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ABSTRACT

We study the spectra generated as a result of bulk Comptonization by relativis-
tic electrons in radial flows onto compact objects. We solve numerically the general-
relativistic radiative transfer equation in the Schwarzschild spacetime, in steady-state
and under minimal assumptions. We show that power-law spectra result from multiple
scatterings, in a way similar to thermal Comptonization. We also find that photon-
electron interactions taking place near the black-hole event horizon affect very little the
emerging spectra. We, therefore, argue that bulk Comptonization spectra do not carry
distinguishing signatures of the compact object around which they are produced. We
examine the dependence of the spectra on simplifications often employed regarding the
spacetime geometry, the distribution of photon sources, and the boundary conditions.
We show that the existence of trapped characteristics around a black hole reduces
the efficiency of Comptonization and that general relativistic effects identically cancel
bulk Comptonization effects for a free-falling flow and in the limit of infinitesimal
mean-free path. As a result, we find that neglecting the curved spacetime geometry
leads to overestimating the high-energy flux by up to an order of magnitude. Finally,
we demonstrate that the spectrum from accretion onto a neutron star depends sensi-
tively on the imposed boundary conditions, while that from a black hole is immune
to such choices.

Key words: accretion – black hole physics – radiation mechanisms: non-thermal –
radiative transfer – methods: numerical – stars: neutron

1 INTRODUCTION

Compton scattering of photons in media with non-negligible
bulk velocities is thought to be a significant, or even the
dominant, radiative process in a number of astrophysical set-
tings. Examples include the early Universe (the kinematic
Sunyaev-Zeldovich effect; see, e.g., Rephaeli 1995), jets in
blazars (see, e.g., Sikora, Begelman & Rees 1994), gamma-
ray bursts (see, e.g., Lazzati et al. 2000; Madau & Thomp-
son 2000), and accretion flows onto galactic compact ob-
jects (see, e.g., Payne & Blandford 1981). The interaction of
neutrinos with fast-moving electrons is also thought to de-
termine the dynamics and fate of supernova explosions and
super-critical accretion flows onto neutron stars (see, e.g.,
Fryer, Benz & Herant 1996; Burrows et al. 2000).

Studying any of the above problems requires the solu-
tion of the kinetic equation that describes scattering of mass-
less particles by fast-moving electrons, in which relativis-
tic effects introduce very strong angular and photon-energy
dependences. Because of such complexities, most previous

studies have made a number of approximations in treating
this radiative transfer problem (see Psaltis & Lamb 1997
and references therein). The kinetic equation is often ex-
panded to different orders in the electron bulk velocity β
(in units of the speed of light) and/or the photon energy
ǫ/me (where me is the electron rest mass) and is truncated
keeping only terms up to a low order (Blandford & Payne
1981; Mastichiadis & Kylafis 1992; Titarchuk, Mastichiadis
& Kylafis 1997). Furthermore, general relativistic effects are
most usually neglected (but see Schmid–Burgk 1978; Zane
et al. 1996; Titarchuk & Zannias 1998; Laurent & Titarchuk
1999). Such analyses show that the effects of the odd- and
even-order terms in β are qualitatively and quantitatively
different and their relative importance is determined not
only by the magnitude of the bulk velocity but by the prop-
erties of the radiation field and the flow as well (Psaltis &
Lamb 1997, 2000).

The configuration in which Compton scattering of pho-
tons by relativistic electrons has been studied extensively
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in the past is that of accretion flows onto compact objects.
Recent motivation for such studies comes from the observed
power-law shapes and the absence of any detectable cut-offs
(up to energies comparable to the rest mass of the electron)
in the γ-ray spectra of galactic accreting black holes (Grove
et al. 1998). Attributing these spectra to Comptonization
by the relativistic electrons in the accretion flow could pro-
vide a spectral signature for the existence of a black hole in
a galactic system and even lead to the measurement of its
mass (as suggested in, e.g., Chakrabarti & Titarchuk 1996;
Shrader & Titarchuk 1998, 1999; Laurent & Titarchuk 1999;
Borozdin et al. 1999).

Various analytical (Payne & Blandford 1981; Mas-
tichiadis & Kylafis 1992; Turolla et al. 1996; Titarchuk &
Zannias 1998; Zampieri & Lamb 2000) and numerical (Zane
et al. 1996; Titarchuk et al. 1997; Laurent & Titarchuk
1999; Psaltis 2000) treatments have been employed in pre-
vious studies of bulk Comptonization. However, the results
of several analytic solutions have been recently questioned
because of the inadequate order to which the transfer equa-
tions was truncated (see discussion in Psaltis & Lamb 1997,
2000) or of the inappropriate mathematical methods em-
ployed (see discussion in Zampieri & Lamb 2000). Moreover,
previous numerical studies have either considered a limited
number of cases (as in, e.g., Zane et al. 1996) or used ap-
proximate treatments which severely affected the properties
of the solutions (see discussion in Psaltis & Lamb 2000).

With this paper we initiate a study of Compton scat-
tering in relativistic accretion flows and winds, performed
under a minimal set of assumptions and approximations, in
order to address a number of questions that previous treat-
ments raised. We solve numerically the kinetic equation for
massless particles in a Schwarzschild spacetime derived by
Lindquist (1966), using an iterative integration along the
curved photon characteristics (Schmid–Burgk 1978; Zane et
al. 1996). In this first study, we investigate the effects on the
emerging spectra of properties related to the flow velocity,
the metric, the boundary conditions, and the distribution
of sources in the flow. We only assume that the system-
atic down-scattering of photons as well as the Klein–Nishina
corrections to the scattering cross section (which are of the
same order) are negligible. Therefore, we cannot address is-
sues related to the high-energy cut-offs of the spectra and
their shapes at photon energies comparable to, or higher,
than the electron rest mass; we will discuss these elsewhere.

