (e.g., Palla et al.

1983).

Regarding the former role, there is some dispute over the role of H2 in the formation of second-

generation stars, namely, what happens after the first stars have formed by H2 cooling. Formed

first stars or first quasars can be sources of UV radiation. Whereas ionizing photons are trapped in

an HII region around the source, far-ultraviolet (FUV; hν < 13.6 eV) photons 1 travel farther and

form an outer H2 photodissociation region (PDR). Therefore, before the overlap of the HII regions,

or in other words the reionization of the universe, the H2 PDRs must cover the whole intergalactic

space. At that time, the universe is filled with FUV background radiation (e.g., Haiman, Rees, &

Loeb 1997; Ciardi, Ferrara, & Abel 2000).

Hydrogen molecules in small objects can easily be photodissociated by either internal or exter-

nal UV sources. Haiman et al. (1997) found that in the presence of UV background radiation at the

level needed to reionize the universe, molecular hydrogen is photodissociated in small cosmological

objects. Furthermore, Omukai & Nishi (1999) pointed out that even a single O star formed in a

small cosmological object is able to photodissociate the whole original cloud. In addition, those

clouds are easily blown out by a few supernovae because of their shallow potential wells (e.g., Mac

Low & Ferrara 1999). These effects strongly regulate the subsequent star formation within small

pregalactic clouds.

In contrast to this, the temperature of sufficiently massive clouds reaches above ∼8000K, where

atomic Lyα emission begins to be an effective cooling agent. Regardless of the H2 photodissociation,

such clouds can start collapsing dynamically. It is frequently assumed that, even in primordial

clouds that cool by the atomic cooling instead of the H2 one, star formation occurs in the same

way as in those with the H2 cooling. However, it is far from evident.

Recall another role of hydrogen molecules in primordial star formation. The formation of pro-

tostars in primordial clouds with H2 cooling has been investigated by many authors (e.g., Matsuda

et al. 1969; Yoneyama 1972; Carlberg 1981; Palla et al. 1983; Omukai & Nishi 1998). It is known

that those clouds cool by H2 rovibrational line emission (for number density n . 1014cm−3), H2

collision-induced emission (for 1014 . n . 1016cm−3), and the H2 dissociation (for n . 1020cm−3).

Eventually, a very small protostar (∼ 10−3M⊙) forms at the center when n ≃ 1022cm−3.

On the other hand, we know little about the later evolution of clouds that start collapsing via

atomic cooling. It is still unclear under what condition H2 eventually forms, or whether it plays

some role as a coolant in such clouds. It is also not known how small a Jeans mass is reached

through atomic cooling alone. If this value falls well beyond the mass of normal stars (for example

if it corresponds to the size of super massive stars or very massive objects), we must conclude

that normal stars does not form only by atomic cooling. The aim of this paper is to answer these

questions.

1Some authors use the term “soft-UV”, instead of “far-UV”, for radiation whose energy is below the Lyman limit.
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In this paper, we study the thermal and chemical evolution of primordial clouds irradiated

with FUV radiation. Thereby, we demonstrate that the Jeans mass inside the clouds is reduced

to much less than a solar mass even in the absence of molecular cooling. This implies that low-

mass primordial star formation is possible even without H2 if fragmentation of the clouds occurs

at sufficiently high density.

The outline of this paper is as follows. In §2, the method of our calculations is described. In

§3, results of our calculations are presented. Finally, our work is summarized and its implications

sketched briefly in §4.

2. Model

We consider spherical clouds of hydrogen-helium gas irradiated with FUV radiation. Specifi-

cally, we investigate the cases of two FUV spectra in this paper: type a, the power-law radiation

JUV(ν) = J21 × 10−21(ν/νth)
−1 (erg s−1 cm−2 str−1 Hz−1) (ν < νth), (1)

and type b, the diluted thermal radiation of 104 K

JUV(ν) = J21 × 10−21 B(ν; 104K)

B(νth; 104K)
(erg s−1 cm−2 str−1 Hz−1) (ν < νth), (2)

where νth is the Lyman limit frequency. In both cases, JUV(ν) = 0 beyond the Lyman limit. We

neglect the so-called sawtooth modulation due to the absorption of Lyman series photons by the

intergalactic matter (e.g., Haiman et al. 1997), for simplicity. This suffices for our simple analysis,

which is valid only in order-of-magnitude estimates. We also include the cosmic microwave back-

ground radiation (CMBR), although it has little influence on the matter at those low redshifts. The

spectra of FUV radiation are shown in Figure 1 for J21 = 1 along with the CMBR at z = 30. Note

that, for the same value of intensity at the Lyman limit, the number of photons above the threshold

of H− photodissociation is larger for type b spectra than for type a spectra. Consequently, the pho-

todissociation rate of H− is about 250 times larger for the T = 104 K thermal type radiation (type

b) than for the power-law type (type a) with the same value of J21. Similarly, the photodissociation

rate of H2 is about 3 times larger for the type b spectrum.

We take the maximum expansion of an overdensity as the initial condition of the calculation.

Assuming the redshift of that epoch zm ≃ 30, we take the number density of hydrogen nuclei

n = (Ωb/Ω0)[ρ/(1+4yHe)mH], ionization degree y(e), and matter temperature Tm at the maximum

expansion epoch as n = 8.9 × 10−2cm−3, T = 39K, y(e) = 2.0 × 10−4, respectively. We neglect

the initial molecular abundance and assume y(H2) = 0. Here yHe is the concentration of helium

nuclei, and mH is the mass of a hydrogen nucleus. Note that the concentration of He is defined

by yHe = nHe/n, where n and nHe are the number density of hydrogen nuclei and helium nuclei,

respectively. Simultaneously, we write for each atomic, molecular, or ionic species, y(x) = n(x)/n,

where n(x) is the number density of species x. Note y(H2) = 1/2 for fully molecular gas. We set the
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primordial helium abundance at yHe = 0.0807, which corresponds to the mass fraction Yp = 0.244

(Izotov & Thuan 1998). The cosmological parameters are Ω0 = 1,Ωb = 0.05, and h = 0.7.

Any effect due to rotation or magnetic fields are neglected for simplicity. Then, the actual

collapse is expected to proceed like the Penston-Larson similarity solution (Penston 1969; Larson

1969). 2 According to this solution, the cloud consists of two parts, that is, a central core region

and an envelope. The central core region has a flat density distribution, whereas in the envelope,

the density decreases outward as ∝ r−2. The size of the central flat region is roughly given by the

local Jeans length λJ = πcs/
√
Gρ, where cs and ρ are the sound speed and total density in the core,

respectively. In this paper, we take the radius of the central region as Rc = λJ/2. The collapse

in the core proceeds approximately at the free-fall rate. In this paper, we focus on the evolution

in the central region. In particular, we calculate the the temperature and chemical composition of

the collapsing core as a function of the central density.

The cloud consists of two components, namely, baryon and dark matter. We assume that the

dynamics of the baryonic component is described by the relation

dρb
dt

=
ρb
tff

, (3)

where ρb is the baryonic density in the central region and the free-fall time is

tff ≡
√

3π

32Gρ
. (4)

The dynamics of the dark matter is described by the relation for the top-hat overdensity,

ρ =
9π2

2
(
1 + zm
1− cosθ

)3Ω0ρc, (5)

up to the virialization, where the maximum expansion redshift zm = 30, and the parameter θ is

related to z by the relation

1 + z = (1 + zm)(
θ − sinθ

π
)2/3 (6)

(e.g., Padmanabhan 1993). We also use the usual age-redshift relation for the matter dominant

universe, t = 3.1 × 1017(s)h−1Ω
−1/2
0 (1 + z)−3/2. After the virialization of dark matter, i.e., when

the density reaches to the virial density ρDM,vir = 8ρDM(zm), we keep ρDM = ρDM,vir.

The thermal evolution is followed by solving the energy equation

de

dt
= −p

d

dt
(
1

ρb
)− Λnet

ρb
, (7)

2Although the original Penston-Larson similarity solution is limited to the isothermal collapse, Yahil (1983) ex-

tended this solution for general polytropic equations of state.
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where

e =
1

γad − 1

kT

µmH
(8)

is the internal energy per unit mass of baryon,

p =
ρbkT

µmH
(9)

is the pressure for an ideal gas, γad is the adiabatic exponent, T is the temperature, µ is the mean

molecular weight, mH is the mass of a hydrogen nucleus, and Λnet is the net cooling rate per unit

volume. The net cooling rate Λnet consists of contributions from radiative cooling or heating by

atomic hydrogen lines ΛH; by rovibrational lines of molecular hydrogen, ΛH2
; by continuum, Λcont;

and by the Compton coupling with the radiation, ΛCompt (the Compton cooling is unimportant

in those low redshifts although it is included in our calculation) and from heating and cooling

associated with chemical reactions, Λchem:

Λnet = ΛH + ΛH2
+ Λcont + ΛCompt + Λchem. (10)

The continuum processes included are listed in Table 1. The details of these processes are described

in Appendix B. Since we are focusing on the evolution of the central region, whose radiusRc = λJ/2,

then we evaluate the optical depth τν by

τν = κνRc = κν(
λJ

2
). (11)

Time-dependent nonequilibrium chemical reactions are solved for the following nine species:

H, H2, e, H
+, H+

2 , H
−, He, He+, and He++. Chemical reactions included are listed in Table 2.

