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ABSTRACT

We investigate a stationary pair production cascade in the outer magnetosphere of
a spinning neutron star. The charge depletion due to a global current, causes a large
electric field along the magnetic field lines. Migratory electrons and/or positrons are
accelerated by this field to radiate curvature gamma-rays, some of which collide with
the X-rays to materialize as pairs in the gap. The replenished charges partially screen
the electric field, which is self-consistently solved together with the distribution functions
of particles and gamma-rays. If no current is injected at neither of the boundaries of
the accelerator, the gap is located around the so-called null surface, where the local
Goldreich-Julian charge density vanishes. However, we first find that the gap position
shifts outwards (or inwards) when particles are injected at the inner (or outer) boundary.
Applying the theory to the Crab pulsar, we demonstrate that the pulsed TeV flux does
not exceed the observational upper limit for moderate infrared photon density and that
the gap should be located near to or outside of the null surface so that the observed
spectrum of pulsed GeV fluxes may be emitted via curvature process.

Subject headings: gamma-rays: observation – gamma-rays: theory – magnetic field –
pulsars: individual (Crab) – X-rays: observation
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1. Introduction

The EGRET experiment on the Compton Gamma
Ray Observatory has detected pulsed signals from
seven rotation-powered pulsars (e.g., for Crab, Nolan
et al. 1993, Fierro et al. 1998). The modulation of
the γ-ray light curves at GeV energies testifies to the
production of γ-ray radiation in the pulsar magneto-
spheres either at the polar cap (Harding, Tademaru,
& Esposito 1978; Daugherty & Harding 1982, 1996;
Sturner, Dermer, & Michel 1995; Shibata, Miyazaki,
& Takahara 1998), or at the vacuum gaps in the outer
magnetosphere (Cheng, Ho, & Ruderman 1986a,b,
hereafter CHR; Chiang & Romani 1992, 1994; Ro-
mani and Yadigaroglu 1995; Romani 1996; Zhang &
Cheng 1997, heafter ZC97). Effective γ-ray produc-
tion in a pulsar magnetosphere may be extended to
the very high energy (VHE) region above 100 GeV as
well; however, the predictions of fluxes by the current
models of γ-ray pulsars are not sufficiently conclu-
sive (e.g., Cheng 1994). Whether or not the spectra
of γ-ray pulsars continue up to the VHE region is a
question which remains one of the interesting issues
of high-energy astrophysics.

In the VHE region, positive detections of radiation
at a high confidence level have been reported from
the direction of the Crab pulsar (Nel et al. 1993).
However, as for pulsed TeV radiation, only the upper
limits have been, as a rule, obtained. If the VHE emis-
sion originates the pulsar magnetosphere, a significant
fraction of them can be expected to show pulsation.
Therefore, the lack of pulsed TeV emissions provides
a severe constraint on the modeling of particle accel-
eration zones in a pulsar magnetosphere.

In fact, in CHR picture, the magnetosphere should
be optically thick for pair–production in order to re-
duce the TeV flux to an unobserved level by absorp-
tion. This in turn requires very high luminosities of
infrared photons. However, the required IR fluxes
are generally orders of magnitude larger than the ob-
served values (Usov 1994). We are therefore moti-
vated by the need to contrive an outer–gap model
which produces less TeV emission with a moderate
infrared luminosity.

High-energy emission from a pulsar magnetosphere,
in fact, crucially depends on the acceleration electric
field, E‖, along the magnetic field lines. It was Hi-
rotani and Shibata (1999a,b,c; hereafter Papers I, II,
III), and Hirotani (2000a,b,c; hereafter Papers IV, V,
VI) who first solved the spatial distribution of E‖ to-

gether with particle and γ-ray distribution functions.
They demonstrated that a stationary gap is formed
around the null surface at which the local Goldreich–
Julian charge density,

ρGJ =
ΩBz

2πc
, (1)

vanishes, where Bz is the component of the magnetic
field along the rotation axis, Ω the angular frequency
of the neutron star, and c the speed of light. Equation
(1) is valid unless the gap is located close to the light
cylinder, of which distance from the rotation axis is
given by ̟LC = c/Ω. In this letter, we develop the
method presented in Paper VI, by investigating the
case when particles flow into the gap from the inner
or the outer boundaries.