2 RADIATIVE TRANSFER IN A

SCHWARZSCHILD SPACETIME

Throughout this paper we use geometric units (c = G = 1)
and describe the radiation field in terms of the photon oc-
cupation number f(r, µ, ǫ). We assume that the spacetime
is static and spherically symmetric and, therefore, the oc-
cupation number depends only on the radius r (hereafter
normalised to 2M , where M is the mass of the central ob-
ject), the cosine µ of the angle between the radial direction
and the photon propagation vector, and the photon energy
ǫ appropriately normalised and measured in the local rest
frame. We define the necessary moments of the photon field

J(r, ǫ) ≡ 1

2

∫ 1

−1

f(r, µ, ǫ)ǫ3dµ , (1)

H(r, ǫ) ≡ 1

2

∫ 1

−1

f(r, µ, ǫ)ǫ3µdµ , (2)

K(r, ǫ) ≡ 1

2

∫ 1

−1

f(r, µ, ǫ)ǫ3µ2dµ , (3)

so that the energy flux emerging from the flow, which will
be the primary quantity of interest, is

F (ǫ) = 4π lim
r→∞

H(r, ǫ) . (4)

In what follows, we assume ǫ ≪ me and neglect any
polarisation-dependent effects. The steady-state photon ki-
netic equation for the photon occupation number in a spher-
ically symmetric spacetime is (Lindquist 1966)

√−gooγ(µ+ β)
∂f

∂r
+

√
−gooγ(1− µ2)

[

1 + βµ

r
+ gooγ

2(µ+ β)
∂β

∂r

]

∂f

∂µ
−

√−gooγ

[

β(1− µ2)

r
− gooγ

2µ(µ+ β)
∂β

∂r

]

ǫ
∂f

∂ǫ
=

η(r, ǫ)

ǫ3
− χ(r, ǫ)f , (5)

where γ ≡ (1−β2)−1/2 is the Lorenz factor, goo = −(1−1/r)
for Schwarzschild geometry, and goo = −1 for flat geometry.
In the limit ǫ ≪ me, we include the effects of scattering by
setting

χ(r, ǫ) = χa(r, ǫ) + ne(r)σT (6)

and

η(r, ǫ) = ηe(r, ǫ) +
3

8
neσT

[(

3− µ2
)

J(r, ǫ)

+
(

3µ2 − 1
)

K(r, ǫ)
]

, (7)

where ηe(r, ǫ) and χa(r, ǫ) are the emission and absorption
coefficients, σT is the Thomson scattering cross section, and
ne(r) is the electron number density, all evaluated in the
local rest frame. By writing f as a full differential of the
path length s along each photon ray, Eq. [5] simplifies to
(see Schmid–Burgk 1978 and Zane et al. 1996 for the details
of the method which we summarise here for completeness)

df

ds
=

η

ǫ3
− χf , (8)

where

dr

ds
=

√
−gooγ(µ+ β) (9)

dµ

ds
=

√
−gooγ(1− µ2)

[

1 + βµ

r
+ gooγ

2(µ+ β)
∂β

∂r

]

(10)

dǫ

ds
=

√−gooγ

[

β(1− µ2)

r
− gooγ

2µ(µ+ β)
∂β

∂r

]

ǫ . (11)

Algebraic manipulation of Eqs. [8]–[11] results in the
simple ordinary differential equation (Zane et al. 1996)

df

dr
=

η/ǫ3 − χf√−gooγ(µ+ β)
, (12)

where

µ =
goob

2βγ2 ± r
√

r2 + goob2

r2 − goob2β2γ2
, (13)

ǫ =
ǫ∞√−gooγ(1 + βµ)

. (14)
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The two last expressions make use of the two quantities that
are conserved along a characteristic; the impact parameter b,
and the photon frequency as measured at infinity ǫ∞. Char-
acteristics with b ≤

√

rin/|goo| connect the inner boundary
rin with infinity. In the Schwarzschild geometry, for every
impact parameter with b > 3

√
3/2, there exists one charac-

teristic curve that reaches infinity and one that is trapped
in the region r < 1.5. The trajectory with b = 3

√
3/2 has

a critical saddle point at radius r = 1.5 and is a circle with
this radius.

We use different boundary conditions depending on the
type of the characteristics. For the ones that reach infin-
ity, we integrate from the outer boundary along an incom-
ing ray (µ < 0, using the negative-sign branch of solu-
tion [13]), setting appropriate boundary conditions for no
external illumination, i.e., f(rout, µ < 0, ǫ) = 0. For non-
trapped characteristics that do not intersect the central ob-
ject, the turning points are reached when µ = −β and the
solution for µ simply switches to the positive-sign branch of
Eq. [13]. For characteristics that reach infinity but do in-
tersect the central object, we impose an additional bound-
ary condition at rin, which depends on the problem under
consideration. Typically, for the case of a neutron star, we
set f(rin, µ > 0, ǫ) = [1 − exp(−ǫ/Tb)]