3. Results

In this section, we present our numerical results. Figures 2 and 3 display the temperature

evolution for collapsing primordial clouds irradiated with (1) the power-law type and (2) diluted

black body of 104 K type FUV radiation, respectively. As mentioned in §2, the photodissociation

rate coefficients of both H− and H2 are larger for type b spectrum than for the type a with the same

value of J21. Consequently, FUV radiation of type b has the larger influence on the evolution of the

clouds than type a with the same value of J21. We discuss effects of different spectral types and

scaling relations between them in Appendix A. Except for those scalings of J21, the evolutionary

trajectories change in similar ways with an increase of the UV intensity in both cases. Hence, we

describe only the evolutionary features of the clouds irradiated with type a radiation in detail here.

The evolutionary trajectories for the clouds with J21 ≥ 105 are identical to each other. As is

obvious from Figure 2, the thermal evolution at high densities (say, n & 107cm−3) is completely

different between clouds with J21 ≤ 104 and those with J21 ≥ 105. This is because the clouds
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irradiated by the FUV radiation with J21 ≥ 105 cannot form sufficient H2, so they cool only by

atomic cooling. The temperature of such clouds is higher than that of clouds with J21 ≤ 104, which

can form enough H2 to cool eventually. Toward higher densities, these two groups of trajectories in

Figure 1 converge respectively to two different limiting tracks. We call the higher temperature one

the “atomic cooling track”, and the other the “molecular cooling track”. This nomenclature comes

from the fact that clouds evolving along the former track remain atomic, while those following the

latter eventually become fully molecular. We should note that the Jeans masses inside the clouds

ultimately fall below 0.1M⊙ for both tracks.

Figure 4 shows the fractional abundances of hydrogen molecules (Fig.4a) and electrons (Fig.4b)

for the clouds irradiated with type a radiation. The separate heating and cooling rates per unit

mass for those clouds are illustrated in the panels of Figure 5 for J21 = 0(Fig.5a), 104(Fig.5b) and

105(Fig.5c).

We review their evolutionary features starting from the case of J21 = 0. In this case, the

collapse proceeds along the well-known molecular cooling track (e.g., Palla et al. 1983). At the

beginning, the temperature rises adiabatically owing to the compression and the initial lack of

coolant. If the total mass of the cloud is less than the maximum Jeans mass attained at the end of

this adiabatic phase, the contraction stops at the time when the cloud mass becomes equal to the

Jeans mass. We assume here that the total mass of the cloud is larger than the maximum Jeans

mass. At low densities (i.e., n . 108cm−3), H2 is formed mainly through the H− channel:

H + e → H− + γ (reaction 32), (12)

and then

H + H− → H2 + e (reaction 9). (13)

Increased temperature and density causes an increase of both the H2 formation rate and the H2

cooling function. Consequently, a sufficient amount of H2 to cool within a free-fall time is formed,

and the temperature then drops. A detailed discussion of when the efficient H2 cooling begins is

presented in Appendix A. Owing to the H2 cooling, the temperature is kept as low as a few hundred

K in the cloud (see Fig.2 and Fig.5a). When the density reaches about 108cm−3, the three-body

reaction

3H → H2 +H (reaction 16) (14)

becomes efficient (Palla et al. 1983). In consequence of this highly productive H2 formation,

hydrogen becomes fully molecular (see Fig.4 a). At the same time, the cloud becomes optically

thick to a few H2 lines at n ≃ 1011cm−3. However, the cooling remains efficient enough to induce

dynamical collapse (i.e., The ratio of specific heat Γ ≡ dlogp/dlogρ < 4/3) because there are still

enough optically thin lines. When the central number density reaches about 1014cm−3, H2 collision-

induced emission begins to dominate the cooling (see Fig.5a). The cloud becomes optically thick to

this continuum at ∼ 1016cm−3. Thereafter, the radiative cooling rate drops rapidly. Simultaneously,

H2 dissociation begins, because the temperature is already near the value needed for dissociation.

The H2 dissociation prevents the temperature from rising rapidly until the number density reaches
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about 1020cm−3. The minimum Jeans mass of 1.5 × 10−3M⊙ is reached shortly after that. When

most of the hydrogen molecules are dissociated, the collapse becomes approximately adiabatic.

According to Omukai & Nishi (1998), after a little further contraction, a small hydrostatic core

(about a few 10−3M⊙), or protostar, forms at n ≃ 1022cm−3, T ≃ 3× 104K.

As seen in Figure 2, if the intensity of FUV radiation increases, the density and temperature

at the time when efficient H2 cooling begins also increases (see Appendix A for further discussion).

After H2 cooling becomes effective, the trajectories of those clouds soon converge to the evolutionary

track for JUV(ν) = 0.

An interesting example is when the intensity is as high as J21 ≃ 104. In this case, the temper-

ature rises almost adiabatically up to about 8000K without enough H2 formation. At that point,

Lyα line emission of atomic hydrogen begins to work as an efficient cooling agent (see Fig.5b). After

the cloud collapses isothermally at T ≃ 8000K over an order of magnitude in density owing to this

coolant, sufficient hydrogen molecules form as a result of the increased density. Thereafter, the

trajectory converges rapidly to the molecular cooling track in the same way as those with weaker

radiation (see Fig.2).

When the intensity of FUV radiation is increased more, i.e., J21 & 105, the thermal evolution

becomes completely different from those with lower intensities (see Fig.2). The adiabatic rise of

temperature continues until Lyα cooling becomes effective at about 8000K. 3 While the cloud

collapses nearly isothermally at about 8000K owing to Lyα line cooling, the central density reaches

the critical density 4 ncr ≃ 104cm−3 of hydrogen molecules before a amount of H2 sufficient to cool

within a free-fall time forms. At higher densities, n & ncr, enough H2 never forms, for the following

two reasons. First, the H2 fraction decreases; the collisional dissociation rate coefficient increases

because, at n & ncr, high vibrational levels, at which dissociation occurs easily, are populated by

more hydrogen molecules than at lower density. Second, the amount of H2 needed for efficient

cooling increases; note that the cooling rate per unit volume ΛH2
∝ n2 for n . ncr, while ΛH2

∝ n

for n & ncr. (see Appendix A for further discussion). Consequently, the cloud never joins to

the molecular cooling track. Instead, it continues to cool by Lyα line emission until the density

reaches about 106cm−3, where collisional de-excitation from the 2p state begins to dominate the

Lyα emission as a result of the small escape probability (i.e., βesc,21A21 ≃ C21). The subsequent

major cooling process is two-photon emission of atomic hydrogen from the 2s state. This works

effectively in the density range 106cm−3 . n . 107cm−3. Next, the cloud cools by the free-bound

emission of H− over nearly ten orders of magnitude in density, until the number density reaches

1016cm−3 (see Fig.5 c). The mechanism of H− free-bound emission cooling is as follows. As a first

3The initial slight rise of ionization degree seen in Figure 4b is caused by photoionization from the first excited level,

which is populated by more atoms than the local thermodynamic equilibrium (LTE) value as a result of absorption

of irradiated Lyα photons. This effect has little influence on the later evolution.

4The critical density is the density above which the rovibrational levels of H2 are populated, according to the LTE

law.
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step, radiative association of H and e;

H + e → H− + γ (reaction 32) (15)

occurs and a photon is emitted. This H− is used to form H2 (reaction 9), which will be collisionally

dissociated by reaction 15. As a result, there is net cooing by the photon emitted in reaction 32.
5 In the course of the dynamical collapse induced by H− free-bound emission, the temperature

falls gradually from 7000K (at n ≃ 106cm−3) to 3000K (at n ≃ 1016cm−3; see Fig. 2). At the

central density, ∼ 1016cm−3, the cloud becomes optically thick to both H− bound-free absorption

and Rayleigh scattering of atomic hydrogen. At the number density ≃ 1017cm−3, the H ionization

begins (see Fig. 4 b). As a result, the temperature rise slows down up to n ≃ 1019cm−3. At

n = 1020cm−3, where 60 % of the gas is ionized, the minimum Jeans mass MJ,min = 0.03M⊙ is

reached. Thereafter, the temperature continues to rise almost adiabatically. We expect that a

protostar on the order of MJ,min is formed after a little further adiabatic contraction. Although the

minimum Jeans mass of the atomic cooling clouds is 20 times larger than that of the H2 cooling

clouds, it is still much less than the mass of usual stars.