In the next two sections, we describe the physical
processes of pair production cascade and the resultant
γ-ray emission. We then apply the theory to the Crab
pulsar and present the expected γ-ray spectra in § 4.
In the final section, we compare the results with ZC97.

2. Basic Equations and Boundary Conditions

Let us first consider the Poission equation for the
electrostatic potential, Φ. Neglecting relativistic ef-
fects, and assuming that typical transfield thickness
of the gap, D⊥, is greater than or comparable with
the longitudinal gap width, W , we can reduce the
Poisson equation into the form (Paper VI)

− d2

ds2
Φ = 4πe(N+ −N− − ρGJ/e), (2)

where N+ and N− designate the positronic and elec-
tronic densities, respectively, e the magnitude of the
charge on an electron, and s the length along the last-
open fieldline.

It is convenient to non-dimensionalize the length
scales by a typical Debey scale length c/ωp, where

ωp =

√

4πe2

me

ΩBc

2πce
; (3)

Bc represents the magnetic field strength at the gap
center. The dimensionless coordinate variable then
becomes

ξ ≡ (ωp/c)s. (4)

By using such dimensionless quantities, we can rewrite
the Poisson equation into

E‖ = −dϕ

dξ
, (5)
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dE‖

dξ
=

B(ξ)

Bc

[n+(ξ)− n−(ξ)] +
Bz(ξ)

Bc

(6)

where ϕ(ξ) ≡ eΦ(s)/(mec
2); the particle densities per

unit flux tube are defined by

n±(ξ) ≡
2πce

Ω

N±(s)

B(s)
. (7)

We evaluate Bz/B at each point along the last-open
field line, by using the Newtonian dipole field.

We next consider the continuity equations for the
particles. Assuming that both electrostatic and curvature-
radiation-reaction forces cancel out each other, we ob-
tain the following continuity equations

±B
d

ds

(

N±

B

)

=
1

c

∫ ∞

0

dǫγ [ηp+G+ + ηp−G−], (8)

where G±(s, ǫγ) are the distribution functions of γ-
ray photons having momentum ±mecǫγ along the
poloidal field line. Since the electric field is assumed
to be positive in the gap, e+’s (or e−’s) migrate out-
wards (or inwards). The pair production redistribu-
tion functions, η±, are defined as

ηp±(ǫγ) = (1−µc)
c

ωp

∫ ∞

ǫth

dǫx
dNx

dǫx
σp(ǫγ , ǫx, µc), (9)

where σp is the pair-production cross section and
cos−1 µc refers to the collision angle between the γ-
rays and the X-rays (see Paper VI for more details
about eq. [9]).

Let us introduce the following dimensionless γ-ray
densities in the dimensionless energy interval between
βi−1 and βi:

g±
i(ξ) ≡ 2πce

ΩBc

∫ βi

βi−1

dǫγG±(s, ǫγ). (10)

In this letter, we set β0 = 102, which corresponds to
the lowest γ-ray energy, 51.1 MeV. We divide the γ-
ray spectra into 9 energy bins and put β1 = 102.5,
β2 = 103, β3 = 103.5, β4 = 104, β5 = 104.5, β6 =
104.75, β7 = 105. β8 = 105.25, and β9 = 105.5.

We can now rewrite equation (8) into

dn±

dξ
= ± Bc

B(ξ)

9
∑

i=1

[ηp+
igi+(ξ) + ηp−

igi−(ξ)], (11)

where ηip± are evaluated at the central energy in each
bin.

A combination of equations (11) gives the current
conservation law,

jtot ≡ n+(ξ) + n−(ξ) = constant for ξ. (12)

When jtot = 1.0, the current density per unit flux
tube equals the Goldreich–Julian value, Ω/(2π).