−1, i.e., a black-
body of temperature Tb, whereas for a black hole, we set
f(rin, µ > 0, ǫ) = 0, i.e., no illumination. Finally, we use
similar boundary conditions for the trapped characteristics.
When including photon sources in the flow, the emissivity
η needs to be specified in Eq. [12], in addition to the terms
that describe scattering. In the idealised problems consid-
ered here, we use two different photon sources that mimic
more realistic models of accretion flows. First, in order to
model the effects of volume emission, we adopt a blackbody
source of photons of constant temperature and an emission
measure that is proportional to a power of the electron den-
sity. Second, in order to model the effects of a soft-photon in-
put from an underlying accretion disk, we adopt a blackbody
source of photons with an emission measure proportional to
the viscous dissipation rate in an accretion disk, such that
the blackbody temperature at each radius is given by the
standard thin-disk solution (Shakura & Sunyaev 1973)

T (r) =











Tin

(

3

r

)3/4

(

1−
√

3

r

)1/4

, for r ≥ 3

0 , for r < 3,

(15)

where Tin is the temperature at r = 3, inside which the
accretion disk is assumed to be an inefficient source of pho-
tons. Note here that the photon-energy scale in our solutions
is specified only by the boundary conditions or the photon
sources, since we have assumed ǫ ≪ me. As a result, in all
calculations the photon energy is normalised to the black-
body temperature of the illuminating boundary (for some
neutron-star cases), the temperature of the photon sources
within the flow, or Tin (when a disk-like emissivity is as-
sumed).

Finally, we typically set the electron velocity and den-
sity profiles in the flow to their free-fall values, i.e., β =
−r−1/2 and ne ∼ r−3/2, and specify the normalisation of
the latter through the quantity

τ (r) ≡
∫ rout

r

ne(r)σTdr (16)

evaluated at rin which we call the optical depth. This is
related to other quantities often used in describing such flows
(Psaltis & Lamb 1997). One such example is

tV(r) ≡ −3ne(r)σTβ(r)r =
3

2

τ (r)√
r

, (17)

which is equal to unity at the so-called photon trapping
radius⋆. Another is

Ṁ

ṀE

=
(

L

Ṁ

)

r
1/2
in τ (rin) , (18)

the mass accretion rate measured at infinity, in units of the
Eddington critical accretion rate (at which the outward ra-
diation force balances gravity) of an accretion flow that pro-
duces luminosity L with an efficiency L/Ṁ . Note, that when
the accretion rate becomes comparable to the Eddington
critical rate, the assumption of a free-fall velocity and den-
sity profiles is not justified, as the outward radiation force
on the accreting gas becomes non-negligible.

3 NUMERICAL METHOD

We integrate Eq. [12] for a given impact parameter and pho-
ton energy (as measured by an observer at infinity) by a
4-th order Runge–Kutta method. We use, in most cases, a
logarithmically equidistant grid in radius r between the in-
ner boundary rin, which depends on the particular problem,
and the outer boundary rout representing infinity. We fix
the value of rout to 30. For the case of a neutron star we
set rin = 2.5, while for that of a black hole rin = 1.01, to
avoid the coordinate singularity at the event horizon. When
modelling a scattering problem of high optical depth around
a black hole, we use, instead, a grid that is logarithmically
equidistant in r − 1. This choice of the r grid allows us
to reach arbitrarily close to the black hole event horizon
and with very fine resolution. This is necessary in order to
deal with the very steep derivatives present near the event
horizon. Our grid in the impact parameter b is built with
two different spacing prescriptions (Zane et al. 1996). For

0 ≤ b ≤
√

r∗/|goo(r∗)|, where r∗ ≡ max {rin, 1.5}, we use

bj =
r∗

γ(r∗)
√

−goo(r∗)

√

1− µ2
j

1 + β(r∗)µj
, (19)

with

µj = −1 + (j − 1)
2

N − 1
(20)

for the j−th point, which guarantees N (usually 20) points

spaced equally in µ at r∗
†. For

√

r∗/|goo(r∗)| < b ≤ rout, the
grid on b is constructed according to the method of tangent
rays, i.e., so that the turning point (rmin =

√

−b2goo) of
each characteristic lies very close to an r grid point.

⋆ This is the radius below which photons are advected inwards
by the flow more efficiently than they are diffused outwards by
scattering. It is not associated with the existence of trapped char-
acteristics which are defined in §3.
† Choosing r∗ = 1.5 instead of rin, for the black-hole case, pro-
vides better angular sampling around r = 1.5 which would other-
wise create an artificial spiky feature in the radial profiles of the
various radiation quantities.
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For the photon energy grid we use an equidistant loga-
rithmic grid that covers the range of the comoving energies
we want to calculate the radiative processes in. We fix the
range from ǫmin = 0.1 to ǫmax = 500 (in units of the black-
body temperature of the photon source or the illuminating
inner boundary). The gravitational and Doppler shifts expe-
rienced by the photons as they propagate through the flow
will cause radiation that is produced locally in the above
spectral range to appear at the observer in a much wider
range; of course, this range depends on the compactness of
the central object and is much wider for a black hole than for
a neutron star. For example, if we place the inner boundary
at rin = 1 + δr, with δr ≪ 1, photons with locally mea-
sured energy ǫ in the [ǫmin, ǫmax] interval will appear at the
observer with an energy ǫ∞ in the range

ǫ∞,min =
δr

2
ǫmin ≤ ǫ∞ ≤ 2ǫmax = ǫ∞,max (21)

(see Eq. [14]). For this reason, we maintain a logarithmic grid
for ǫmin ≤ ǫ ≤ 2ǫmax and add a fixed number of logarith-
mically (but more sparsely) spaced points to cover energies
below ǫmin.