4. Summary and Discussion

We have investigated the thermal and chemical evolution of primordial clouds irradiated with

FUV radiation. When intensity of the irradiating FUV radiation exceeds some critical value [J21 ≃
105 for JUV(ν) ∝ ν−1 (hν < 13.6eV)], sufficient molecular hydrogen to be important for cooling is

never formed in those clouds because of the photodissociation and blocking of the formation channel.

Nonetheless, sufficiently massive clouds can start dynamical collapse by atomic line cooling even

without H2. Those clouds continue to collapse almost isothermally at several thousand K along

the “atomic cooling track” in the density-temperature plane. That dynamical collapse is induced

by successive cooling by Lyα emission, two-photon emission, and H− free-bound emission. The

minimum Jeans mass eventually reduces to about 0.03M⊙ for those clouds. On the other hand,

clouds irradiated with less intense FUV radiation collapse dynamically by the H2 cooling. The

minimum Jeans mass of such clouds is about 1.5 × 10−3M⊙.

Although in this paper we limited our application to the protostellar collapse under an FUV

background, we expect that the primordial protostellar collapse without H2 also occurs in other

situations. Recently, Susa & Kitayama (2000) investigated the collapse of primordial clouds ir-

radiated with ionizing UV background JUV(ν) = J21 × 10−21(ν/νth)
−1 (erg s−1cm−2str−1Hz−1).

They pointed out that H2 formation is suppressed for J21 > 3.6 × 104 owing to blocking of the

H2 formation channel by H− photodissociation. Although they did not study the later evolution,

we guess that the clouds continue collapsing along our atomic cooling track. Carlberg (1981) also

5Formed H− is photodissociated at low densities, that is, n < k31/k9 = 0.1αJ21, where α is a constant defined in

Appendix A, and is 8 for the type a (2× 103 for type b, respectively) spectrum. In this case, there is no net cooling.
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considered the thermal evolution of collapsing primordial clouds without external radiation, but

he did not include the three-body process of H2 formation. For this reason, in his calculation,

molecular hydrogen dissociates at n ≃ 1011cm−3. After that, the evolutionary path of his cloud

follows approximately our atomic cooling track (see Fig. 2 of Carlberg 1981). This fact support

our speculation that the clouds that do not cool by H2 collapse along the atomic cooling track.

Next, we discuss the feasibility of the collapse along the atomic cooling track in the cosmological

reionization. The UV intensity needed to reionize the universe at zreion, i.e., 1 ionizing photon per

a hydrogen nucleus, is

Jreion =
hcΩbρcr(1 + zreion)

3

4π(1 + 4yHe)mH
= 3× 10−21(

1 + zreion
10

)3 (erg s−1 cm−2 str−1 Hz−1) (16)

at the Lyman limit for J(ν) ∝ ν−1 and the assumed cosmological parameters. Thus, the condition

that the clouds collapse along the atomic cooling track, J21 & 105 for JUV(ν) ∝ ν−1, seems to be

rarely met in practice, except in the immediate vicinity of UV sources.

Finally, we discuss the mass of formed stars. Although the minimum Jeans mass is less than

0.1 M⊙, this corresponds not to the final mass of formed stars, but rather to the initial mass

of the protostar, which has no direct relation with the former. When a small hydrostatic core,

namely protostar, forms at the center of a collapsing protostellar cloud, an enormous amount

of gravitationally unstable gas still surrounds the protostar. Thereafter, the protostar grows in

mass by accreting the ambient matter. Consequently, the final mass of stars is determined by the

subsequent accretion onto the protostar. Stahler, Shu, & Taam (1980) argued that a rough estimate

of the protostellar mass accretion rate Ṁ can be obtained from the relation Ṁ ∼ c3s/G, where cs
is the isothermal sound speed in the protostellar cloud. From this relation, the mass accretion

rate is higher for protostars formed by atomic cooling than for those formed by molecular cooling

because of the higher temperature of the protostellar cloud. Suppose that the accretion is halted

by some stellar activity, e.g., radiation force, bipolar flow, etc. In this case, the higher accretion

rate probably results in the later halting and higher mass of formed stars (e.g., Wolfire & Cassinelli

1987).

In contrast, from the viewpoint of fragmentation, the masses of primordial stars formed by

atomic cooling alone could be smaller than those formed by molecular cooling. The fragmentation

is possible in principle as long as the temperature decreases toward higher density, while it does not

occur after the isothermality of the cloud breaks down and the temperature begins to rise (Inutsuka

& Miyama 1997; Masunaga & Inutsuka 1999). From Figures 2 and 3, the final fragmentation occurs

at about n ≃ 1016cm−3 for clouds collapsing along the atomic cooling track. On the other hand, it

seems difficult for molecular cooling clouds to fragment at n & 103cm−3. The masses of fragments,

which is about the Jeans mass at that time, are about 0.1M⊙ for the atomic-cooling clouds, and

104M⊙ for the molecular-cooling clouds. If this is the case and the whole material contained in a

fragment is converted into a single star, very massive stars form from a molecular-cooling cloud, and

red dwarfs form as a result of atomic cooling. However, it should be noted that the fragmentation
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and thermal evolution depend strongly on each other and also on the geometry of the clouds. In

fact, Uehara et al. (1996) concluded that the minimum mass of fragments is on the order of a solar

mass, which is essentially the Chandrasekhar mass, by studying thermal evolution of filamentary

primordial clouds that collapse by molecular cooling. Later, improved simulations by Nakamura

& Umemura (1998) confirmed Uehara et al.(1996)’s result. The discrepancy between our mass of

fragments (∼ 104M⊙) and theirs (∼ 1M⊙) results from the difference of the assumed geometry of

the clouds; we have assumed spherical clouds in studying the thermal evolution, while their clouds

are filamentary. For filamentary clouds, the gravitational contraction is slower and compressional

heating rate is lower than for spherical ones. Hence, for the filamentary cloud the isothermality

breaks down at higher density, where the Jeans mass is smaller. To fully address the complexity

arising from the cloud geometry, two-dimensional or three-dimensional calculations are needed.

Furthermore, there are other uncertainties relating to the evolution of the fragments, for example,

mass accretion onto the fragments, merger between them, feedback from neighboring formed stars,

etc. (e.g., Bromm et al. 1999). It seems premature to draw conclusions here about these issues.
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2 photodisso-

ciation cross section. I also acknowledge the referee for improving the manuscript. This work is

supported in part by Research Fellowships of the Japan Society for the Promotion of Science for

Young Scientists, grant 4287.
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A. Conditions for H2 Cooling

In this section, we discuss key processes determining the amount of the molecular hydrogen

forming under FUV radiation. In particular, we delineate the condition for sufficient H2 for cooling

to form.

The H2 fraction y(H2) necessary to cool within a free-fall time is given by

ycool(H2) =
(3/2)kBT

nLH2
tff

, (A1)

where LH2
(erg s−1 cm3) = ΛH2

/n(H)n(H2) is the H2 cooling function and we assume n(H) ≃ n.

When the actual H2 fraction y(H2) reaches ycool(H2), the temperature drops abruptly as seen in

Figure 2 and 3.

Next, we discuss how much H2 forms during the collapse. The H2 abundance is bounded by

the following three values;

(1) the amount of H2 that is able to form within a free-fall time, yform(H2),

(2) the chemical equilibrium value between H2 formation and photodissociation, ypd(H2),

(3) the chemical equilibrium value between H2 formation and collisional dissociation, ycd(H2).

In practice, the smallest among these three values is realized;

y(H2) = min[yform(H2), ypd(H2), ycd(H2)]. (A2)

In the following, we examine the values of yform(H2), ypd(H2), and ycd(H2) in this order.