Unlike the charged particles, γ-rays do not prop-
agate along the local magnetic field lines. How-
ever, to avoid complications, we simply assume that
the outwardly (or inwardly) propagating γ-rays di-
late (or constrict) at the same rate with the magnetic
field. This assumption gives a good estimate when
W ≪ ̟LC holds. We then obtain (Paper VI)

d

dξ
g±

i(ξ) =
d

dξ
(lnB)∓ ηp±

ig±
i ± ηic

B(ξ)

Bc

n±(ξ), (13)

where i = 1, 2, · · ·,m (m = 9) and

ηic ≡
√
3e2Γ

ωphRc

∫ βi/ǫc

βi−1/ǫc

ds

∫ ∞

s

K 5

3

(t)dt, (14)

where K5/3 refers to the modified Bessel function of
5/3 order.

Equating the electric force e|dΦ/dx| and the radi-
ation reaction force, we obtain the saturated Lorentz
factor at each point as

Γsat =

(

3Rc
2

2e

∣

∣

∣

∣

dΦ

dx

∣

∣

∣

∣

+ 1

)1/4

; (15)

we compute the curvature radius Rc at a point for
a Newtonian dipole magnetic field. Since the maxi-
mum of |dΦ/dx| and the potential drop are roughly
proportional to W 2 and W 3, respectively (Paper V),
the particles become unsaturated for very small W .
To avoid an overestimation in such cases, we compute
Γ by

1

Γ
=

√

1

Γsat
2
+

1

ϕ2(ξ2)
, (16)

where ϕ(ξ2) represents the maximum attainable Lorentz
factor.

2.1. Boundary Conditions

To solve the differential equations (5), (6), (11),
and (13), we must impose boundary conditions. At
the inner (starward) boundary (ξ = ξ1), we impose
(Paper VI)

E‖(ξ1) = 0, ϕ(ξ1) = 0, (17)
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g+
i(ξ1) = 0 (i = 1, 2, · · ·, 9). (18)

Since positrons may flow into the gap at ξ = ξ1 as
a part of the global current pattern in the magneto-
sphere, we denote the positronic current per unit flux
tube at ξ = ξ1 as

n+(ξ1) = j1, (19)

which yields (eq. [12])

n−(ξ1) = jtot − j1. (20)

At the outer boundary (ξ = ξ2), we impose

E‖(ξ2) = 0, g−
i(ξ2) = 0 (i = 1, 2, · · ·, 9), (21)

n−(ξ2) = j2. (22)

The current density created in the gap per unit flux
tube can be expressed as

jgap = jtot − j1 − j2. (23)

We adopt jgap, j1, and j2 as the free parameters.

We have totally 24 boundary conditions (17)–(22)
for 22 unknown functions Φ, E‖, n±, g±

i (i = 1, 2, · ·
·, 9). Thus two extra boundary conditions must be
compensated by making the positions of the bound-
aries ξ1 and ξ2 be free. The two free boundaries ap-
pear because E‖ = 0 is imposed at both the bound-
aries and because jgap is externally imposed. In other
words, the gap boundaries (ξ1 and ξ2) shift, if j1
and/or j2 varies.

3. TeV Spectra

For simplicity, assume that the IR field are homo-
geneous and isotropic within the radius ̟LC. Inter-
polating the pulsed fluxes in radio, near IR, and opti-
cal bands from the Crab pulsar (Moffett and Hankins
1996; Percival et al. 1993; Eikenberry et al. 1997),
we obtain (Paper V)

dNIR

dǫIR
= 1.5× 1017d2

(

r0
̟LC

)−2

ǫIR
−0.88, (24)

where ǫIRmec
2 refers to the IR photon energy, and

ǫIR,min < ǫ < ǫIR,max. We adopt ǫIR,min = 10−6 and
ǫIR,min = 10−2; the results do not depend on these
cut-off energies very much.