As in all scattering problems, Eq. [12] is an integro-
differential equation and can, therefore, be most easily
solved by an iterative procedure. In all our calculations we
neglect true absorption and confine our attention to con-
figurations with scattering optical depths of order unity.
It is, therefore, adequate to use a simple variant of the
Λ−iteration method (Mihalas 1978), which typically con-
verges after a few iterations. We have validated the imple-
mentation of the numerical algorithm by comparing our so-
lutions to simple analytical results derived in appropriate
limits and to the numerical results reported for flat space-
times and small electron velocities in Psaltis (2000).

4 RESULTS FOR NEUTRON STARS

We first model the transport of photons in an accretion flow
that contains no photon sources but is illuminated from its
inner boundary. This configuration allows us to study the ef-
fects on the spectrum of the propagation of photons through
a relativistic medium, independent of the potential compli-
cation introduced by the radial profiles of sources (cf. Psaltis
& Lamb 2000). Although idealised, our calculations are ap-
plicable to cold radial accretion flows onto neutron stars, if
most of the accretion luminosity is released at the impact of
the flow with the stellar surface.

Fig. 1 shows the spectra emerging from such a flow for
different optical depths. The results of the calculation pre-
sented in this figure provide additional support to the sug-
gestion that the generation of a power-law high energy spec-
trum is a general feature of Comptonization by relativistic
inflows (see, e.g., Payne & Blandford 1981; note, however,
that all early papers neglected the terms that describe the
effect we discuss here).

The physical reason behind the generation of the power-
law spectral tails is not readily obvious. For example, in the
limit of very small optical depth, very few photons inter-
act with electrons more than once and, therefore, it might
appear reasonable to use a single-scattering approximation
in calculating the emerging spectrum. If this were the case,

Figure 1. Radiation spectra emerging from radial accretion flows
onto a neutron star for representative optical depths. The flows
are illuminated at their inner boundary by the same black-body
spectrum. The emerging flux is in arbitrary units and the photon
energy is in units of the temperature of the illuminating black-
body spectrum.

different photons interacting with electrons of different ve-
locities would gain different amounts of energy and, since the
electrons in the flow have a power-law velocity profile, they
would potentially generate a power-law spectral tail. The re-
sult would then be equivalent to the generation of a power-
law spectrum produced in optically thin, non-thermal plas-
mas, when low-energy photons are scattered once by elec-
trons with a power-law velocity distribution (Coppi 1999).
On the other hand, the distribution of photon escape times
in the flow has an exponential tail at late times and this,
convolved with an exponential increase of photon energy
per scattering, can also produce a power-law high-energy
tail as a result of multiple scatterings (as suggested by the
Monte-Carlo simulations of Laurent & Titarchuk (1999)).
This would be similar to the generation of power-law spec-
tral tails in media that are optically thick to (either ther-
mal or non-thermal) Comptonization (Sunyaev & Titarchuk
1980; Coppi 1999).

We can address the aforementioned question by calcu-
lating separately the spectra of photons that emerge from a
flow after having interacted with electrons a given number of
times. For this purpose, we decompose the radiative transfer
equation (12) into a system of equations for the individual
scattering orders as

√−gooγ(µ+ β)
dfn
dr

=
ηn−1

ǫ3
− χfn , (22)

where n = 1, 2,... represents the scattering order. We solve
Eq. [22] for the zeroth order setting η−1 = 0 and using
the same boundary conditions as in the full problem, i.e.,
illumination from the inner boundary. We then solve the
same equation for each successive order n, calculating ηn−1

from the solution of the previous order (through Eq. [7],) and
setting the appropriate boundary conditions for a medium
that is not illuminated from either boundary.

Fig. 2 shows the decomposition into scattering orders
of the energy spectra emerging from two flows with different
optical depths. In both cases, the spectrum calculated for
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Figure 2. Decomposition into scattering orders (dashed lines) of
the energy spectra (solid lines) emerging from two of the accretion
flows presented in Fig. 1. The leftmost dashed line corresponds to
the zeroth scattering order, i.e., the photons that reached the ob-
server without having interacted with electrons. Each subsequent
dashed line to its right corresponds to an increasingly higher scat-
tering order.

each scattering order is displaced and broadened compared
to the spectrum of the previous order while the fractional
change of the mean photon energy is comparable to an av-
erage value of β2 in the flow. This is demonstrated in Fig. 3,
where the mean energy of photons emerging after each suc-
cessive scattering order, defined as

〈ǫ〉n =

∫

∞

0
ǫ3dǫ

∫ 1

−1
µdµ fn(r → ∞, ǫ, µ)

∫

∞

0
ǫ2dǫ

∫ 1

−1
µdµ fn(r → ∞, ǫ, µ)

, (23)

is plotted as a function of the scattering order n. After
an initial small number of scatterings, 〈ǫ〉n increases expo-
nentially with scattering order (i.e., producing a straight
line in Fig. 3), implying that the average fractional energy
change per scattering, δǫ/ǫ, remains constant and hence
〈ǫ〉n ∼ e(δǫ/ǫ)n. The distribution, fndn, of the number of
scatterings each photon experiences in a spherical flow de-
pends on the details of the flow but often has an exponen-
tial tail, i.e., fn ∼ e−αn for n ≫ 1 (see, e.g., Sunyaev &
Titarchuk 1980). As a result, the convolution of these two

Figure 3. The average energy of photons emerging from the flows
of Fig. 1 after a given number of scatterings. Results are shown
for three representative optical depths. The photon energies are
normalised to the average photon energy of photons that did not
interact with the flow (which corresponds to the zeroth scattering
order).

exponentials gives rise to the hard power-law spectrum of
the form f(ǫ) ∼ ǫ−α(ǫ/δǫ)−1, as seen in Fig. 1. It is, therefore,
the effect of multiple scatterings that produces the power-
law spectra at high photon energies, for both low and high
optical depths.

