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ABSTRACT

We present a simple method for adaptively binning the pikelan image. The algorithm
groups pixels into bins of size such that the fractional romthe photon count in a bin is
less than or equal to a threshold value, and the size of thestdia small as possible. The
process is particularly useful for generating surfacetirigss and colour maps, with clearly
defined error maps, from images with a large dynamic rangeuwfits, for example X-ray
images of galaxy clusters. We demonstrate the method incapiph to data fronChandra
ACIS-S and ACIS-I observations of the Perseus cluster abgas. We use the algorithm to
create intensity maps, and colour images which show théveld-ray intensities in different
bands. The colour maps can later be converted, throughrapeatdels, into maps of phys-
ical parameters, such as temperature, column densityl keécadaptive binning algorithm is
applicable to a wide range of data, from observations or migalesimulations, and is not

limited to two-dimensional data.

Key words: galaxies: clusters: general — cooling flows — intergalactedium — X-rays:
galaxies — techniques: image processing.

1 INTRODUCTION

A problem often encountered with the processing of imagas-e
cially those from X-ray telescopes, is that there is a langsachic
range present in intensity. In order to examine the streatfiemis-
sion in regions of an image where there are few photons, éiss
sary to bin the data using bins of large angular size. Anrzdtare
is to smooth the data with a Gaussian kernel of large angidar s
Conversely, to examine structure in areas of high emissiemall
bin-size or kernel is sufficient. If one wishes to examineiorg
with a wide variation in count-rate, then some procedurectvhias
a variable bin or kernel is required to create statisticajtyimal
maps.

Another related problem, which motivated the present wisrk,
the creation of optimal colour maps. The ratio of photon ¢eum
a low intensity region will have a large associated sta@sterror,
so the counts need to be averaged over a large region to fam th
ratio. The algorithm needs to account for the statisticaligacy in
the separate bands, not just the total image.

One technique which allows structure on a wide range of
scales to be revealed is adaptive kernel smoothing (Ehélitite
& Rangarajan 2000; Huang & Sarazin 1996). Wsv0OOTH algo-
rithm of Ebeling et al. (2000) convolves an image with a Gaurss
kernel. If the signal within the kernel, applied to part ofiarage,
is of a chosen minimum significance above the local backgtoun
then the convolved signal is added to the output image. Theeke
is increased in size until all the counts in the input imageaatded
to the output image.

ASMOOTH s very good at finding low surface brightness fea-
tures, such as filaments. It also especially useful for privduim-
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ages for display, and for identifying bright features agamback-
ground. It is not a universal smoothing tool, however, anck ca
needs to be taken before using it in a particular situatiam.if-
stance, it is designed to identify positive features agaanisack-
ground, but not to identify ‘holes’ in emission. Due to theywha
identifies significance against the local background, it pragluce
spurious features in areas where there is bright flat enmséio
instance the cores of galaxy clusters, where Poisson nagee
come significant. Used with caresMOOTH is a useful routine in
many situations.

The analysis method outlined in this papsdaptive binning,
was originally developed to produce temperature, colummsitie
and colour maps of the Perseus cluster in Fabian et al. (2009)
required a simple algorithm to compare the relative fluxediffer-
ent X-ray bands to a theoretical plasma emission model. deror
to be able to spatially resolve the ratios, it is necessatyiricor
smooth the data. Binning, rather than smoothing, is a betéthod
for producing spatial estimates of counts for analysisabse it
does not spread counts around an image beyond the boundfries
the bin.

In this paper we use data analysed from the 24 ks ACIS-S
Chandra X-ray observation of the Perseus Cluster, Abell 426, from
Fabian et al. (2000), to demonstrate the adaptive binnintade
The Perseus Cluster is the brightest X-ray cluster in the ahgt
contains a large cooling flow (Fabian et al. 1994) with a mag®d
sition rate of approximatelg00 Mo yr~! . Interesting substructure
in the cluster due to its central radio source makes it arl migact
for our purpose. We will not attempt here to analyse the misysi
behind the observations, which is left to Fabian et al. (2G0GQ
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further work. We also study the method by applying it to siateti
data.