First, we find the formation time limited value yform(H2). H2 formation occurs mainly through

the H− channel:

H + e → H− + γ (Reaction 32), (A3)

followed by

H + H− → H2 + e (Reaction 9). (A4)

In the above chain, not all of H− formed are used in H2 formation. Instead, some of H− are

photodissociated via Reaction 31;

H− + γ → H+ e (Reaction 31). (A5)

The photodissociation rate coefficient of H−, k31, depends on the spectrum of radiation. Here, we

introduce a parameter α, defined by

k31 = ακ31J21, (A6)

where κ31 = 1 × 10−10 is the value of k31 under JUV(ν) = 10−21 = const. (for ν < νth). The

parameter α characterizing the radiation spectrum above H− photodissociation threshold (0.755
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eV) is 8 for the power-law type spectrum (type a in the text), 2× 103 for the diluted thermal type

spectrum (type b). The rates of the competing reactions 9 and 31 determine the branching ratio

of H− to be used in H2 formation, which is k9n/(k9n + k31). Then, by defining the effective H2

formation rate coefficient

kform = k32
k9n

k9n+ k31
, (A7)

the H2 formation rate can be written as kformn(e)n(H). Using kform above, we obtain the H2 fraction

that can form within a free-fall time

yform(H2) = kformy(e)ntff . (A8)

Second, we find the photodissociation limited value ypd(H2). The photodissociation occurs via

H2 + γ → H∗
2 → 2H (Reaction 35), (A9)

whose reaction coefficient is

kpd ≡ k35 = 109J(hν = 12.4eV)fsh = 10−12βJ21fsh. (A10)

Here, we have introduced a parameter β that represents the relative strength of radiation intensity

at the average LW band frequency (12.4 eV) to that at the Lyman limit (13.6 eV). The shielding

factor fsh is given by (Draine & Bertoldi 1996)

fsh = min
[

1, (NH2
/1014cm−2)−3/4

]

. (A11)

The equilibrium value between the H2 formation and photodissociation is

ypd(H2) =
kform
kpd

y(e)n. (A12)

If NH2
> 1014cm−2, the coefficient kpd, and then the right hand side of equation (A12), involves

y(H2) itself. Denoting kpd = apdy(H2)
−3/4, where apd ≡ 7× 10−18T

−3/8
3 n−3/8βJ21, we obtain

ypd(H2) =

(

kform
apd

y(e)n

)4

(NH2
> 1014cm−2). (A13)

Combining expressions for cases with and without H2 self-shielding, the photodissociation limited

value of H2 is

ypd(H2) = max

[

kform
10−12βJ21

y(e)n,

(

kform
apd

y(e)n

)4
]

. (A14)

Note that the radiation intensity enters into the expression for ypd(H2) only in the form of αβJ2
21

in the low density range n < k31/k9 ≃ 0.1αJ21cm
−3.

Third, the collisional dissociation limited value ycd(H2) can be obtained as follows. The dom-

inant collisional dissociation process is collision with the atomic hydrogen:

H2 +H → 3H (Reaction 15). (A15)
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Then, denoting kcd ≡ k15,

ycd(H2) =
kform
kcd

y(e). (A16)

This value ycd(H2) becomes smaller when the density exceeds the critical density ncr ≃ 104cm−3

owing to the collisional dissociation from high vibrational states.

Now, we examine when sufficient H2 forms under FUV radiation in the case that the tem-

perature rises adiabatically from the initial value. Figure 6 shows the H2 fraction estimated by

Equation (A2) in this case. Here, the temperature is given by T = T0(n/n0)
2/3, where the initial

number density and temperature are n0 = 8.9 × 10−2cm−3, T0 = 39K, and the ionization degree

y(e) is fixed to 10−4. 6 In Figure 6, each curve for y(H2) with fixed FUV intensity consists of four

segments. From the lowest to highest temperature in this Figure, those segments correspond to

ypd(H2) without self-shielding (gradually increasing portion), ypd(H2) with self-shielding (rapidly

increasing portion), yform(H2) (another gradually increasing portion), and ycd(H2) (decreasing por-

tion). As known from Figure 6, except for lowest intensities (in such a case, the evolution of the

cloud is virtually unaffected by the presence of FUV radiation), the photodissociation limited value

ypd(H2) determines when the sufficient H2 forms. The condition that molecular cooling becomes

effective before atomic cooling does is that ypd(H2) > ycool(H2) at T = 8000 K, which leads to

J21 < 4× 103(
x4
αβ

)1/2, (A17)

where x4 ≡ y(e)/10−4 and we have used kform ≃ k32k9n/k31, and k32 = 3.6 × 10−15, k9 = 8.7 ×
10−10, ycool(H2) = 10−6, and n = 2.6 × 102cm−3 at 8000K. Also, since FUV intensity enters into

ypd(H2) in the form of αβJ2
21, type b spectrum of J

(b)
21 has the same effect as type a spectrum of

√

αβ(b)/αβ(a) ≃ 27 times J
(b)
21 on the early evolution of the clouds.

As discusses in the text, the cloud irradiated by strong FUV radiation never forms sufficient

H2 for cooling if the intensity exceeds a certain critical value. Next, we discuss the physical reason

where this value comes from. Here, we examine how much H2 forms while the cloud collapses

isothermally owing to Lyα cooling. The values of H2 concentration y(H2) estimated by equation

(A2) for T = 8000K and y(e) = 10−4 are shown in Figure 7. 7 For a given value of FUV intensity,

y(H2) is limited by ypd(H2) (an almost vertical line) in the lower density range and by ycd(H2) (a

smooth curve) in the higher density range. The formation time limited value yform(H2) does not

appear in this Figure. On the other hand, ycool(H2) decreases in the low density regime, reaches

the minimum at n ≃ ncr ≃ 104cm−3, and increase in higher densities. As seen in Figure 7, the

H2 fraction y(H2) has no chance to reach ycool(H2) in n & ncr ≃ 104cm−3. This is because the H2

6Here and through out this section, we assume the ionization degree is constant, namely, the recombination

and/or ionization time scale is longer than the evolutionary timescale of the system (i.e., free-fall time) Although this

is somewhat oversimplification, it suffices for clarifying key processes determining the H2 fraction.

7Once the actual H2 fraction exceeds ycool(H2), the temperature of the cloud drops from ∼ 8000K as a result of

the H2 cooling. After that, the H2 fraction shown in the Figure does not represent the actual value.
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fraction y(H2) is limited by ycd(H2), which becomes small in those densities owing to the enhanced

collisional dissociation from high vibrational levels. Therefore, in order for the H2 cooling to become

efficient, y(H2) must reach ycool(H2) at n . ncr; both ycd(H2) and ypd(H2) must exceed ycool(H2)

at n . ncr ≃ 104cm−3. As the condition on ycd(H2), we take γycd > ycd(J(ν) = 0), where constant

γ ∼ several, noting that ycd(H2;J(ν) = 0) is several times larger than ycool(H2) at n . ncr. This

reduces to γk9ncr > k31, or in another expression,

J21 < 4× 105α−1, (A18)

where we have chosen γ = 5. The condition on ypd(H2) leads to another constraint on J21:

J21 < 1× 106x4β
−1. (A19)

Here, we have used ycool ≃ 10−6, since the dependence of ypd(H2) on n is so strong that the precise

value of ycool(H2) is not important. Also, kform = k32 has been used. Combining the conditions

(A18) and (A19), the critical intensity Jcr above which the cloud never forms sufficient H2 is

Jcr,21 = min(4× 105α−1, 1× 106x4β
−1). (A20)

Substituting the parameters α and β into equation (A20), we see that the former constraint is more

restrictive than the latter for both two types of radiation discussed in the text.

B. Radiative Processes

B.1. Atomic Hydrogen Lines and Two-photon Emission

We model an atomic hydrogen as a five level system. The radiative cooling rate due to atomic

hydrogen lines per unit volume is given by

ΛH lines =
∑

ul

hνulβesc,ulAulnu(H)[SH(νul)− Jcont(νul)]/SH(νul), (B1)

where nu(H) is the population density of atomic hydrogen in the upper energy level u, Aul is the

Einstein radiation probability for a spontaneous downward transition, βesc,ul is the probability for

a emitted line photon to escape without absorption, and hνul is the energy difference between the

upper level u and the lower level l, and Jcont(νul) is the mean intensity of overlapping continuum

at the line frequency νul. The source function SH(νul) is given by

SH(νul) =
2hν3ul
c2

(
gunl(H)

glnu(H)
− 1)−1. (B2)

The cooling rate due to the two photon emission is

Λ2ph = hν21βesc,2phΛ21n2(H), (B3)
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where Λ21 is the spontaneous downward transition probability by the two-photon emission. The

escape probability βesc,2ph = exp(−τa), where τa is the absorption optical depth owing to other

continuum processes (a1-a7 in Table 1; See §B.3). We take only account of absorption by other

continuum processes, since our clouds do not become optically thick to the two-photon continuum.

