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Abstract

The reaction of collective oscillations excited in the
interaction between aperiodically growing Jeans-type
gravity perturbations and stars of a rapidly rotating
disk of flat galaxies is considered. An equation is de-
rived which describes the change in the main body of
equilibrium distribution of stars in the framework of
the nonresonant weakly nonlinear theory. Certain ap-
plications of the theory to the problem of relaxation
of the Milky Way at radii where two-body relaxation
is not effective are explored. The theory, as applied
to the Solar neighborhood, accounts for observed fea-
tures, such as the shape for the velocity ellipsoid of
stars and the increase in star random velocities with
age.
Subject headings: galaxies: kinematics and dynamics —

galaxies: structure — instabilities

1. Introduction

Relaxation of stellar distribution in galaxies is
not completely understood yet. Lynden-Bell (1967)
and later Shu (1978) proposed violent relaxation in
spherical-like (that is, nonrotating) protogalaxies in
not virial equilibrium. The associated relaxation for
an individual to gain or lose energy occurs on the ex-
ceedingly short time much smaller than one typical
radial period and well before the rotating galaxy disk
is formed. The relaxation, however, does not stop at
this stage. There are numerous observations clearly
showing that there exists ongoing slow relaxation (on
the time scale of 10 − 20 rotation periods or even
larger) in the rapidly rotating disk of Milky Way’s
Galaxy (Wielen 1977; Binney & Tremaine 1987, p.
470; Gilmore, King, & van der Kruit 1990). This

1Corresponding author (griv@bgumail.bgu.ac.il).

slow relaxation of the distribution of young stars
which were born in the equilibrium disk of the Galaxy
results in a randomization of the velocity distribu-
tion (“Maxwellianization”) and a monotonic increase
of the stellar random velocity dispersion (“heating”)
from about 15 km s−1 for the youngest stars to about
40 km s−1 for the oldest disk stars with increasing stel-
lar ages from ∼ 106 yr to ∼ 4 109 yr. Wielen (1977)
has found that the observed increase of the velocity
dispersion of disk stars with increasing age indicates
strongly a significant irregular gravitational field in
the galactic disk. The irregular field causes a rapid
diffusion of stellar orbits in velocity (and positional)
space. The nature of this relaxation should be quite
different from the violent relaxation. Various mech-
anisms for the slow relaxation have been proposed.
See, e.g., Grivnev & Fridman (1990) for a review of
the problem. In the present work, we elaborate upon
the idea of the collective relaxation: unstable gravity
perturbations in the disk affect the averaged veloc-
ity distribution function. The instabilities and subse-
quent collective relaxation occur near the equilibrium
and the perturbations remain relatively small which
makes this process very different from what occurs
during violent relaxation.

Apparently, Toomre (1964, p. 1237), Goldreich &
Lynden-Bell (1965), Barbanis & Woltjer (1967), Kul-
srud (1972), and Jenkins & Binney (1990) have first
suggested instabilities as a cause of enhanced relax-
ation in disk-shaped rapidly rotating galaxies. It was
stated that because of its long-range Newtonian forces
a self-gravitating medium (a stellar “gas,” say) would
possess collective properties: collective, or coopera-
tive motions in which all the particles of the system
participate. These properties would be manifested
in the behavior of small gravity perturbations arising
against the equilibrium background. Collective pro-
cesses are analogous to two-body collisions, except
that one particle collides with many which are col-
lected together by some coherent process such as a
wave or an unstable perturbation. The collective pro-
cesses are random, and usually much stronger than
the ordinary two-body collisions and leads to a ran-
dom walk of the particles that rapidly takes the com-
plete system toward thermal equilibrium.

We present (for the first time as far as we are
aware) a quantitative theory of relatively slow relax-
ation on the Hubble time ∼ 1010 yr of self-gravitating,
rapidly rotating stellar disks of flat galaxies toward a
thermal quasi-steady state by collective effects. In
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the process a star “collides” with inhomogeneities of
a galactic gravitational field which result from the de-
velopment of the Jeans instability. 2 We find that it
successfully accounts for several basic observations of
the Milky Way.