The algorithm is presented in a logically consistent wayiir
intensity adaptive binning to colour adaptive binning. @olbin-
ning, as mentioned above, was our original motivation, kbgex
to analyse X-ray colour cluster images.

2 INTENSITY BINNING

Adaptive intensity binning is the simplest case of the atpar. It
attempts to adaptively bin a single image based on the nuofber
photons in each region. The basic method is to bin pixels ot tw
dimensions by a factor of two, until the fractional Poissoroe

of the count in each bin becomes less than or equal to a thresh-
old value. When the error is below this value, those pixetsraot
binned any further. The algorithm, in detalil, is as follows.

(i) Each pixel in the image is put into its own ‘bin’, the term
we use for a collection of pixels. A pixel here means one of the
individual picture elements which form the inputimage.dtgmlly
the image is initially divided into imaginary x 1 pixel bins.

(i) If there aren; pixels in bins, the total count in the bin is;,
and the background per pixeldsthe net count in the bin is simply
defined by

Si =C; — TLLb (1)
(iii) The fractional error on the net count in the bin is

O(s;) Vi +nib

o T e Tnb @
S; ¢ — n;b

This is also the error on the average count in each pixel.

(iv) If the fractional error is less than or equal to a thrddho
value, then the pixels in the output image which corresportti¢
pixels in the input bin are set to the average mean coupt,. The
fractional error of the net count in the bin is also storedimpixels
in an ‘error image’. Additionally the bin is marked as havingen
processed.

(v) Each bin is merged into its neighbouring three bins, t&ena
new bins containing2 x 2 of the previous hins. The four bins
with the lowestr andy coordinates (lowest declination and high-
est right-ascension) are merged, as is each consecutiof feefr
bins. Any bins which have already been processed are ignored
the merging. It is useful to remember we are considering aabin
a list of pixels. Pixels which have already been set in theuwaut
image are ignored in future iterations.

(vi) The process is repeated fr(ii) until there is onlyragé
bin remaining.

(vii) A ‘bin-map’ is also produced by the algorithm, givingna
identification number for each processed bin in terms of tkelp
which it contains. Using the bin-map, any image of that seeloe
binned using the same bins.

2.1 Demonstration

A simple demonstration of the algorithm operating od & 4
pixel image is shown in Figﬂ 1. We demonstrate the procesgjusi
a threshold fractional error of 0.1 and no background couafs
shows the image before binning. We first look for individuixigts
(bins of 1 x 1 pixels) with a Gaussian fractional error in the count
less than or equal to the threshold. Only one pixel doesshidsvn
‘painted’ in (b). We then bin the remaining pixels by a faabor2.

@ ®
35 |43 |21 | 24 35 |43 |21 | 24
42 | 105 24 | 21 42 |08 24 | 21
2 |23 |20 | 23 2 |23 |2 |23
23 |21 |20 | 2 23 |21 |20 | 22

Ol lao |2 |2¢] @00 lao |2 |2
40 | 105 24 | 21 40 | 105 22 | 2
22 |23 |20 | 23 2| 2|2 |2
23 |21 |20 | 2 2|2 |2 |2

Figure 1. Example demonstrating the intensity adaptive binning gssc
The bottom-left pixel is the origin(0, 0). See the text for details.

We examine the binned pixels to see whether any have ersss le
than the threshold. The three pixels in the top-left cormmesd they
are averaged together and painted in (c). We then bin agéinawi

4 x 4 pixel bin. The remaining pixels have an error less than the
threshold, so they are averaged and painted in (d), the finplib
image. Had the error on the final bin been larger than thehbids

it would have been binned anyway.

2.2 Real example

We show in Fig[lz a ‘raw’ image of the Perseus cluster in the 0.5
7 keV band from th&€handra observation, binned with 2 arcsecond
pixels. The image has been exposure-corrected. It also é&s b
corrected for the readout node lines of the ACIS-S detectos (
smears out the point source at the centre). Contours wecedla
on the image showing 8 levels spaced equally in square-paates
between 20 and 300 counts.