Relative population of each energy level is obtained from a solution of the equations of the

detailed balance between levels (e.g., de Jong, Dalgarno, & Boland 1980; Tielens & Hollenbach

1985)

ni(H)
n
∑

j 6=i

Rij =
n
∑

j 6=i

ni(H)Rji, (B4)

where n is the total number of transitions included. The transition rate Rij from level i to level j

is given by

Rij =

{

(Aijβesc,ij + Λijβesc,2ph)(1 +Qij) + Cij for i > j

(gj/gi)(Ajiβesc,ij +Λjiβesc,2ph)Qji +Cij for i < j,
(B5)

where Cij is the collisional transition rate, and

Qij =
c2

2hν3ij
Jcont(νij). (B6)

The relative population within the first excited states (i.e.,2p and 2s states) is obtained from

the statistical equilibrium (Spitzer & Greenstein 1951),

n2s

n2p
=

g2s
g2p

(
C2s2p

C2s2p +A2s1s
), (B7)

where the statistical weight g2s = 2, and g2p = 6, the radiative transition rate by two photon

emission A2s1s = 8.23(s−1), and the collisional transition rate between the levels

C2s2p = 6.21 × 10−4T−1/2ln(5.7T )[1 +
0.78

ln(5.7T )
]n(e)(s−1). (B8)

Using n2p obtained above, we may write

A21 =
n2p

n2
A2p1s (B9)

where A2p1s = 6.27 × 108(s−1).

We assume LTE within levels of the same principal quantum number for n ≥ 3. Averaged

over angular momentum quantum numbers, A31 = 5.575 × 107, A41 = 1.278 × 107, A51 = 4.125 ×
106, A32 = 4.410 × 107, A42 = 8.419 × 106, A52 = 2.530 × 106, A43 = 8.986 × 106, A53 = 2.201 ×
106, A54 = 2.699 × 106 (Janev et al. 1987).

Likewise, we use the two-photon emission rate Λ21 = (n2s/n2)A2s1s and Λul = 0 for other

transitions.
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The collisional de-excitation rate is given by

Cul = γul(e)n(e) + γul(H)n(H), (B10)

where the collisional de-excitation rate coefficients γul(e) for collisions with electron and γul(H) for

those with atomic hydrogen are given below.

The collisional de-excitation rate coefficients for collisions with electron is given by

γul(e) = 10−8(
l2

u2 − l2
)3/2

l4

u2
αlu

√

β(β + 1)

β + χlu
, β =

h(νl − νu)

kT
, (B11)

(Sobelman et al. 1981), where α12 = 24, α13 = 22, α14 = 22, α15 = 21, α23 = 67, α24 = 58, α25 =

56, α34 = 124, α35 = 101, α45 = 185 and χ12 = 0.28, χ13 = 0.37, χ14 = 0.39, χ15 = 0.41, χ23 =

0.30, χ24 = 0.45, χ25 = 0.52, χ34 = 0.26, χ35 = 0.42, χ45 = 0.21. For collisions with atomic hydrogen

(Drawin 1969),

γul(H) = 7.86 × 10−15(
l

u
)2(1/l2 − 1/u2)−2fluT

1/2 1 + 1.27 × 10−5(1/l2 − 1/u2)−1T

1 + 4.76 × 10−17(1/l2 − 1/u2)−2T 2
, (B12)

where f12 = 0.4162, f13 = 7.910 × 10−2, f14 = 2.899 × 10−2, f15 = 1.394 × 10−2, f23 = 0.6407, f24 =

0.1193, f25 = 4.467 × 10−2, f34 = 0.8421, f35 = 0.1506, f45 = 1.038.

The collisional excitation rate can be obtained from the detailed balance:

Clu = Cul(gu/gl)exp(−hνul/kT ). (B13)

Taking into account the collisional de-excitation of line photons and absorption due to the

overlapping continuum, we may write the escape probability as

βesc,ul =
pNesc

ul

1 +Nesc
exp(−τa), (B14)

where pul is the probability for an absorbed line photon to re-emerge as an original line photon

with neither collisional de-excitation nor two photon continuum emission, and Nesc is the number

of scattering that an average photon experiences before escape. The re-emergence probability can

be written as

pul =
Aul

Aul + Cul + Λul
. (B15)

The average number of scattering for Lyα line in large optical depth τ21 limit is given by (Bonilha

et al. 1979)

Nesc = 1.6τ21(1 + 0.05ξ1.5)−1 (B16)

for escape from a moving infinite slab, where ξ = 0.90vbulk/vD, vbulk is the velocity difference

between the center and the edge of the slab, and vD =
√

2kT/mH. Here, as vbulk, we take the

velocity at the edge of the central core region whose radius is Rc. Then vbulk = Rc/3tff .
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For other atomic lines, we take

Nesc =

{

1.6τul for τul < 104

160τ
1/2
ul for τul > 104

(B17)

(e.g., Elitzur & Ferland 1986). The optical depth averaged over a line is given by

τul =
Aulc

3

8πν3ul
[nl(H)gu/gl − nu(H)]lsh/vD. (B18)

In order to take into account the effect of velocity gradient, we reduce the shielding length lsh for

lines other than Lyα in the case of large velocity gradient as

lsh = min(Rc,∆sth) (B19)

where

∆sth = vD/(
dv

dr
) = 3vDtff . (B20)

Recall that the correction for velocity gradient has been already included in the expression (B16)

for Lyα photons. Then we take lsh = Rc for the Lyα line.

B.2. Molecular Hydrogen Lines

The radiative cooling rate ΛH2
due to molecular hydrogen lines can be represented by the

similar expression as equation (B1). We compute rovibrational population nvJ(H2) of H2 following

Hollenbach & McKee (1979) using the renewed collisional rate coefficients given by Hollenbach &

McKee (1989). We take the spontaneous radiative decay rates AvJ,v′J ′ from Turner, Kirby-Docken,

& Dalgarno (1977). Also we take into account the effects of the external radiation by the same way

as described for the atomic hydrogen lines (i.e., equation B5). The escape probability is given by

(Takahashi, Hollenbach, & Silk 1983)

βesc,ul = [(1− e−τul)/τul]e
−τa , (B21)

for the case that the velocity is proportional to the radius. We consider the first three vibrational

states (v = 0 − 2) with rotational levels up to J = 20 in each vibrational state. We assume the

ortho to para ratio of molecular hydrogen to be the equilibrium value 3:1. We use the rovibrational

energies E(v, J) of Borysow, Frommhold, & Moraldi (1989).

B.3. Compton Coupling

The cooling rate of a gas with electron density ne and temperature T embedded in a black body

radiation field of energy density u and temperature Tγ is given by (Kompaneets 1957; Weymann
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1965)

ΛCompt =
4k(T − Tγ)

mec2
cσTneu (ergs s−1cm−3) (B22)

=
16kσTσBne

mec2
T 4
γ (T − Tγ) (ergs s−1cm−3), (B23)

where σT is the Thomson cross section, σB is the Stefan-Boltzmann constant, and me is the mass

of an electron. In order to treat the situation that the Compton energy transfer and continuum

processes coexist both in optically thin and thick cases, we deal with the Compton process as if it

was one of continuum sources, denoting

κCompt(ν) =
4kTγ

mec2
σTne = aComptTγ , (B24)

and

ηCompt(ν) =
4kT

mec2
σTneJ(ν) = aComptTJ(ν), (B25)

where aCompt ≡ (4k/mec
2)σTne. This method reproduces the correct behavior both in optically

thin and thick limit (Note that Tγ = T in the optically thick limit). In evaluating the radiation

temperature in the above equation, we use the definition

Tγ ≡ (πJ/σB)
1/4, (B26)

where the mean intensity J =
∫

J(ν)dν.

B.4. Continuum

We consider the following continuum processes (cf., Lenzuni et al. 1991). Among pure ab-

sorption, bound-free absorption of H,He,H−,H+
2 , free-free absorption of H−,H, H2 collision-induced

absorption, 8 and among scattering, Rayleigh scattering of H, and Thomson scattering are included.

The cross sections are listed in Table 1.