2. Equilibrium

In the rotating frame of a disk galaxy, the collision-
less motion of an ensemble of identical stars in the
plane of the system can be described by the Boltz-
mann equation for the distribution function f(r,v, t)
without the integral of collisions (Lin, Yuan, & Shu
1969):

∂f

∂t
+ vr

∂f

∂r
+
(

Ω+
vϕ
r

) ∂f

∂ϕ
+

(

2Ωvϕ +
v2ϕ
r

+Ω2r

− ∂Φ

∂r

)

∂f

∂vr
−
(

κ2

2Ω
vr +

vrvϕ
r

+
1

r

∂Φ

∂ϕ

)

∂f

∂vϕ
= 0, (1)

where r, ϕ, z are the galactocentric cylindrical coor-
dinates, the total azimuthal velocity of the stars was
represented as a sum of the random vϕ and the ba-
sic rotation velocity Vrot = rΩ, vr is the velocity in
the radial direction, and the epicyclic frequency κ(r)
is defined by κ = 2Ω[1 + (r/2Ω)(dΩ/dr)]1/2. The
quantity Ω(r) denotes the angular velocity of galac-
tic rotation at the distance r from the center, and κ
varies from 2Ω for a rigid rotation to Ω for a Keplerian
one. Random velocities are small compared with rΩ.
Collisions are neglected here because the collision fre-
quency is much smaller than the cyclic frequency Ω.
In the kinetic equation (1), Φ(r, t) is the total gravita-
tional potential determined self-consistently from the
Poisson equation ∇2Φ = 4πG

∫

fdv = 4πGn, where
n is the volume density.

The equilibrium state is assumed, for simplicity, to
be an axisymmetric and spatially homogeneous stellar
disk. The distribution function may also be a func-
tion of r, for instance, in the case of an inhomogeneous
disk, in which case the theory is significantly compli-
cated (Alexandrov, Bogdankevich, & Rukhadze 1984,

2The classical Jeans-type instability of small-amplitude gravity
disturbances is one of the most frequent and most important
instabilities in the stellar subsystems of galaxies. The Jeans
instability is driven by a strong nonresonant interaction of the
gravity fluctuations with the bulk of the particle population,
and the dynamics of Jeans perturbations can be characterized
as a fluidlike interaction. Combined with the familiar Lin–Shu–
Kalnajs dispersion relation this is a venerable suggestion as to
why flat galaxies almost always exhibit spiral structure (Binney
& Tremaine 1987, p. 336).

p. 425). Secondly, in our simplified model, the per-
turbation is propagating in the plane of the disk.
This approximation of an infinitesimally thin disk is
a valid approximation if one considers perturbations
with a radial wavelength that is greater than the typ-
ical disk thickness. We assume here that the stars
move in the disk plane so that vz = 0. This al-
lows us to use the two-dimensional distribution func-
tion f = f(vr, vϕ, t)δ(z) such that

∫

fdvrdvϕdz = σ,
where σ is the surface density. We expect that the
waves propagating in the disk plane have the great-
est influence on the development of structures in the
disk. The latter suggestion is strongly supported by
numerical simulations (Hohl 1978).

The disk in the equlibrium is described by the fol-
lowing equation:
(

2Ωvϕ +
v2ϕ
r

)

∂fe
∂vr

−
(

κ2

2Ω
vr +

vrvϕ
r

)

∂fe
∂vϕ

= 0,

(2)
where ∂fe/∂t = 0 and the angular velocity of rotation
Ω(r) is such that the necessary centrifugal accelera-
tion is exactly provided by the central gravitational
force rΩ2 = ∂Φe/∂r. Equation (2) does not deter-
mine the equilibrium distribution fe uniquely. For
the present analysis we choose fe in the form of the
anisotropic Maxwellian (Schwartzschild) distribution

fe =
σe

2πcrcϕ
exp

(

− v2r
2c2r

−
v2ϕ
2c2ϕ

)

=
2Ω

κ

σe
2πc2r

exp

(

− v2
⊥

2c2r

)

.