The Perseus Cluster is very bright, so we see much structure
in the data without doing more than simple binning. The corgo
shown have been smoothed, but even they break up at large radi
due to the count rate being swamped by Poisson noise.

Fig.ﬁ shows the raw image of Perseus adaptively binned with
a threshold fractional error of 0.06. The X-ray backgrourasvig-
nored since it was low, even near the image edges. The certaur
the image near the centre match the contours in the raw ddlta we
showing the algorithm works in this regime. At the sides, hifres
are quite large and blocky, but otherwise there do not apjoeiae
any edge-effects. There is still noise present in the imbgeat a
level much reduced from the raw data.

Fig.H shows the cluster again adaptively binned, but nolr wit
a threshold error of 0.04. Note how the bins are larger, tetel
of noise is significantly less. A real feature has been lashfthe
image, however. A point source present in the upper lefortobie
has disappeared. Its counts were merged into rest of thesiemis
from that region.

In Fig.E is shown the error map for the adaptively binned map
above. In it are easily visible the changes in bin size as thatc
rate decreases towards the outside. As the count rate desréhe
error of the bins increases until it reaches the threshaid,then
the bin-size doubles.

For comparison, Fid]G shows an adaptively smoothed (AS)
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Figure 2.1mage of cluster binned with 2 arcsec pixels. The image hes be
corrected for exposure and readout node lines. 8 contoarspaced on a
square-root scale, between 20 and 300 counts per pixel.

image of the cluster calculated from the data in Fﬂg 2. It was
smoothed with a minimum significance of#using theaAsMoOOTH
algorithm of Ebeling et al. The contours are at the same deasl|
the raw image.

The AS image contains sharp positive features, such as the

edges of the radio lobes. It does not perform as well in therdet
mination of the number of counts in the negative featuresh s1$
the radio lobes themselves, where the number of counts pek pi
is half that of the raw data. However, the algorithm is destjto
find positive features, so using it to look at holes is a mifagp
tion. Also apparent are some edge effects, whes®OOTH does
not find enough counts to place a high significance on the geatbr
features. The edge effects are avoidable by smoothing erlarga
of sky than required, and cropping the image thereafter. disie
advantage of this is thatSMOOTH running time increases quickly
with image size.

In Fig. ﬁ we show another adaptively binned image of the
Perseus cluster. This, however, was created from data frooba
servation using the ACIS-I detector @tandra, with an exposure
of 18.6 ks. We present it because the number of counts pdripixe
lower than the ACIS-S image, and so it is a good demonstration
the algorithm used on data with more noise.

Adaptive binning of the ACIS-I image brings out an interest-
ing feature of the cluster; it clearly demonstrates thatdbeth-
ern rim of the northern radio lobe (hole) lies south of theleus.
There is a linear diagonal structure present to the southeohti-
cleus, running from the north-west to the south-east. Tthiksire
is also present in the raw data, but is not clear on the ACI®-S i
age, despite the longer exposure, as the ACIS-S raw imagainsn
a dark strip due to the node-line of the detector, where tleetife
exposure is short.

The dark bin to the south-east of the nucleus shows a ‘stdande
bin’, an occasional problem with the algorithm, which wecdiss
later.

2.3 Notes on the algorithm
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Figure 3. Adaptively binned image of the cluster. The pixel fractioaaor
is set as 0.06. The contours are at the same levels af Fig. 2.
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Figure 4. Adaptively binned image of the cluster. The pixel fractioeaor
is set as 0.04. The contours are at the same levels aé)Fig. 2.

2.3.1 General

(i) The algorithm allows bins of width to contain pixels with
coordinateqz,y) inthe rangeni < xz < n(i+1),nj <y <
n(j + 1), wherei and j are integers, and > 0, j > 0. The
coordinate origin i(0,0).  andy increase in the directions of
decreasing right-ascension and increasing declinagspgactively.

(i) Ifthe unbinned image does not have sides which are aalequ
length of pixels, or are not a power of two, then the bins onane
both sides will be truncated. This can lead to bins with a kmal
numbers of counts and a large error on the final pass.