Note here that the average photon energy increases
slower with scattering order for the flows with the larger
total optical depth (see Fig. 3), a result that might appear
at first counterintuitive. However, it can be understood as
follows: the quantity 〈ǫ〉n measures the average energy of
photons that escape to infinity having experienced only n
number of scatterings and not the average energy of all pho-
tons after each successive scattering. Indeed, when the to-
tal optical depth of the flow is low, photons that experience
their n−th scattering very close to the inner boundary of the
flow, and hence gain a lot of energy from the fast-moving
electrons there, have a high chance of escaping to infinity
and, consequently, contributing to 〈ǫ〉n. On the other hand,
when the total optical depth of the flow is high, only photons
that experience their n−th scattering away from the inner
boundary of the flow, and hence gain a moderate amount of
energy from scattering off slower electrons, escape to infinity
and contribute to 〈ǫ〉n.

The emerging spectra at photon energies significantly
larger than the injection energy correspond to photons that
have been scattered by electrons a very large number of
times and have therefore lost memory of their initial en-
ergy and angular distribution. For this reason, the slopes of
the power-law tails depend only very weakly on the initial
energy of the photons or the reference frame in which the
boundary conditions are imposed. These examples (together
with the discussion in Psaltis & Lamb 1997) demonstrate the
similarity between the generation of power-law spectra tails
in the flows considered here and in hot but static scattering
media (Sunyaev & Titarchuk 1980).

Fig. 4 shows the optical depth dependence of the photon
index, defined as the slope of the high-energy tail of the func-
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6 H. Papathanassiou, D. Psaltis

Figure 4. The optical depth dependence of the indices of the
power-law tails generated by the flows shown in Fig. 1, as well as
for the same flows but calculated for a flat spacetime. Note that
the indices were calculated for the photon number spectra and
not the energy spectra plotted in Fig. 1.

tion F (ǫ)/ǫ representing the photon number density. As was
already obvious in Fig. 1, the power-law tails become flatter
as the optical depth increases. Note here that the apparent
saturation of the photon index at high optical depths is an
artefact of our neglecting the systematic down-scattering of
photons and the Klein–Nishina form of the scattering cross
section. Taking these effects into account (which are of order
ǫ/me and higher) would produce, for high optical depths, a
prominent Wien peak at energies comparable to the mean
electron kinetic energy (Psaltis & Lamb 2000) and therefore
affect the power-law nature of the emerging spectra. More-
over, at the corresponding high inferred accretion rates, the
radial profiles of the electron density and velocity will not
be the free-fall profiles assumed here.

Fig. 4 also demonstrates that for a free-falling medium
and at high optical depths, the spectra calculated for a
Schwarzschild spacetime are steeper than the ones calcu-
lated for a flat spacetime. This property can be traced back
to the photon kinetic equation (12) and the effect on the
emerging spectra of the terms of different orders in the elec-
tron bulk velocity β (see also discussion in Zampieri & Lamb
2000). Assuming a general electron velocity β, denoting the
free-fall velocity as βff , and expanding Eq. [12] up to second
order in velocity, we obtain
{

µ+ β +
1

2
(β2 − β2

ff)µ+O[β(β2 − β2
ff)]
}

df

dr
=

η

ǫ3
−χf, (24)

for a Schwarzschild geometry, and
[

µ+ β +
1

2
β2µ+O(β3)

]

df

dr
=

η

ǫ3
− χf , (25)

for a flat geometry.
The generation of a power-law tail in the emerging spec-

trum is governed by the terms of order β2 (Psaltis & Lamb
1997, 2000), which are the lowest order terms containing in-
formation about the kinetic energy of the electrons that can
be transfered to the photons. Such terms appear both ex-
plicitly in Eqs. (24)–(25) and implicitly through the depen-

Figure 5. The optical depth dependence of the photon indices
of the power-law tails generated by a free-falling medium onto a
neutron star. The solid and dotted lines correspond to an absorp-
tive and a semi-reflective inner boundary condition respectively,
as described in the text.

dence of the characteristic curves, defined by Eqs. (13)–(14),
on β2; the latter contribution is negligible when the photon
mean-free path is significantly smaller than any characteris-
tic length-scale of the system. For a free-falling atmosphere
in a Schwarzschild geometry, the explicit terms of order β2 in
the photon kinetic equation are identically cancelled by the
terms of order β2

ff that describe the gravitational redshift.
Note, however, that the photons escaping to infinity have
experienced –by definition– the last scattering in regions of
very large photon mean-free path and, therefore, the cancel-
lation of the systematic upscattering by general relativistic
effects is not severe. As a result, the efficiency of the en-
ergy exchange between photons and fast moving electrons is
reduced when general relativistic effects are taken into ac-
count and the effect is pronounced in flows with high optical
depths, where a photon has suffered many scatterings before
escaping.