(3)
The Schwarzschild distribution function is a function
of the two epicyclic constants of motion E = v2

⊥
/2 and

r20Ω(r0), where r0 = r + (2Ω/κ2)vϕ. These constants
of motion are related to the unperturbed star orbits:

r = −v⊥
κ

[sin(φ0 − κt)− sinφ0] ; vr = v⊥ cos (φ0 − κt) ;

ϕ =
2Ω

κ

v⊥
r0κ

[cos(φ0 − κt)− cosφ0] ; vϕ ≈ r0
dϕ

dt

+r0
v⊥
κ

dΩ

dr
sin (φ0 − κt) ≈ κ

2Ω
v⊥ sin (φ0 − κt) , (4)

where v⊥, φ0 are constants of integration, v⊥/κr0 ∼
ρ/r0 ≪ 1, ρ is the mean epicycle radius, and we fol-
low Lin et al. (1969), Shu (1970), and Griv & Pe-
ter (1996) making use of expressions for the unper-
turbed epicyclic trajectories of stars in the equilib-
rium central field Φe(r). In equations (3) and (4),
r0 is the radius of the circular orbit, which is chosen
so that the constant of areas for this circular orbit
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r20(dϕ0/dt) is equal to the angular momentum imte-
gral Mz = r2(dϕ/dt), and v2

⊥
= v2r + (2Ω/κ)2v2ϕ.

Also, ϕ0 is the position angle on the circular orbit,
(dϕ0/dt)

2 = (1/r0)(∂Φe/∂r)0 = Ω2. The quanti-
ties Ω, κ, and cr are evaluated at r0. In equation
(3) the fact is used that as follows from equations
(4) in a rotating frame the radial velocity dispersion
cr and the azimuthal velocity dispersion cϕ are con-
nected through cr ≈ (2Ω/κ)cϕ. In the Solar vicin-
ity, 2Ω/κ ≈ 1.7. The distribution function fe has
been normalized according to

∫

∞

−∞

∫

∞

−∞
fedvrdvϕ =

2π(κ/2Ω)
∫∞

0
v⊥dv⊥fe = σe, where σe is the equilib-

rium surface density. Such a distribution function for
the unperturbed system is particularly important be-
cause it provides a fit to observations (Lin et al. 1969;
Shu 1970). It is this equilibrium that is examined for
stability.

3. Collisionless Relaxation

We proceed by applying the standard procedure
of the weakly nonlinear (or quasi-linear) approach
(Galeev & Sagdeev 1983; Alexandrov et al. 1984,
p. 408; Krall & Trivelpiece 1986, p. 512) and de-
compose the time dependent distribution function
f = f0(v, t) + f1(v, t) and the gravitational poten-
tial Φ = Φ0(r, t) + Φ1(r, t) with |f1/f0| ≪ 1 and
|Φ1/Φ0| ≪ 1 for all r and t. The functions f1 and
Φ1 are oscillating rapidly in space and time, while
the functions f0 and Φ0 describe the slowly develop-
ing “background” against which small perturbations
develop; f0(t = 0) ≡ fe and Φ0(t = 0) ≡ Φe. The
distribution f0 continues to distort as long as the dis-
tribution is unstable. Linearizing equation (1) and
separating fast and slow varying variables one obtains:

df1
dt

=
∂Φ1

∂r

∂f0
∂vr

+
1

r

∂Φ1

∂ϕ

∂f0
∂vϕ

, (5)

∂f0
∂t

=
〈∂Φ1

∂r

∂f1
∂vr

+
1

r

∂Φ1

∂ϕ

∂f1
∂vϕ

〉

, (6)

where d/dt means the total derivative along the star
orbit (4) and 〈· · ·〉 denotes the time average over the
fast oscillations. To emphasize it again, we are con-
cerned with the growth or decay of small perturba-
tions from an equilibrium state.