(iii) Asis the case with conventional binning, sources vsithall
spatial extent may be split between two bins if they crossma bi
boundary. This can be solved by allowing sub-bin positignote-
scribed as follows. For each pass, bins are allowed to besghlac
at positions displaced by a multiple of some fraction ofithezigth
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Figure 5. Fractional error map for adaptively binned image in Iﬂg. 4.
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Figure 6. Adaptively smoothed image of the cluster, with a minimum sig
nificance of 4¢. The contours are at the same levels as Hig. 2. Note the
edge effects in the contours.

from their conventional positions. The errors are cal@ddor each
possible bin, and the bins are sorted into order of asceretirug,
discarding those with an error larger than the threshola Bihs
are painted in that order, ignoring those bins which hadadlye
been partially painted.

The disadvantage of this technique is that the output image a
pears ‘dithered’. Bins are painted close to one anotherwiitht
out enough space to put another bin between them. The result i
a loose cluster of small bins inside a larger one. The origiha
gorithm appears to produce better results and is less depend
small variations of errors.

(iv) The bins are doubled in size between each pass, rather th
slowly increased in size, as this ensures a whole number alfesm

41:32:00 -

B
m

41:31:00

41:30:00

41:29:00

3h19mSSs 3h19m50s 3h19m45s 3h19m40s
RA

Figure 7. ACIS-I adaptively binned image of the Perseus cluster,guain
fractional error of 0.15.

bins fit inside a larger bin. If this is not the case, then gapdedft
between bins in the binning, leading to dithering.

(v) Allowing rectangular bins is not useful. It is ambiguous
which direction a rectangle could lie, or be extended. Thsi
could introduce spurious linear structures into the outmaige.

(vi) The use of non-square bins is a possible technique. oy t
dimensional object that tiles together could be used, bist ot
clear what is the optimal shape. Square bins are a good cfarice
a number of reasons, including the fact that pixels are abyur
square in most detectors; square bins act as scaled pixele. H
ever, there is probably some room for additional work to fiattdr
shapes. An alternative idea is to use contour levels in anmsS i
age to define ‘bins’, as demonstrated by Sanders, Fabian é&All
(2000).

2.3.2 Overlayed colour images

The adaptive-binning algorithm is useful for producing gea
demonstrating in real colour where the soft, medium and aegds

of emission are. First an intensity image can be binned tdyme

a bin-map. Then images in three energy bands can be binned the
selves using the bin-map. A software package sucbias can
then be used to combine the three images as, for examplesdhe r
green and blue layers in a single image. The contrast of the im
age can then be increased to highlight the areas of hard dnd so
emission.

The advantage of doing this rather than using raw data to make
the image, is that the low-intensity regions are not doneiddiy
noise. The technique was used to create the colour imagesof th
Perseus cluster in Fabian et al. (2000).

2.3.3 Stranded pixels and contiguous regions

One ‘feature’ of the algorithm is that pixels may becomedstted'.
If a bin has a reduced count relative to its neighbours, it bealeft
out on a pass and have no nearby pixels to be binned with on the
next. It may be left until the final pass, and that area will benbd
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with the remaining pixels. Such pixels could be cosmetjced-
moved by replacing them with their original value.

A modified version of the algorithm avoids stranded pixels.
If a bin consists of more than one non-contiguous sets ofigixe
then the bin is split into several contiguous regions, amth @agion
treated by itself. A stranded set of pixels will remain utti¢ end,
where it will be binned by itself, as it is isolated. Here, tpigels
are said to be connected if one pixels is one of the neighbguri
eight pixels of the other pixel.

This modification has a couple of disadvantages. Firstlg-fin
ing contiguous sets of pixels is fairly slow. Also, parts bétim-
age which would be connected were the image larger, arestteat
by themselves, and therefore have a larger statistical erreheir
count. With these problems in mind, it is probably a usefutimo
fication for many applications of the algorithm. For simfilicwe
will use the unmodified version of the algorithm in the foliogy
sections.