As discussed above, the calculated photon indices are
rather independent of the injection energy of the photons.
However, they do depend strongly on the choice of the inner
boundary condition for the flow. This is the case since the
inner boundary condition affects the distribution of photon
escape times from the flow and, hence, their average energy
gain. Fig. 5 compares the results presented earlier with the
power-law slopes of the spectra emerging from similar flows
in which we have imposed a semi-reflecting inner boundary
condition, i.e.,

f(rin, µ > 0, ǫ) = f(rin,−µ, ǫ) +
1

exp(ǫ/Tb)− 1
. (26)

The spectra emerging from the flows with semi-reflecting
boundaries are significantly flatter because the photons can
be reflected a number of times between the flow and the in-
ner boundary, gaining more energy, before emerging from
the flow. The effect is very large, as the emerging spec-
trum can be very flat (index≃ 0.5) or steep (index≃ 2.5)
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Figure 6. Radiation spectra emerging from scattering in radial
accretion flows onto a black hole with different optical depths. The
distribution of photon sources resembles the black-body emission
from an underlying accretion disk (Eq. [15]). The emerging flux is
in arbitrary units and the photon energy is in units of the temper-
ature of the accretion disk at its inner boundary. The spectrum
resulting in the absence of scattering (thin line) is also shown for
comparison.

for the same (large) value of the optical depth but for dif-
ferent boundary conditions.

5 RESULTS FOR BLACK HOLES

In this section we model the transport of photons in a radial
accretion flow onto a black hole. In such a flow, the source of
soft photons depends on the detailed properties of the accre-
tion model and various simple expressions have been used so
far in previous studies. Fig. 6 shows the spectra calculated
for a disk-like source of photons (Eq. [15]), in a Schwarzschild
spacetime, for different values of the optical depth (Eq. [16]).
In order to demonstrate the effect of Comptonization on the
spectral shape, the spectrum emerging from the flow in the
absence of scattering has also been included. The resulting
spectra consist of the soft source spectrum smoothly ex-
tending to a hard power law tail which becomes flatter with
increasing optical depth, much like in flows illuminated from
the surface of the neutron star presented in §4.

The power-law indices of the calculated spectra depend
very weakly, if at all, on the radial distribution of the pho-
ton sources, as is evident in Fig. 7. This figure compares
the spectra emerging from flows of optical depth τ = 1 and
for different expressions for the photon source: a disk-like
source of photons (solid curve) and a volume emissivity that
is proportional to the first (dashed curve) and second (dot-
ted curve) power of the electron density. The close similarity
of the power-law indices is yet another demonstration of the
fact that the spectral tails result from multiple scatterings
of photons by electrons which erase all memory of initial
photon distributions (see also discussion in §4).

Even though the basic mechanism for the generation of
the power-law spectral tails is the same for a flow around
both a neutron star and a black hole, these systems differ in
two respects: the location of the inner boundary and its ra-
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Figure 7. Radiation spectra emerging from radial accretion flows
onto a black hole, with optical depth τ = 1, but different emis-
sivities (η) of soft photons (discussed in the text). The index of
the power law at high energies is practically the same in all three
cases.

diative behaviour. The former brings out both the dramatic
effect of the curvature of the spacetime and the extreme ve-
locities, while the latter excludes the central object from any
radiative contributions.

In an accretion flow around a black hole, the inner
boundary lies at the event horizon, in the vicinity of which
the free-fall velocity approaches the speed of light. Photons
that propagate near the event horizon are dragged inwards
by the converging flow, even in the presence of intense scat-
tering that would tend to enhance their diffusion outwards.
Moreover, among photons with small impact parameters
(i.e., b ≤ 3

√
3/2), only those directed almost radially out-

wards can escape the steep potential. The effects of the ve-
locity field and the spacetime geometry on the fraction of
photons that can escape to infinity from a distance r from
the centre of the source are disentangled in Fig. 8. For il-
lustration, given an isotropic source of photons located at
radius r, the fraction of escaping photons is calculated at
the free streaming limit, and corresponds to the fractional
solid angle subtended by the characteristics that reach ra-
dial infinity. The combination of the effects of velocity and
geometry, in the self-consistent picture of free falling ma-
terial in a Schwarzschild spacetime, causes a steep photon
deficiency inwards of r = 1.5, where trapped photon trajec-
tories exist. From Fig. 8, it is evident that the properties of
the flow and of the spacetime inside r = 1.5 affect very little
the radiation that reaches the observer. This would not be
true if our description ignored the curved geometry of the
spacetime.

The other distinctive difference between a black hole
and a neutron star is the radiative behaviour of the in-
ner boundary (which, in the case of a neutron star, affects
strongly the emerging spectrum as discussed in §4). The in-
ner boundary in the case of a black hole is its event horizon,
out of which no radiation can escape. In order to isolate the
effect of the location of the inner boundary from that of the
type of the inner boundary condition (i.e., the radiative be-
haviour of the boundary), we performed a set of calculations
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Figure 8. The fraction of photons emitted by an isotropic source
of radiation at radius r that escape to infinity, for combinations
of different spacetime geometries and velocity fields.

with all possible combinations of the two, some of which are
unphysical.