In the epicyclic approximation, the partial deriva-
tives in equations (5) and (6) transform as follows
(Lin et al 1969; Shu 1970; Griv & Peter 1996):

∂

∂vr
= vr

∂

∂E − 2Ω

κ

vϕ
v2
⊥

∂

∂φ0
;
∂

∂vϕ
=

(

2Ω

κ

)2

vϕ
∂

∂E

+
2Ω

κ

vr
v2
⊥

∂

∂φ0
. (7)

To determine oscillation spectra, let us consider the
stability problem in the lowest WKB approximation:
the perturbation scale is sufficiently small for the disk
to be regarded as spatially homogeneous. This is ac-
curate for short wave perturbations only, but qualita-
tively correctly even for perturbations with a longer
wavelength, of the order of the disk radius R. In this
local WKB approximation in equations (5) and (6),
assuming the weakly inhomogeneous disk, the pertur-
bation is selected in the form of a plane wave (in the
rotating frame):

f1,Φ1 =
1

2
δf, δΦ

(

eikrr+imϕ−iω∗t + c. c.
)

, (8)

where δf , δΦ are amplitudes that are constant in
space and time, m is the nonnegative azimuthal mode
number, ω∗ = ω − mΩ is the Doppler-shifted wave-
frequency, and |kr|R ≫ 1 (Griv & Peter 1996). The
solution in such a form represents a spiral wave with
m arms whose shape in the plane is determined by
the relation kr(r − r0) = −m(ϕ − ϕ0). With ϕ in-
creasing in the rotation direction, we have kr > 0 for
trailing spiral patters, which are the most frequently
observed among spiral galaxies. A change of the sign
of kr corresponds to changing the sense of winding
of the spirals, i.e., leading ones. With m = 0, we
have the density waves in the form of concentric rings
that propagate away from the center when kr > 0 or
toward the center when kr < 0.

In equation (5) using the transformation of the
derivatives ∂/∂vr and ∂/∂vϕ given by equations (7),
one obtains the solution

f1 =

∫ t

−∞

dt′v⊥

∂Φ1

∂r

∂f0
∂E , (9)

where f1(t
′ = −∞) → 0. In this equation making use

of the time dependence of perturbations in the form
of equation (8) and the unperturbed trajectories of
stars given by equations (4) in the exponential factor,
it is straightforward to show that

f1 = −Φ1(r0)
∂f0
∂E

∞
∑

l=−∞

∞
∑

n=−∞

lκ
ei(n−l)(φ0−ζ)Jl(χ)Jn(χ)

ω∗ − lκ
,

(10)
where Jl(χ) is the Bessel function of the first kind of
order l, χ = k∗v⊥/κ ∼ k∗ρ, k∗ = k{1 + [(2Ω/κ)2 −
1] sin2 ψ}1/2 is the effective wavenumber, ψ is the
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pitch angle of perturbations, tanψ = kϕ/kr = m/rkr,
and we used the expansion

exp(±ib sinφ0) =
∞
∑

n=−∞

Jn(b) exp(±inφ0)

and the usual Bessel function recursion relation

Jl+1(χ) + Jl−1(χ) = (2l/χ)Jl(χ).

In the equation above the denominator vanishes when
ω∗ − lκ → 0. This occurs near corotation (l = 0)
and other resonances (l = ±1,±2, · · ·). The Lindblad
resonances occur at radii where the field (∂/∂r)Φ1

resonates with the harmonics l = −1 (inner reso-
nance) and l = 1 (outer resonance) of the epicyclic
(radial) frequency of equilibrium oscillations of stars
κ. Clearly, the location of these resonances depends
on the rotation curve and the spiral pattern speed;
the higher the m value, the closer in radius the res-
onances are located (Lin et al. 1969; Shu 1970). In
this paper, only the main part of the galactic disk is
studied which lies sufficiently far from the resonances:
below in all equations ω∗ − lκ 6= 0.

We substitute the solution (10) into equation (6).
Taking into account that the terms l 6= n vanish for
axially symmetric functions f0, after averaging over
φ0 we obtain the equation for the slow part of the
distribution function:

∂f0
∂t

= iπ
∑

k

∞
∑

l=−∞

|Φ1,k|2
∂

∂v⊥

k∗κ

v⊥χ

l2J2
l (χ)

ω∗ − lκ

∂f0
∂v⊥

.

(11)

As usual in the weakly nonlinear theory, in order
to close the system one must engage an equation for
Φ1,k. Averaging over the fast oscillations, we have

(∂/∂t)|Φ1,k|2 = 2ℑω∗|Φ1,k|2, (12)

where suffixes k denote the kth Fourier component.