2.4 Simulated cluster

In order to properly test the properties of the algorithm, ate
tempted to simulate a simple image of a cluster. We usgednmdel
to simulate the cluster with the following form (Sarazin 898

Sb(r) _3 [1 N (%)2} 0.5—38 |

wheresS; is the surface brightness at a radiys. is a critical radius
and S is a parameter. We created an image&so? x 512 pixels,
wherer. was 128 pixelsSy was 100 counts/pixel, angiwas 0.67.
The meaning of the word count, as used here for surface beght
is the expectation value of an observation, and is allowactifsnal
values. The cluster was positioned in the centre of the imiage
shown in Fig[|8(a). The contours show constant surface torégis
from 10-90 counts in linear 10 count intervals.
To simulate how such a cluster would appear, if observed, w

took the surface brightness at a particular pixel, and raryglgen-
erated a value from a Poisson distribution with that surfaroght-

®)

ness as the expectation value, to which we added a backgroundg

with an expectation value of 20 counts/pixel. The Poisscegiens
shown in Fig[|8(b), with contours between 30 and 100 with the 1
count intervals. The contours are further out because ob#o&-
ground. The data was smoothed in contouring, as it was tagy noi
otherwise.

(@)

(b)

(© (d)

Figure 8. Simulated cluster images. (a) Model surface brightnesgpcos
range 10-90. (b) Simulated observation of cluster, costoange 30-100.

e (c) Adaptively binned image of cluster with error threshof®.02, contours

range 10-90. (d) Adaptively binned image of cluster withoetthreshold
of 0.06, contours range 10-100. (e) Adaptively smoothedyeraf cluster,
min = 4, contours range 10-100.

24.1 Spatial distributions of differences

We constructed in Figﬂ 9 images displaying the absolutditnaal
differences between the reconstructed and model surfagbtbr

We processed the Poisson simulated data with our adaptive ness images. Spatial correlations in errors should beleisit the

binning algorithm to produce Fig| 8(c). Here a fractionaloer

threshold of 0.02 was used. Fig. 8(d) shows the output of the

method using a threshold of 0.04, i.e. twice as large a tobidsh
as (c¢). The contours are at the same levels as the origirfalcsur
brightness image.

For comparison, we show the output from &&MOOTH pro-
gram using a minimum feature significance of 4a Fig.ﬂi(e).As-

images.

Fig.lg(a) shows the absolute differences between an adiptiv
binned image with 0.02 fractional errors (F[b. 8(c)), angldhiginal
surface brightness image binned with the same bins. (b) sktiosv
same except using bins constructed for 0.06 fractionate(feig.
E(d)). There do not appear to be any correlations betweetwiine
images, in terms of where the differences are large and st

MOOTH, by default calculates the local background and does not differences appear noise-like and random. Note, howekat, it
take a global value. To create this image we smoothed the-simu the adaptively binned image were binned with inappropiies,

lated data and subtracted the background manually. The peun
pixel becomes negative in the outer regions,Aas00TH does
not know about the global background, which also means ffeatu
shown may have a lower significance than 4-

(© 0000 RAS, MNRASDOQ, 000-000

then this would not show in (a) and (b) due to the surface bmiggs
image being binned with the same bins.

Fig. @(c) is an image showing the absolute differences be-
tween adaptively binned image with 0.02 fractional errars the
unbinned surface brightness image. Due to the count rayéngar
across the bin, only the centres have a low absolute fraatitif
ference. This would be the same for any binning process.
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Figure 9. Absolution fractional differences between the reconsaai¢m-
ages and original surface brightness image. (a) Adaptibilped image,
error 0.02, and binned surface brightness image. (b) Adzglptbinned im-
age, error 0.06, and binned surface brightness image. @pthely binned
image, error 0.02 and unbinned surface brightness imagedaptively
smoothed imager,i, = 4 and unbinned surface brightness image.