The results of the calculations, in which we vary the
location and behaviour of the inner boundary condition but
keep the optical depth of the scattering medium (τ = 1)
and the functional form of the photon sources (disk-like; see
Eq. 15) fixed, are presented in Fig. 9. We use the albedo
(A) to refer to the radiative behaviour of the inner bound-
ary condition. The flattest spectrum (short-dashed curve)
corresponds to a configuration that is realistic for a neutron
star, with rin = 2.5 and a totally reflective inner boundary
condition, i.e., A = 1. The dot-dashed curve shows the spec-
trum of a hypothetical neutron star that absorbs all radia-
tion that hits its surface without reemiting any of it (A = 0).
The range between these two curves is covered by similar
flows of intermediate albedoes. The steeper spectrum in the
latter case is caused by the relative deficiency of photons
available for upscattering (see Fig. 5 and its discussion in
§4). Accordingly, the spectrum resulting from a similar flow
onto a black hole (solid curve) is steep but not considerably
more so. The enhanced energy gain by the photons due to
the much higher velocities encountered closer to the event
horizon is compensated for by the shielding of the imme-
diate neighbourhood of the horizon by the combined effect
of curvature and free-fall velocity (demonstrated in Fig. 8).
The long-dashed curve corresponds to a flow that reaches
the horizon with a reflective inner boundary condition. This
is certainly an unphysical configuration; it is nevertheless
instructive. The resulting spectrum coincides with that of
the black hole with an absorptive inner boundary condition,
apart from a turnover at the hardest end which is, however,
totally artificial. As we have already discussed in §2, due to
the coordinate singularity at the horizon, the inner boundary
is placed very close to, but not at the horizon. The radiation
that is reflected off this inner boundary shows as the hard
excess. A choice of an inner boundary closer to the horizon
(which can be achieved at a low computational cost with
our logarithmic grid in r − 1) pushes this artificial excess
to higher photon energies. Apart from this artefact of the
numerical method, it is evident that the particular form of
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Figure 9. Radiation spectra emerging from radial accretion flows
with the same optical depth τ = 1 but different locations and ra-
diative behaviours of the inner boundary. BH stands for a bound-
ary appropriate for a black hole, while NS stands for neutron star.
A = 0 (A = 1) corresponds to a fully absorptive (reflective) in-
ner boundary. The case of external illumination with no photon
sources within the flow is also shown for comparison.

the inner boundary condition, for the case of accretion onto
a black hole, does not affect the emerging spectrum. Indeed,
the absorptive character of the inner boundary is equivalent
to the coincidence of this boundary with the black hole event
horizon, since the propagation of the photons in its vicinity
is determined entirely by the properties of the spacetime.

We turn now to examine the effect of neglecting the cur-
vature of the spacetime (as has been done in a large number
of previous studies, see discussion in §1) for the case of a flow
that reaches the event horizon of a black hole. In Fig. 10,
we present the results of calculations using the Schwarzschild
metric (thick lines) or a flat spacetime geometry (thin lines).
We performed both calculations for disk-like photon sources
(Eq. [15]) and for an optical depth of τ = 3. The radial distri-
bution of the flux is shown for three representative observed
photon energies: one around the peak of the local emissivity
function (3 Tin in this case), one below the peak (0.3 Tin)
and one at the hard spectral tail (300 Tin). There is no sub-
stantial difference in the amount of soft radiation reaching
the observer between the calculations performed for the two
different spacetime geometries. This is true because the flux
at a certain radius and at frequencies around or below the
spectral peak mainly correspond to photons that have not
experienced any scattering with electrons. The hard spectral
tail, though, which is the result of multiple upscatterings,
is significantly different between the two calculations. Since
no trapped photon characteristics exist in flat geometry (see
§3), a larger fraction of photons from radii close to the event
horizon can escape and thus provide copious numbers of
photons to be further upscattered. This effect compliments
the one already discussed in §4, i.e., that general relativistic
effects reduce the efficiency of bulk Comptonization, identi-
cally cancelling it in the limit of very small photon mean-free
path. The net result is again a flatter power-law spectrum
for the calculation in a flat spacetime. This is qualitatively
the same as for the case of accretion onto a neutron star

c© 0000 RAS, MNRAS 000, 000–000



Photon Scattering in Schwarzschild Spacetimes 9

1 10
Radius (r)

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

lo
g(

E
m

er
gi

ng
 F

lu
x)

εobs=0.3 Tin

εobs=3 Tin

εobs=300 Tin

1 10 100

Photon energy

−8

−6

−4

−2  log(F
lux)

Figure 10. Radial profiles of flux at three representative ob-
served photon energies: one below the peak of the local emissivity
(0.3 Tin), one around its peak (3 Tin), and one at the hard tail
(300 Tin). Comparison between the results in a Schwarzschild
(thick curves) and flat (thin curves) spacetime. The observed
spectrum for the two cases is shown in the insert.

(see §4) but more pronounced, as expected. For the cases
shown in Fig. 10, the photon index is ≃ 2.45 for the flat and
≃ 3.03 for the Schwarzschild spacetime (compare with the
difference of photon spectral indices in the case of a neutron
star shown in Fig. 4).

Finally, Fig. 11 compares our results to previous calcu-
lations in which the effects of general relativity were explic-
itly taken into account. The photon index values we have
obtained are consistent with the single case of cold, radial
accretion onto a black hole studied by Zane et al. (1996) and
similar to the Monte Carlo solutions of Laurent & Titarchuk
(1999) for low optical depths. At high optical depths, our
solutions correspond to slightly flatter spectra than those
of Laurent & Titarchuk (1999) and the difference can be
attributed to two effects: First, we neglected the systematic
down-scattering of photons as well as the Klein–Nishina cor-
rections to the scattering cross section, both of which tend to
reduce the efficiency of energy exchange and hence produce
steeper spectra. Second, the accretion flows in the calcula-
tions of Laurent & Titarchuk (1999) are truncated at a ra-
dius smaller than in our calculations (i.e., at rout = 3) and
therefore the energy gained by the interaction of photons
with electrons at larger radii is not taken into account. Fi-
nally, it is unclear how to compare our results to the analytic
solutions of Titarchuk & Zannias (1998), who calculated the
eigenfunctions of the transfer equation for flows with neither
external illumination (Eq. [24]) nor photon sources within
the flow (Eq. [16]).