Equations (11) and (12) form the closed system of
weakly nonlinear equations for Jeans oscillations of
the rotating homogeneous disk of stars, and describe
a diffusion in velocity space. The spectrum of oscil-
lations and their growth rate are (Griv, Rosenstein,
Gedalin, & Eichler 1999a; Griv, Gedalin, Eichler, &
Yuan 2000a)

k2c2r
2πGσ0|k|

= −
∞
∑

l=−∞

lκ
e−xIl(x)

ω∗ − lκ
, (13)

and ℑω∗,J ≈
√

4πGσ0e−xI(x)/x ∼< Ω, respectively.

In the Solar vicinity, Ω ≈ 3 10−8 yr−1. Here, Il(x)
is a Bessel function of an imaginary argument with
its argument x ≈ k2

∗
ρ2 and ρ = cr/κ is now the

mean epicyclic radius. A very important feature of
the instability under consideration is the fact that it
is aperiodic (the real part of the wavefrequency van-
ishes in a rotating frame we are using). Usually the
quasi-linear theory is applied when the growth rate
is small compared with the real part of the wavefre-
quency as for the case of the resonance interaction
ω = k · v, where v is the velocity of the particle in-
volved in the interaction. However, the theory can
be applied also to aperiodic instabilities (Shapiro &
Shevchenko 1963; Alexandrov et al. 1984, p. 420;
Krall & Trivelpiece 1986, p. 531). A further simpli-
fication results from restricting the frequency range
of the waves examined by taking the low frequency
limit (|ω∗| less than the epicyclic frequency of any disk
star). In the opposite case of the high perturbation
frequencies, |ω∗| > κ, the effect of the disk rotation
is negligible and therefore not relevant to us. This
is because in this “rotationless” case the star motion
is approximately rectilinear on the time and length
scales of interest which are the wave growth/damping
periods and wavelength, respectively (Alexandrov et
al 1984, p. 113). Thus, the terms in series (10)–(13)
for which |l| ≥ 2 may be neglected, and consideration
will be limited to the transparency region between
the turning points in a disk (between the inner and
outer Lindblad resonances). In this case, in equations
(10)–(13) the function Λ(x) = exp(−x)I1(x) starts
from Λ(0) = 0, reaches a maximum Λmax < 1 at
x ≈ 0.5, and then decreases. Hence, the growth rate
has a maximum at x < 1 (see Griv, Yuan, & Gedalin
1999b, Fig. 2 in their paper).

In general, the growth rate of the Jeans instability
is high |ℑω∗,J| ∼ Ω; perturbations with wavelength
λJ ≈ 2πρ have the fastest growth rate (Morozov 1981;
Griv & Peter 1996; Griv et al. 1999a). In the Solar
vicinity of the Galaxy, λJ = 2− 4 kpc.

4. Astronomical Implications

As an application of the theory we investigate
the relaxation of low frequency and Jeans-unstable,
|ω∗| < κ and ω2

∗
< 0, respectively, oscillations in

the homogeneous galactic disk. Indeed, already in
the 1940s it was observed that in the Solar neigh-
borhood the random velocity distribution function of
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stars with an age t ∼> 108 yr is close to a Schwarzschild
distribution — a set of Gaussian distributions along
each coordinate in velocity space, i.e., close to equi-
librium along each coordinate (Chandrasekhar 1960;
Ogorodnikov 1965; Binney & Tremaine 1987, p. 471).
In addition, older stellar populations have a higher
velocity dispersion than younger ones.3 On the other
hand, a simple calculation of the relaxation time of
the local disk of the Milky Way due to pairwise star–
star encounters brings the standard value ∼ 1014 yr
(Chandrasekhar 1960), which considerably exceeds
the lifetime of the universe. According to our ap-
proach, collisionless relaxation does play a determin-
ing role in the evolution of stellar populations of the
Galactic disk.