@) (b)
I
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40000+ L 40000+ L
20000+ L 20000+ L

0 - 0 L

005 0 005 b2 01 | 0. 0.2
Fractional Difference Fractional Difference

(© (d)

15000 =
10000 =

10000 =

5000+ =

5000+ =

T T T T T T
-0.5 0 0.5 1

0 .
Fractional Difference Fractional Difference

Figure 10. The distribution of fractional differences between pixéis

binned images. (a) is between an adaptively binned (0.@Zidreal error)

image and the original surface brightness image binnedthlsame bins.
(b) is the same as (a) except using 0.06 fractional errorém@yis between
an adaptively binned image (0.02 fractional error) and ttigiral surface

brightness image. (d) is betweerrg,;, = 4 AS image and the original
surface brightness image.

but there are long tails, mainly due to the edge-effectslugtag
the outer region almost removes the tail.
We also analysed the differences between the input surface

Fig. B(d) shows the differences between the AS imad in 8(e) brightness image and the adaptively binned image usingythe

and the surface brightness image for comparison. Visil#ettzs
edge effects of the algorithm. Also present are some peatteat
cluster core. These are due to the local background estimafi
the algorithm measuring significant detections againsfl#tteore
of the cluster centre.

2.4.2 Histograms of differences

A more useful and quantitative analysis of the performarfdhe
adaptive binning algorithm can be made by plotting the fomet
differences (the absolute value of which is in the above #sags
histograms, shown in FingO. (a) displays the differenasveen
the 0.02 error adaptively binned image and the surface torgis
image binned using the same bfios each pixel. (b) is the same as
(a), except using 0.06 error binned images. (c) shows adresto
of the differences between the 0.02 error adaptively birimedye
and the unbinned surface brightness image. The differesteesien
an image produced bysmMooTH (Fig. B(d)) and the surface bright-
ness image is shown in (d) for comparison.

Fig. (a) and (b) approximate Gaussian distributions. The
widths of the distributions are close to the threshold foatl error
values used by the algorithm, 0.02 and 0.06. (c) shows a wlider
tribution, which is obtained due to the count varying acitbssbin
in the surface brightness image, but not in the adaptivelgdal im-
age. The results in (a) and (b) give confidence in the effectgs
of the algorithm, as the distributions are symmetric andsSiaun.

The histogram for the AS image in (d) has a very narrow peak,

statistic. If there are5; total counts in the surface brightness im-
age in bin, ands; in the adaptively binned image, ang pixels in
the bin, then the statistic is

2 (Si — Si)2

2 . 4
Xi = g (4)

We plotted the distribution of? for the bins in the adaptively
binned image. It showed reasonable agreement with thehdistr
tion predicted for one degree of freedom.

3 COLOUR BINNING

A simple way to investigate the inner structure of a clusteoicre-
ate X-ray images in different energy bands. The images @ntih
divided to show the areas of hard and soft X-ray emissionywkno
as a colour image. Additionally plasma codes, such amteal
thermal model, can be fitted to the relative counts, enaldimgto
map temperature, metallicity and absorption.

One faces a similar problem to the simple intensity binning
problem. How can ratios of counts be formed so that the emor o
the result is accurate enough? A binning algorithm must betab
use the same size bins on the images to be divided, plus it must
adapt its bin size to the counts in each of the bands, ratherjtist
one.

The colour adaptive binning algorithm is similar to the mte
sity algorithm, except it uses an input image for each bangra-
duce an output image for each band. Each input image is binned

(© 0000 RAS, MNRASD0O, 000—-000
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using the same bins. The bins are defined by the error on a ‘com-
bined colour’, which folds the ratios of all the bands, nat #rror

on the intensity. Ifs%, is the background-subtracted count in band
for bin &, the combined colour is defined as

Cr = [(sn/s%) /st) /- (5)
The fractional error on the combined colour, if there Afdands,

IS
_ o q1/2
I(Ck) ci, + nib ]
o

Ck

N

- kT TRT 6

LZ_; (cf — mwb?) ©
This error is a useful quantity because it takes into accthmt
count in each band in a symmetric way. To make an actual colour
map, two binned output images are divided.