The net rate of energy transport from matter to radiation per unit volume per unit frequency

is

Λcont(ν) = 4π[ηa(ν)− κa(ν)J(ν)], (B27)

where ηa(ν) is the thermal part of the emission coefficient and κa(ν) is the true absorption coeffi-

cient. Also, we use the scattering coefficient κs(ν) below. Specifically,

ηa(ν) =

a8
∑

aj=a1

ηaj(ν) (B28)

8Two-photon emission of atomic hydrogen was treated as described in §A.1.
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and

κa(ν) =

a8
∑

aj=a1

κaj(ν), κs(ν) = κs1(ν) + κs2(ν). (B29)

We assume that the radiation field is static inside the cloud, then

Λcont(ν) =
u(ν)− uex(ν)

tesc(ν)
, (B30)

where u(ν) and uex(ν) are the radiation energy density in side and outside the cloud. The photon

escape time

tesc(ν) =
x(ν)

χ(ν)c
, (B31)

where the extinction coefficient

χ(ν) = κa(ν) + κs(ν), (B32)

and

x(ν) ≡ max[τ(ν)2, τ(ν)], (B33)

by using optical depth τ(ν) = χ(ν)Rc. Equating equations (B27) and (B30), and using u(ν) =

4πJ(ν)/c, we obtain

J(ν) =
Jex(ν) + ξ(ν)x(ν)Sa(ν)

1 + ξ(ν)x(ν)
, (B34)

where ξ(ν) ≡ κa(ν)/χ(ν). The external radiation field Jex(ν) = JUV(ν) + B(ν;TCMBR) in our

case, where TCMBR is the temperature of the CMBR. If we include the Compton energy transfer,

substituting
ηa(ν) + ηCompt(ν)

κa(ν) + κCompt(ν)
=

ηa(ν) + aComptTJ(ν)

κa(ν) + aComptTγ
(B35)

into equation (B34) instead of Sa(ν), we obtain the final expression for the mean intensity inside

the cloud:

J(ν) =
Jex(ν) + ξ(ν)x(ν)ηa(ν)/(κa(ν) + aComptTγ)

1 + ξ(ν)x(ν)[1 − aComptT/(κa(ν) + aComptTγ)]
. (B36)

Substituting equation (B36) into (B27) and integrating over frequency ν, we obtain the sum

of cooling rates Λcont + ΛCompt due to the continuum and the Compton coupling.

In the following, we describe how to calculate the emission and absorption coefficients using

the cross sections.

B.4.1. bound-free absorption / free-bound emission (a1-a4)

Consider the radiative association RA(i) of species A and B into ith state of C, whose binding

energy is hνi, and resultant free-bound emission,

RA(i) : A + B → C(i) + hν, (B37)
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and its inverse reaction PD(i)(i.e., photodissociation of C from ith state, or the bound-free absorp-

tion). The cross section of this (and its inverse) reaction is σRAi(v)(σPDi(ν), respectively). In our

case, the species C means H, He, H−, and H+
2 for the processes a1-a4, respectively.

From the Milne relation (e.g., Rybicki & Lightman 1979),

σRAi = σPDi(
hν

mrcv
)2

2gCi

zAzB
, (B38)

where the reduced mass mr = mAmB/mC, zA(zB) is the partition function of A (B, respectively),

gCi is the statistical weight of the ith state of C, and

1

2
mrv

2 = h(ν − νi). (B39)

The emission coefficient of RA(i) is given by

ηRAi(ν) =
hν

4π
σRAin(A)n(B)vf(v)

dv

dν
(B40)

=
2hν3

c2
gCi

zAzB
(

h2

2πmrkT
)3/2σPDiexp(−

h(ν − νi)

kT
)n(A)n(B), (B41)

where the distribution function of the relative velocity between particles A and B

f(v) = 4π(
mr

2πkT
)3/2exp(−mrv

2

2kT
)v2. (B42)

Also, the absorption coefficient of PD(i) is given by

κPDi(ν) = σPDini(C)−
hν

4π

c2

2hν3
σRAin(A)n(B)vf(v)

dv

dν
(B43)

= σPDini(C)−
gCi

zAzB
(

h2

2πmrkT
)3/2σPDiexp(−

h(ν − νi)

kT
)n(A)n(B). (B44)

The second term in the equation above represents the induced association.

Summing over all levels, we obtain the emission and absorption coefficient owing to the reaction

RA : A + B → C+ hν, (B45)

and its inverse PD;

ηRA(ν) =
∑

i

ηi(ν) (B46)

=
2hν3

c2
σ∗
PDn(C)exp(−

hν

kT
)[K(T )−1n(A)n(B)

n(C)
], (B47)

and

κPD(ν) =
∑

i

κi(ν) (B48)

= σPDn(C){1− exp(− hν

kT
)[
σ∗
PD

σPD
K(T )−1n(A)n(B)

n(C)
]}. (B49)
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In the above equations, the equilibrium constant

K(T ) ≡ [
n(A)n(B)

n(C)
]∗ (B50)

=
zAzB
zC

(
2πmrkT

h2
)3/2exp(−hν1

kT
), (B51)

and

σPD =
∑

i

ciσPDi, σ∗
PD =

∑

i

c∗i σPDi, (B52)

where the relative population of level i is ci = ni(C)/n(C), and its LTE value c∗i = gCiexp(−h(ν1 −
νi)/kT )/zC.

B.4.2. free-free absorption/ emission (a5,a6) and H2 collision-induced absorption/ emission

(a7,a8)

First, we consider the free-free emission and absorption (a5,a6)

FF : A + e ↔ A+ e + γ, (B53)

where A=H, and H+ for the processes a5, and a6, respectively. The absorption cross section for A

is σFF. Note that σFF ∝ n(e) (see Table 1). This process is collisional, then it occurs at the LTE

rate. Thus,

ηFF(ν) =
2hν3

c2
σFFn(A)exp(−

hν

kT
), (B54)

and

κFF(ν) = σFFn(A){1− exp(− hν

kT
)}. (B55)

Next, we consider the H2 collision-induced emission and absorption (a7,a8)

CI : H2 + B ↔ H2 + B+ γ, (B56)

In this equation, B means H2 for the process a7, and He for a8. The absorption cross section for

H2 is σCI. This process occurs only at so high density that σCI = σ∗
CI. Then, in the same way as

the above,

ηCI(ν) =
2hν3

c2
σCIn(H2)exp(−

hν

kT
), (B57)

and

κCI(ν) = σCIn(H2){1− exp(− hν

kT
)}. (B58)
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B.4.3. scattering (s1,s2)

We denote the cross section of A for the scattering (s1,s2)

SC : A + γ ↔ A+ γ′ (B59)

as σSC(ν). In the above expression, A=H, and e for the scattering s1, and s2, respectively. The

scattering coefficient is given by

κSC(ν) = σSC(ν)n(A). (B60)

C. Chemical Reactions

We treat non-equilibrium chemistry of hydrogen-helium gas between the following nine species:

H,H2, e,H
+,H+

2 ,H
−,He,He+, and He++. Included reactions and their rate coefficients are pre-

sented in Table 2.

When the gas density rises, and consequently the chemical reaction timescale becomes shorter

than the collapse timescale of the cloud, the chemical equilibrium is reached. In addition to this, if

the cloud becomes optically thick to the continuum, and as a result, the radiation field reduces to

the black body radiation of the matter temperature, the chemical equilibrium reduce to the Saha

value. In order to reproduce this feature, inverse processes are included for all reactions. Rates of

inverse reactions are computed from the principle of detailed balance.

We switch to equilibrium chemistry at a sufficiently high density neq where Saha equilibrium

has been already reached. In our case, neq = 1018−19cm−3.

The rate coefficients of the radiative association

RA : A + B → C+ γ, (C1)

and its inverse reaction PD, i.e. the photodissociation of C, can be written as

kRA = K(T )−1

∫ ∞

0

4πB(ν;T )

hν
σ∗
PD[1− exp(− hν

kT
)]dν, (C2)

and

kPD =

∫ ∞

0

4πJ(ν)

hν
σPD{1− exp(− hν

kT
)[
σ∗
PD

σPD
K(T )−1n(A)n(B)

n(C)
]}dν. (C3)

from the discussion in §A 4.1.

The partition function of H

zH =

5
∑

n=1

gnexp(−En/kT ) (C4)
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where gn = 2n2 and En = 13.598eV/n2. For H2, the sum extends over 0 ≤ v ≤ 5 and 0 ≤ J ≤ 25.

The rovibrational energies E(v, J) are taken from Borysow et al.(1989). The partition function of

H+
2 is taken from Patch & McBride (1968). For other species, we take ze = 2, zH+ = 1, zH− = 1,

zHe = 1, zHe+ = 2, and zHe++ = 1.