6 CONCLUSIONS

We have solved the radiative transfer equation that describes
scattering of photons by cold electrons moving at relativis-
tic speeds, in steady-state, spherically symmetric accretion
flows onto neutron stars and black holes. We used an iter-
ative procedure to integrate the radiative transfer equation
along the photon characteristics. This is an efficient method

Figure 11. Comparison between different studies of the photon
indices calculated for bulk Comptonized spectra from spherically
accreting flows onto a black hole as a function of optical depth.
The results of this work correspond to the spectra shown in Fig 6.
Comparisons are done with the cold-flow solution of Zane et al.
(1996; ZTNE 96), the analytic calculation of Titarchuk & Zannias
(1998; TZ 98), and the zero-temperature Monte-Carlo solutions
of Laurent & Titarchuk (1999; LT 99). The points in the latter
case correspond to accretion flows with the same electron density
profile as the current calculations (note the difference in our def-
inition of optical depth) and the error bars represent the quoted
5% uncertainty in the fitted power-law indices.

that allows for the full description of the spacetime geometry
and the velocity field (see Schmid–Burgk 1978 and Zane et
al. 1996), independent of the optical thickness of the flow.
In this paper, we focused on examining simple configura-
tions with the intention of exploring the generation of hard
power-law spectra from accretion flows. We have examined
the dependence of the resulting spectra on the boundary
conditions, the properties of the scattering medium, and the
approximations often used for the spacetime geometry and
the velocity field.

We demonstrated that the generation of power-law
spectral tails is the result of multiple scatterings of the soft
source photons by the fast moving cold electrons (see also
Laurent & Titarchuk 1999), at both low and high optical
depths. As a result, the photons emerging from the accre-
tion flow with high energies do not carry any signatures of
regions of high electron velocities or spacetime curvature -
contrary to expectations- but rather reflect the fact that a
small number of photons can experience a significant num-
ber of scatterings even in a flow of small total optical depth.
This mechanism is very similar to the generation of power-
law spectra by thermal Comptonization in static media. It
differs, however, from the generation of power-law spectra
by non-thermal electrons in optically thin media, which is
the result of a single scattering by a power-law distribution
of relativistic electrons (see Coppi 1999).

The multiple scatterings experienced by the photons
tend to wipe out all memory of initial conditions such as the
radial, angular, or energy distribution of the sources. How-
ever, the resulting spectra for neutron-star flows do depend
sensitively on the choice of the inner boundary conditions,
confirming results reported earlier (Titarchuk et al. 1997,
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Psaltis 1998; Psaltis & Lamb 2000). It is important to note,
nevertheless, that none of the idealised boundary conditions
used in our calculations is, strictly speaking, astrophysically
relevant for a radial accretion flow onto a neutron star. In-
deed, whether the photons that reach the inner boundary
will be absorbed or reflected depends on the photon energy
and the ionization state of the surface layers of the neutron
star. Even if most of the photons are reflected, their energy
gain at reflection will be determined by the thermal state
and stratification of the transition region between the flow
and the stellar surface. Moreover, the presence of shocks at
this interface introduces additional complications. As a re-
sult, the spectral signature of a nearly-radial accretion flow
onto a neutron star will not be uniquely determined by the
flow properties but will be dictated by the specifics of the
interaction of the flow with the stellar surface.

On the contrary, the spectral indices of the hard spec-
tral tails resulting from the same flows onto black holes are
immune to the inner boundary condition. This is due to the
physical character of the inner boundary (the event horizon),
i.e., that no radiation can escape to infinity (see Fig. 8 &
9). For this reason, the spectra produced from bulk Comp-
tonization in a purely radial, free-falling flow onto a black
hole have a power law index that is determined solely by
the optical depth (or mass accretion rate Eq. [18]; see also
discussion in Titarchuk Zannias 1998). Furthermore, when
compared to the spectral tails from flows onto neutron stars
in this idealised limit, those of black holes are steeper.

Several previous studies have examined the generation
of power-law spectra without taking into account the cur-
vature of the spacetime or the regime of highly relativistic
speeds (e.g., Payne & Blandford 1981; Titarchuk et al. 1987;
Psaltis & Lamb 2000). We showed that, for a free-fall veloc-
ity profile, general relativistic effects identically cancel the
bulk Comptonization effects everywhere in the flow, includ-
ing radii very far from the compact object, as long as the
photon mean-free path is very small. If this were not true,
then an observer comoving with the flow would be able to
distinguish between being at rest at infinity and free-falling
onto the compact object by making only local (because
of the small photon mean-free path requirement) measure-
ments of the evolution of the photon spectrum with time.
However, for typical accretion rates, nowhere in the flow
is the photon mean-free path small. Moreover, the photons
that escape to infinity have experienced their last scatter-
ings in regions of large photon mean-free path. As a result,
the aforementioned cancellation of O(β2) terms reduces the
Comptonization efficiency –with respect to the flat geometry
case– only modestly in the case of flows onto neutron stars
which are of relatively high optical depths. Ignoring the ac-
tual spacetime geometry, when modelling a flow onto a black
hole, results in more severe over-predicting of the hard tail
flux, though. For a black hole, the existence of trapped char-
acteristics (see §3) deprives the outer parts of the flow from
a large fraction of the photons that have reached close to the
event horizon. Consequently, disregarding the Schwarzschild
spacetime geometry can lead to overestimating the flux at
high photon energies by more than an order of magnitude
(e.g., at 100 Tin in the case of Fig. 10).
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