An alternative approach is to adaptively bin a total intBnsi
image. The resultant bin-map can then be applied indivigual
each of the X-ray bands. Ratios can be formed by dividing tlie o
put images. This approach has its advantages when seveis ba
are being used. If a sharp feature is only present in one lthed,
the source will be binned with a large bin using the combined-
colour method, due to the large statistical uncertaintyhercolour.
However, binning using the total intensity leads to colowith
larger range of errors than the combined-colour approach.

3.1 Real example

The combined colour adaptive binning method has been apialie
the Perseus data shown earlier. Three images of the cluster w
created in different bands, labelled from 0-2, in the eneagpges
0.5-1, 1-2 and 2-7 keV.

The colour adaptive binning algorithm above was applied
to the data using a fractional errors on the combined colour,
(s°/s") /s*, of 0.12 and 0.2. Again the background counts in each
image were small enough to be neglected.

Fig. |11 shows tha®/s' colour image produced with a frac-
tional error of 0.2, which is sensitive to X-ray absorptiaiarker
shades indicate more absorption. The absorption shadow iof a
falling dwarf galaxy, discussed by Fabian et al. (2000),lé&ady
seen close to the centre of the image. The rest of the imagaphas
proximately uniform colour, indicating there are no furtlsérong
absorption features.

Fig. [12 shows the' /s> colour image produced with a frac-
tional error of 0.12, which is sensitive to temperaturehiég shades
indicate lower temperature. From this simple analysistettap-
pears to be a temperature gradient in the cluster, with coeie-
peratures towards the centre and the brighter regions. afiees
with cooling flow models. The analysis emphasises a spiratst
ture, which is present right down to the cluster centre (camap
with Fig. []).

Using the combined colour method to generate the bins, the
fractional errors on the bins for the individual coloursttbcange
from 0.05 to 0.1 using a fractional error of 0.12. We have shtive
colours with different fractional errors due to the relatstrengths
of features in the colours.

3.2 Spectral fitting

As mentioned above, one can fit the relative counts in diffexe

ray bands against the relative counts predicted by a plasde to
estimate physical properties, such as temperature andlicigta
To fit many parameters, several bands are required. It isiusef
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Figure 11. Colour map showing the ratio of counts in band 0 (0.5-1keV)
to band 1 (1-2 keV) for the Perseus cluster, adaptively liri¢h a frac-
tional error of 0.2. This colour map highlights regions affhphotoelectric
absorption.
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Figure 12. Colour map showing the ratio of counts in band 1 (1-2 keV) to
band 2 (2-7 keV) for the Perseus cluster, adaptively binrittdarfractional
error of 0.12. This colour map highlights regions of low tesrgiure.
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choose bands with approximately the same number of coungs, t
choice of which can be derived from the spectrum.

For a more detailed analysis, full spectral fitting is neagss
We have investigated taking an intensity-binned image efdb-
ject, automatically extracting spectra for each of the béngomat-
ing XxsPEecto fit each spectrum, and then plotting the fitted parame-
ters spatially. As a side issue, the data must be binned sthéva
are enough counts per pixel to assume Gaussian errors.gpae,
tial variations of the response matrix of the detector atestmpe
may need to be considered.

4  AVAILABILITY

An implementation of the adaptive binning algorithm is aklie
written in the C++ programming language. See the URkp: //
www-xray.ast.cam.ac.uk/"jss/adbin/ forinstructions
for download.

5 SUMMARY

We have presented an algorithm to adaptively bin data. We hav
demonstrated its use on X-ray intensity and colour imagebef
Perseus cluster. We also applied the algorithm to simuldétd.
The method has also been used to create multi-layer colages)
where the colours represent the intensity in different bafide
fractional error threshold can be varied depending on howhmu
statistical noise is acceptable in the analysed image.

The method is not limited to binning on intensity or colour.
Any sort of data may be binned, providing there is a method to
compute the statistical fractional error, or weightingaafroup of
pixels. The algorithm may be useful in presenting the outyorh
numerical simulations.

The method is also not limited to two-dimensional data. We
have used it already on one-dimensional cuts through imdges
may also be simply extended to work dfrdimensional data sets.
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