Evidently, the unstable Jeans oscillations must in-
fluence the distribution function of the main, nonres-
onant part of stars in such a way as to hinder the
wave excitation, i.e., to increase the velocity disper-
sion. This is because the Jeans instability, being es-
sentially a gravitational one, tends to be stabilized
by random motions (Toomre 1964; Shu 1970; Bertin
1980; Morozov 1981; Griv & Peter 1996). Therefore,
along with the growth of the oscillation amplitude,
random velocities must increase at the expense of cir-
cular motion, and finally in the disk there can be es-
tablished a quasi-stationary distribution so that the
Jeans-unstable perturbations are completely vanish-
ing and only undamped Jeans-stable waves remain.4

In the following, we restrict ourselves to the most
“dangerous,” in the sense of the loss of gravitational
stability, long-wavelength perturbations, χ2 and x2 ≪
1 (see the explanation after eqn. [13]). Then in equa-
tions (10)–(13) one can use the expansions J2

1 (χ) ≈
χ2/4 and e−xI1(x) ≈ (1/2)x − (1/2)x2 + (5/16)x3.
Equation (11) takes the simple form

∂f0
∂t

= D
∂2f0
∂v2

⊥

, (14)

where D = (π/16κ2)
∑

k
k2∗ℑω∗,J|Φ1,k|2, ℑω∗,J > 0,

and both ℑω∗,J and Φ1,k are functions of t. As is
seen, the velocity diffusion coefficient for nonresonant
stars D is independent of v⊥ (to lowest order). This

3The age dependence of velocity dispersions for stellar popula-
tions has always been of particular interest, because the form of
this relationship allows us to judge whether was any relaxation
in the galactic disk and even to determine the mechanism that
was responsible for increase in random star velocities.

4In turn, the Jeans-stable perturbations are subject to a reso-
nant Landau-type instability (Griv et al. 2000a).

is a qualitative result of the nonresonant character of
the star’s interaction with collective aggregates.

By introducing the standard definitions dτ/dt =
D(t) and d/dt = (dτ/dt)(d/dτ), equations (12) and
(14) are rewritten as follows:

∂f0
∂τ

− ∂2f0
∂v2

⊥

= 0,
∂D

∂τ
= 2ℑω∗,J, (15)

which has the solution

f0(v⊥, τ) =
const√
τ

exp

(

−v
2
⊥

4τ

)

. (16)

(We have taken into account the observations that
the distribution of newly born stars is close to the δ-
function distribution, f0(v⊥, t = 0) = δ(v⊥); Grivnev
& Fridman 1990.) As is seen from equation (16),
during the development of the Jeans instability, the
Schwarzschild distribution of random velocities (a
Gaussian spread along vr, vϕ coordinates in velocity
space) is established. The energy of the oscillation
field ∝

∑

k
|Φ1,k|2 plays the role of a “temperature”

T in the nonresonant-particle distribution. As the
perturbation energy increases, the initially monoen-
ergetic distribution spreads (f0 becomes less peaked),
and the effective temperature grows with time (a
Gaussian spread increases): T = 2τ ∝

∫

D(t)dt ∝
∫
∑

k
k2
∗
ℑω∗,J|Φ1,k|2dt.

From the above, this mechanism increases the ve-
locity dispersion of stars in Milky Way’s disk after
they are born. Subsequently, sufficient velocity dis-
persion prevents the Jeans instability from occuring.
The “diffusion” of nonresonant stars takes place be-
cause they gain mechanical (oscillatory) energy as
the instability develops. The velocity diffusion, how-
ever, presumably tapers off as Jeans stability is ap-
proached: the radial velocity dispersion cr becomes
greater than the critical one cr,crit ≈ (2Ω/κ)cT, where
cT is the well-known Toomre’s critical velocity dis-
persion to suppress the instability of axial symmetric
gravity perturbations (Morozov 1981; Griv & Peter
1996; Griv et al. 1999a). Thus, the true time scale
for relaxation in the Milky Way may be much shorter
than its standard value ∼ 1014 yr for the classical
Chandrasekhar–Ogorodnikov collisional relaxation; it
may be of the order (ℑω∗,J)

−1
∼> Ω−1

∼> 109 yr, i.e.,
comparable with 10 periods of the Milky Way rotation
in the Solar vicinity. The above relaxation time is in
fair agreement with both observations (Wielen 1977;
Knude, Winther, & Schnedler-Nielsen 1987; Gilmore
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et al. 1990; Grivnev & Fridman 1990; Meusinger,
Stecklum, & Reimann 1991) and N -body simulations
of Milky Way’s disk (Hohl 1971; Sellwood & Carlberg
1984; Griv, Gedalin, Liverts et al. 2000b).
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