REFERENCES

Abel, T., Bryan G. L., & Norman M. L. 2000, ApJ, 540, 39

Black, J. H. 1981, MNRAS, 197, 553

Bonilha, J. R. M., Ferch, R., Salpeter, E. E., Slater, G., & Noerdlinger, P. D. 1979, ApJ, 233, 649

Borysow, A., Jørgensen, U. G., & Zheng, C. 1997, A&A, 324, 185

Borysow, A., Frommhold, L., & Moraldi, M. 1989, ApJ, 336, 495

Bromm, V., Coppi, P. S., & Larson, R. B. 1999, ApJ, 527, L5

Carlberg, R. G. 1981, MNRAS, 197, 1021

Ciardi, B., Ferrara, A., & Abel, T. 2000, ApJ, 533, 594

de Jong, T., Dalgarno, A., & Boland, W. 1980, A&A, 91, 68

Doroshkevich, A. G., & Kolesnik I. G. 1976, Soviet Astron., 20, 4

Draine, B. T., & Bertoldi, F. 1996, ApJ, 468, 269

Drawin, H. W. 1969, Zs. Phys., 225, 483

Elitzur, M., & Ferland, G. J. 1986, ApJ, 305, 35

Fuller, T. M., & Couchman, H. M. P. 2000, ApJ, 544, 6

Galli, D., & Palla, F. 1998, A&A, 335, 403

Haiman, Z., Thoul, A. A., & Loeb, A. 1996, ApJ, 464, 523

Haiman, Z., Rees, M. J., & Loeb, A. 1997, ApJ, 476, 458; erratum 484, 985

Hollenbach, D., & McKee, C. F. 1979, ApJS, 41, 555

Hollenbach, D., & McKee, C. F. 1989, ApJ, 342, 306

Inutsuka, S., & Miyama, S. M. 1997, ApJ, 480, 681

Izotov, Yu. I., & Thuan, T. X. 1998, ApJ, 500, 188



– 24 –

Janev, R. K., Langer, W. D., Evans, K., Jr., & Post, D. E., Jr. 1987, Elementary Processes in

Hydrogen-Helium Plasmas (Berlin: Springer-Verlag)

John, T. L. 1988, A&A, 193, 189

Kashlinsky, A. & Rees, M. J. 1983, MNRAS, 205, 955

Kompaneets, A. S. 1957, Soviet Phys. JETP 4, 730

Kurucz, R. L. 1970, Smithsonian Obs. Special Report, No.309

Larson, R. B. 1969, MNRAS, 145, 271

Lenzuni, P., Chernoff, D. F., & Salpeter, E. E. 1991, ApJS, 76, 759

Mac Low, M.-M., & Ferrara, A. 1999, ApJ, 513, 142

Masunaga, H., & Inutsuka, S. 1999, ApJ, 510, 822

Matsuda, T., Sato, H., & Takeda, H. 1969, Prog. Theor. Phys., 42, 219

Nakamura, F., & Umemura, M. 1999, ApJ, 515, 239

Omukai, K., & Nishi, R. 1998, ApJ, 508, 141

Omukai, K., & Nishi, R. 1999, ApJ, 518, 64

Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley:

University Science Books)

Ostriker, J. P., & Gnedin N. Y. 1996, ApJ, 472, L63

Palla, F., Salpeter, E. E., & Stahler, S. W. 1983, ApJ, 271, 632

Patch, R. W., & McBride, B. J. 1968, NASA Technical Note D-4523

Padmanabhan, T., 1993, Structure Formation in the Universe (Cambridge: Cambridge University

Press)

Peebles, P. J. E., & Dicke, R. H., 1968, ApJ, 154, 891

Penston, M. V. 1969, MNRAS, 144, 425

Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in Astrophysics (New York: Wiley)

Saslaw, W. C., & Zipoy, D. 1967, Nature, 216, 976

Shapiro P. R., & Kang, H. 1987, ApJ, 318, 32



– 25 –

Sobelman, I. I., Vainshtein, L. A., & Yukov, E. A. 1981, Excitation of Atoms and Broadening of

Spectral Lines (Berlin: Springer-Verlag)

Spitzer, L., Jr., & Greenstein, J. L. 1951, ApJ, 114, 407

Stahler, S. W., Shu, F. H., & Taam, R. E. 1980, ApJ, 241, 637

Stancil, P. C. 1994, ApJ, 430, 360

Susa, H., & Kitayama, T. 2000, MNRAS, 317, 175 preprint astro-ph/0004303

Takahashi, T., Hollenbach, D. J., & Silk, J. 1983, ApJ, 275, 145

Tegmark, M., Silk, J., Rees, M. J., Blanchard, A., Abel, T., & Palla, F. 1997, ApJ, 474, 1

Tielens, A. G. G. M., & Hollenbach, D. 1985, ApJ, 291, 722

Turner, J., Kirby-Docken, K., & Dalgarno, A. 1977, ApJS, 35, 281

Uehara, H., Susa, H., Nishi, R., Yamada, M., & Nakamura, T. 1996, ApJ, 473, L95

Weymann, R. 1965, Phys. Fluids, 8, 2112

Wolfire, M. G., & Cassinelli, J. P. 1987, ApJ, 319, 850

Yahil, A. 1983, ApJ, 265, 1047

Yamada, M., & Nishi, R. 1998, ApJ, 505, 148

Yoneyama, T. 1972, PASJ, 24, 87

This preprint was prepared with the AAS LATEX macros v5.0.



– 26 –

Table 1. Continuum Processes

number name process cross section (cm2) reference

a1 H b-f H(n) + γ → H+ + e 7.909 × 10−18n(ν/νn)
−3 1

hνn = 13.598eV/n2

a2 He b-f He + γ → He+ + e 7.83 × 10−18[1.66(ν/νT)
−2.05 − 0.66(ν/νT)

−3.05], 2

hνT = 24.586eV

a3 H− b-f H− + γ → H+ e 10−18λ3(1/λ − 1/λ0)
3/2f(λ), λ0 = 1.6419µm 3

f(λ) given by Eq.(5) of ref.

a4 H+
2 b-f H+

2 + γ → H+H+ see Table 2 of ref. 4

a5 H− f-f H + e + γ → H+ e kffλ (T )kBTne 3

kffλ (T ) given by Eq.(6) of ref.

a6 H f-f H+ + e + γ → H+ + e 3.692 × 108gff(ν, T )ν
−3T−1/2ne,

we take gff(ν, T ) = 1 1

a7 H2-H2 CIA H2(v , J ) + H2 + γ → H2(v
′, J ′) + H2 see Fig.1 of ref. 5

a8 H2-He CIA H2(v , J ) + He + γ → H2(v
′, J ′) + He see Fig.2 of ref. 5

s1 H Rayleigh H + γ → H+ γ′ 5.799 × 10−29λ−4 + 1.422 × 10−30λ−6 6

+2.784 × 10−32λ−8

s2 Thomson e + γ → e + γ′ 6.65 × 10−25 1

Note. — The wavelength λ is in µm.

References. — (1) Rybicki & Lightman (1979), (2) Osterbrock (1989), (3) John (1988), (4)

Stancil (1994), (5) Borysow et al. (1997), (6) Kurucz (1970)
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Table 2. Chemical Reactions

Number Reaction Rate Coefficient Reference

1,2 H(n) + e ⇋ H+ + 2e k1 =
∑5

n=1 cnk1,n
k1,n=1 = 4.25 × 10−11T 1/2exp(−χH/kT ) 1

k1,n=2 = 6.69 × 10−10T 1/2exp(−χH/22/kT ) (T <4680K) 1

k1,n=2: see Janev et al. [2.1.6] (T >4680K)

k1,n≥3 = 9.56 × 10−6T (eV)−1.5 2

(β2.33
n + 4.38β1.72

n + 1.32βn)
−1exp(−βn),

βn = (χH/n
2)/kT

k2 = k∗1(zH/zH+ze)4.1414 × 10−16T−1.5exp(χH/kT )

k∗1 =
∑5

n=1 c
∗
nk1,n

3,4 H(n) + H ⇋ H+ + e +H k3 =
∑5

n=1 cnk3,n
k3,1 = 1.2× 10−17T 1.2 exp(−χH/kT ) 1

k3,n≥2 = 7.86 × 10−15n4fnT
0.5(1 + 1.27 × 10−5n2T ) 3

(1 + 4.76 × 10−17n4T 2)−1exp(−χH/n
2/kT )

f2 = 0.71, f3 = 0.81, f4 = 0.94

k4 = k∗3(zH/zH+ze)4.1414 × 10−16T−1.5exp(χH/kT )

k∗3 =
∑5

n=1 c
∗
nk3,n

5,6 H− +H+ ⇋ H(n) + H k5 =
∑3

n=1 k5,n
k5,1 = 6.92 × 10−14T 0.5 1

k5,2 = 8.0× 10−13T 0.83

k5,3 = 6.18 × 10−7T−0.27

k6 = [
∑3

n=1(cn/c
∗
n)k5,n]

(zH−zH+/zH
2)exp[−(χH − χH−)/kT ]

7,8 H2 +H+ ⇋ H+H+
2 k7 = 1.5 × 10−10exp(−1.4× 104/T ) (T > 104K) 4

k7 = 3× 10−10exp[−(χH2
− χH2

+)/kT ] (T < 104K)

k8 = k7(zH+zH2
/zHzH2

+)exp[(χH2
− χH2

+)/kT ]