If an electron or a positron is migrating with
Lorentz factor Γ ≫ 1 in an isotropic photon field,

it upscatters the soft photons to produce the follow-
ing number spectrum of γ-rays (Blumenthal & Gould
1970):

d2N

dtdǫγ
=

3

4
σT

c

Γ2

dNIR

dǫIR

dǫIR
ǫIR

×
[

2q ln q + (1 + 2q)(1− q) +
(Qq)2(1− q)

2(1 +Qq)

]

, (25)

where Q ≡ 4ǫIRΓ, q ≡ ǫγ/Q(Γ− ǫγ); σT is the Thom-
son cross section, and ǫγ the energy of the upscattered
photons in mec

2 unit. Substituting equation (24), in-
tegrating d2N/dtdǫγ over ǫIR, and multiplying the γ-
ray energy (ǫγmec

2) and the electron number (Ne) in
the gap, we obtain the flux density of the upscattered,
TeV photons as a function of ǫγ .

We finally consider the extrinsic absorption of the
TeV photons outside of the gap. For a homogeneous
and isotropic IR field, the optical depth becomes

τ(ǫγ) =
̟LC

2

∫ ǫIR,max

ǫIR,min

dNIR

dǫIR
σp(ǫIR, ǫγ , µc)dǫIR,

(26)
where the path length is assumed to be ̟LC/2.

For the Crab pulsar, τ ∼ 5 holds in TeV energies
(fig. 1). Therefore, the observed TeV flux reduces to
about 1% of the intrinsic flux.

4. Application to the Crab Pulsar

In this section, we apply the theory to the Crab
pulsar. The rotational frequency and the magnetic
moment are Ω = 188.1rad s−1 and µ = 3.38 ×
1030G cm3.

4.1. Electric Field Structure

HEAO 1 observations revealed that the X-ray spec-
trum in the primary pulse phase is expressed by

dNpl

dǫx
= Nplǫx

α (ǫmin < ǫx < ǫmax), (27)

with α = −1.81 and Npl = 5.3 × 1015d2(r0/̟LC)
−2

(Knight 1982), where d refers to the distance in
kpc. We adopt ǫmin = 0.1keV/511keV and ǫmax =
50keV/511keV. Substituting this power-law spec-
trum into equation (9), we can solve the Vlasov equa-
tions by the method described in § 2.

We consider four representative boundary condi-
tions: We choose (j1, j2) = (0, 0), (0.3, 0), (0.6, 0),
and (0, 0.3) as cases 1, 2, 3, and 4, respectively. That
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is, for case 2 (or case 4), the positronic (or electronic)
current density flowing into the gap per unit flux tube
at the inner (or outer) boundary is 30% of the typical
Goldreich-Julian value, Ω/2π. We fix jgap = 0.01 for
all the four cases, because the solution forms a ‘brim’
to disappear (fig. 2 in Hirotani & Okamoto 1998) if
jgap exceeds a few percent. In what follows, we adopt
45◦ as the magnetic inclination.

The results of E‖(ξ) for the four cases are presented
in figure 2. The abscissa designates the distance along
the last-open field line and covers the range from the
neutron star surface (s = 0) to the position where the
disance equals s = 1.2̟LC = 1.91× 106 m.

The solid line (case 1) shows that the gap is located
around the null surface. However, the gap shifts out-
wards as j1 increases, as the dashed (case 2) and dash-
dotted (case 3) lines indicate. This result is consis-
tent with what was predicted in Shibata and Hirotani
(2000) analytically.

On the other hand, when j2 increases, the gap
shifts inwards and the potential drop, Φ(s2), re-
duces significantly. For example, we obtain Φ(s2) =
7.1 × 1012 V for case 4, whereas 1.7 × 1013 V for
case 2. The reasons are sixfold: • In a station-
ary gap, the pair production optical depth, W/λp,
equals the ratio Nγ(jgap/jtot), where λp and Nγ re-
fer to the pair production mean free path, and the
number of γ-rays emitted by a single particle, respec-
tively. • The increased X-ray density at small radii
reduces λp. • The ratio jgap/jtot decreases as j2 in-
creases. • As a result, W decreases very rapidly with
increasing j2. • Owing to the rapidly decreasing W ,
Φ(s2) significantly decreases, although the local ρGJ,
and hence dE‖/ds increases at small radii. • As W
decreases, Nγ decreases to some extent; however, this
effect is passive and cannot change the conclusion.