9,10 H + H− ⇋ H2 + e k9 = 1.5 × 10−9 (T < 3× 102K) 4

k9 = 4.0 × 10−9T−0.17 (T > 3× 102K)

k10 = k1−a
10,Hk

a
10,L

k10,L = 2.7× 10−8T−1.27exp[−(χH2
− χH−)/kT ] 4
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Table 2—Continued

Number Reaction Rate Coefficient Reference

k10,H = k9(zHzH−/zH2
ze)2.775 × 104exp[−(χH2

− χH−)/kT ]

a = (1 + n/ncr)
−1

log10(ncr) = 4.0 − 0.416log10(T/10
4) 5

−0.327(log10(T/10
4))2

11,12 H+
2 + e ⇋ H(n) + H k11 =

∑5
n=1 k11,n = 2× 10−7T−1/2 4

k11,1 : k11,2 : k11,3 : k11,4 : k11,5 = 0 : 0.10 : 0.45 : 0.22 : 0.12 2

but, k11,n = 0 in case of χH − χH+
2
− χH/n

2 < kT

k12 = [
∑5

n=1(cn/c
∗
n)k11,n]

(zH2
+ze/zH

2)3.6034 × 10−5exp[−(χH − χH2
+)/kT ]

13,14 2H2 ⇋ 2H + H2 k13 = k1−a
13,Hk

a
13,L 5

k13,L = 1.18 × 10−10exp(−6.95 × 104/T )

k13,H = 1.30 × 10−9exp(−5.33 × 104/T )

a = (1 + n/ncr)
−1

log10(ncr) = 4.845 − 1.3log10(T/10
4)

+1.62(log10(T/10
4))2

k14 = k13,H(zH2
/zH

2)1.493 × 10−20T−1.5exp(χH2
/kT )

15,16 H2 +H ⇋ 3H k15 = k1−a
15,Hk

a
15,L

k15,L = 1.12 × 10−10exp(−7.035 × 104/T ) 5

k15,H = 6.5× 10−7T−1/2 6

exp(−χH2
/kT )[1− exp(−6000/T )]

a = (1 + n/ncr)
−1

log10(ncr) = 4.0− 0.416log10(T/10
4) 5

−0.327(log10(T/10
4))2

k16 = k15,H(zH2
/zH

2)1.493 × 10−20T−1.5exp(χH2
/kT )

17,18 H2 + e ⇋ 2H + e k17 = 1.3 × 10−18T 2exp(−χH2
/kT ) 1

k18 = k17(zH2
/zH

2)1.493 × 10−20T−1.5exp(χH2
/kT )

19,20 H− + e ⇋ H+ 2e k19 = 4× 10−12T exp(−χH−/kT ) 5

k20 = k19(zH−/zHze)4.1414 × 10−16T−1.5exp(χH−/kT )
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Fig. 1.— Two FUV spectra studied in this work. The solid and dotted lines indicate those of Types

a and b, respectively. The normalization of intensity J21 = 1 for both types. Also shown are the

threshold frequency of H− photodissociation (0.755 eV) and a representative value of Lyman and

Werner (LW) bands (12.4 eV).

Fig. 2.— The density-temperature relation for the collapse of primordial clouds irradiated with FUV

radiation. The spectra are type a: JUV(ν) = J21 × 10−21(ν/νth)
−1. The evolutionary trajectories

are drawn for J21 = 0, 10−2, 1, 102, 104, and 105. The trajectories for J21 > 105 are identical to

that for J21 = 105. The dashed lines indicate the constant Jeans mass. The dark matter gravity is

neglected in calculating the Jeans masses.

Fig. 3.— Same as Fig. 2, but for spectra type b: JUV(ν) = J21 ×
10−21[B(ν; 104K)/B(νth; 10

4K)] (ν < νth). The evolutionary trajectories are drawn for J21 =

0, 10−2, 1, 102, and 103. The trajectories for J21 > 103 are identical to that for J21 = 103.

Fig. 4.— Concentration of (a) hydrogen molecules y(H2) and (b) electrons y(e) for the clouds

irradiated with the power-law type radiation (type a spectrum in the text) with J21 = 105 (solid

lines), 104 (dotted lines), 102(short-dashed lines), 1 (long-dashed lines), 10−2 (dash-dotted lines),

and 0 (long-dash-dotted lines).

Fig. 5.— Cooling/heating rates per unit baryonic mass as a function of the central number density

for the clouds irradiated with the power-law type radiation of (a) J21 = 0, (b) 104 and (c) 105.

These include the contributions by the compression, chemical reactions, atomic hydrogen lines, H

two-photon emission, continuum, and H2 lines. The dominant continuum processes are (a) H−

free-bound emission (n . 1011.5cm−3), H2 collision-induced emission (1011.5cm−3 . n); (b) H−

free-bound emission (n . 1011.5cm−3), H2 collision-induced emission (1011.5cm−3 . n); and (c) H−

free-free emission (102 . n . 104.5cm−3), H− free-bound emission (104.5cm−3 . n), respectively.

The chemical reactions contributing dominantly to the cooling/heating rates are: (a) and (b):

H2 formation (n . 1013cm−3), H2 dissociation (1013 . n . 1015cm−3), H2 formation (1015 .

n . 1016cm−3), H2 dissociation (1016 . n . 1021cm−3), H ionization (1021cm−3 . n), and

(c) H2 formation (n . 1015.5cm−3), H2 dissociation (1015.5 . n . 1016.5cm−3), H ionization

(1016.5cm−3 . n), respectively (cf. Fig.4).

Fig. 6.— Estimated H2 fraction vs. the amount of H2 needed for efficient H2 cooling during the

initial adiabatic temperature rise. We assume that the temperature rises adiabatically from the

initial state of calculation, that is, T = T0(n/n0)
2/3, where T0 = 39 K, and n0 = 8.9 × 10−2cm−3

are the initial temperature and number density, respectively. The ionization degree is taken to be

10−4. The H2 fractions are estimated by equation (A2). The solid and dotted lines illustrate the

H2 fractions for Types a and b FUV radiation whose values of J21 are indicated in the figure. The

thick solid curve shows the necessary H2 fraction for the cloud to cool in a free-fall time (eq. [A1])

Fig. 7.— Estimated H2 fraction vs. the amount of H2 needed for efficient H2 cooling for clouds

that collapse isothermally by atomic cooling. The temperature and ionization degree are taken to
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Table 2—Continued

Number Reaction Rate Coefficient Reference

21,22 H+
2 + e ⇋ H+H+ + e k21 = 2× 10−7exp(−χH+

2
/kT ) 1

k22 = k21(zH+
2
/zHzH+)1.493 × 10−20T−1.5exp(χH+

2
/kT )

23,24 He + e ⇋ He+ + 2e k23 = 2.38 × 10−11T 1/2[1 + (T/105)]−1exp(−χHe/kT ) 7

k24 = k23(zHe/zHe+ze)4.1414 × 10−16T−1.5exp(χHe/kT )

25,26 He+ + e ⇋ He++ + 2e k25 = 5.68 × 10−12T 1/2[1 + (T/105)]−1exp(−χHe+/kT ) 7

k26 = k25(zHe+/zHe++ze)4.1414 × 10−16T−1.5exp(χHe+/kT )

27,28 H + γ ⇋ H+ + e see equations (C2), (C3) in the text

and process (a1) in Table 1

29,30 He + γ ⇋ He+ + e see equations (C2), (C3) in the text

and process (a2) in Table 1

31,32 H− + γ ⇋ H+ e see equations (C2), (C3) in the text

and process (a3) in Table 1

33,34 H+
2 + γ ⇋ H+H+ see equations (C2), (C3) in the text

and process (a4) in Table 1

35 H2 + γ → H∗
2 → 2H k35 = 1.4× 109J(hν = 12.4eV)fsh 8

fsh = min
[

1, (NH2
/1014cm−2)−3/4

]

Note. — The temperature T is in K, except otherwise noted.

Note. — The binding energies are χH/k = 1.578 × 105K, χH2
/k = 5.197 × 104K, χH−/k =

8.761 × 103K, χH+
2
/k = 3.067 × 104K, χHe/k = 2.853 × 105K, and χHe+/k = 6.312 × 105K.

References. — (1) Lenzuni et al. (1991), (2) Janev et al. (1987), (3) Drawin (1969), (4) Galli &

Palla (1998), (5) Shapiro & Kang (1987), (6) Palla et al. (1983), (7) Black (1981), (8) Draine &

Bertoldi (1996)
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be 8000K and 10−4, respectively. The H2 fractions are estimated by eq.(A2). The solid and dotted

lines illustrate the H2 fractions for types a and b FUV radiation whose values of J21 are indicated in

the figure. The thick solid curve shows the necessary H2 fraction for the cloud to cool in a free-fall

time (eq.[A1]).




