4.2. Gamma-ray Spectra

The GeV spectra are readily computed from g+
i(ξ2)

and g−
i(ξ1), while the TeV spectra are obtained by

the method described in § 3. We present the γ-ray
spectra for the four cases in figure 3, multiplying the
cross sectional area of D⊥

2 = (6W )2. If D⊥ increase
twice, both the GeV and TeV fluxes increases four
times.

In GeV energies, the observational pulsed spec-
trum is obtained by EGRET observations (filled cir-
cles; Nolan et al. 1993), while in TeV energies, only
the upper limits are obtained by Whipple observa-

Fig. 1.— Pair production optical depth for a TeV
photon to be aborbed in the homogeneous, isotropic
IR field in the Crab-pulsar magnetosphere.

Fig. 2.— Distribution of E‖(ξ). The solid, dashed,
dash-dotted, and dotted lines correspond to the cases
1, 2, 3, and 4, respectively (see text).
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tions (open squares; Weekes et al. 1989; Reynolds et
al. 1993; Goret et al. 1993; Lessard et al. 2000),
and by Durham observations (open triangle; Dowth-
waite et al. 1984). The filled circles denote the un-
pulsed flux obtained by CANGAROO observations
(Tanimori et al. 1998).

The figure shows that the TeV fluxes are kept be-
low the observational upper limits as a whole for ap-
propriate GeV fluxes. Therefore, we can conclude
that the problem of the excessive TeV flux does not
arise for a reasonable IR density for the Crab pulsar.

It is noteworthy that the GeV spectrum depends
on j1 and j2 significantly. In particular, in case 4
(as the dotted lines show), the GeV emission signifi-
cantly decreases and softens, because both the poten-
tial drop and the maximum of E‖ reduce as the gap
shifts inwards. As a result, it becomes impossible to
explain the EGRET flux around 1024 Hz, if the gap
is located well inside of the null surface.

5. Discussion

In summary, we have developed a one-dimensional
model for an outer-gap accelerator in the magne-
tosphere of a rotation-powered pulsar. When the
electronic current flows into the gap from the outer
boundary, the gap shifts inwards to emit very soft
GeV emissions. Applying this method to the Crab
pulsar, we find that the gap should be located near
to or outside of the null surface, so that the observed
spectrum of pulsed GeV fluxes may be emitted via
curvature process. By virtue of the absorption by the
dense IR field in the magnetosphere, the problem of
excessive TeV emission does not arise.

Let us briefly compare the present method with
ZC97, who considered that the gap width is limited
by the surface X-rays due to the bombardment of the
particles produced in the gap. The magnetospheric
X-rays considered in this paper is much denser than
the surface X-rays due to the bombardment. As a
result, the localized gap in the present paper produces
less intrinsic TeV flux compared with what would be
obtained in ZC97 picture.

For cases 1, 2, and 3, the intrinsic TeV luminosity
is comparable or less than the GeV one. Therefore,
the Lorentz factors are limited primarily by curvature
process (eq.[16]). For case 4, however, the intrinsic
TeV luminosity well exceeds the GeV one; therefore,
the radiation-reaction forces are due to IC scatter-
ings rather than the curvature process. In fact, we

may expect a sufficient GeV flux via IC scatterings
when the gap is located well inside of the null sur-
face. This is because the dense X-ray field will limit
the particle Lorentz factors small (Paper II), and be-
cause the less-energetic particles scatter copious IR
photons into lower γ-ray energies with large cross sec-
tions (∼ σT). There is room for further investigation
on this issue.

One of the authors (K. H.) wishes to express his
gratitude to Drs. Y. Saito and A. K. Harding for valu-
able advice. He also thanks the Astronomical Data
Analysis Center of National Astronomical Observa-
tory, Japan for the use of workstations.
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