
ar
X

iv
:a

st
ro

-p
h/

00
12

24
0v

1 
 1

1 
D

ec
 2

00
0

SHEARED HELICAL TURBULENCE AND THE HELICITY

CONSTRAINT IN LARGE-SCALE DYNAMOS

ALBERTO BIGAZZI

Department of Mathematics, Politecnico di Milano, Piazza Leonardo

da Vinci 32, I-20133 Milano, Italy

AXEL BRANDENBURG

Nordita, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

Mathematics Department, Univ. of Newcastle, NE1 7RU, UK

AND

KANDASWAMY SUBRAMANIAN

National Centre for Radio Astrophysics - TIFR, Poona University

Campus, Ganeshkhind, Pune 411 007, India

Abstract. The effect of shear on the growth of large scale magnetic fields
in helical turbulence is investigated. The resulting large-scale magnetic field
is also helical and continues to evolve, after saturation of the small scale
field, on a slow resistive time scale. This is a consequence of magnetic
helicity conservation. Because of shear, the time scale needed to reach an
equipartition-strength large scale field is shortened proportionally to the
ratio of the resulting toroidal to poloidal large scale fields.

1. Introduction

Magnetic helicity is conserved in ideal MHD. In non-ideal situations, when
magnetic diffusivity is non-vanishing, it can only evolve on a long time scale
governed by microscopic magnetic diffusivity. This is true in periodic or un-
bounded systems or in systems with perfectly conducting boundaries, where
no flux of magnetic helicity through the boundaries is allowed. In systems
with open boundaries, magnetic helicity can leak out and the evolution in
time can thus be different.

The importance of magnetic helicity conservation for the evolution of
large-scale magnetic fields in astrophysics has been recently discussed (Black-
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man & Field 2000, Brandenburg 2000, Brandenburg & Subramanian 2000,
Kleeorin et al. 2000). Large-scale, helical magnetic fields where the outer
scale of turbulent motions is much smaller than the scale of these fields, are
observed in stars and galaxies. For the Sun significant amounts of magnetic
helicity are observed at the solar surface (Berger & Ruzmaikin, 2000)

Boundary conditions are important in determining the overall dynamics
of the large-scale field (Blackman & Field, 2000). In the case of a periodic
homogeneous isotropic medium with no externally imposed magnetic field,
recent numerical studies (Brandenburg 2000, hereafter referred to as B2000)
show that, because of magnetic helicity conservation, the large scale mag-
netic field can only grow to its final (super-) equipartition field strength
on a resistive time scale, which is usually many orders of magnitude longer
than the dynamical time-scale determined by the turbulent eddy turnover
time.

Besides allowing for a flux of magnetic helicity through the boundaries
by imposing different boundary conditions, another way to allow for faster
growth of the field is by means of shear which can amplify an existing field
without changing its magnetic helicity. A regenerative mechanism for the
cross-stream (poloidal) component of the field is also needed, because other-
wise the sheared (toroidal) field would eventually decay (e.g. Moffatt 1978,
Krause & Rädler 1980). Indeed a number of working dynamos which have
both open boundaries and shear have been proposed (e.g., Glatzmaier &
Roberts 1995, Brandenburg et al. 1995), but those models are rather com-
plex and use sub-grid scale modelling, thus making it difficult to evaluate
the role of magnetic helicity conservation.

Here we study the effect that shear alone can have on the dynamics of
the large scale field, while keeping the system periodic. We find that the
evolution of the large scale field is compatible with a mean-field model where
the geometrical mean of the large-scale poloidal and toroidal fields evolves
on a resistive time-scale. It is thus possible to have a larger toroidal field
at the expense of the poloidal one without violating the helicity constraint.
Equivalently, equipartition strength large scale fields can be attained in
times shorter by the ratio of the resulting toroidal to poloidal field strength.

2. Equations and setup

The same set of MHD equation for an isothermal compressible gas as in
B2000 is considered. The external forcing function f incorporates both the
helical driving at intermediate scale k = 5 and the shear at k = 1.

D ln ρ

Dt
= −∇ · u, (1)
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Du

Dt
= −c2s∇ ln ρ+

J ×B

ρ
+

µ

ρ
(∇2u+ 1

3∇∇ · u) + f , (2)

∂A

∂t
= u×B − ηµ0J , (3)

where D/Dt = ∂/∂t+u ·∇ is the advective derivative, u is the velocity, ρ
is the density, B = ∇ ×A is the magnetic field, A is its vector potential,
and J = ∇×B/µ0 is the current density. The forcing function f takes the
form f = f turb + f shear, where

f shear = Cshear
µ

ρ
ŷ sinx (4)

balances the viscous stress once a sinusoidal shear flow has been established,
and

f turb = NRe{fk(t) exp[ik(t) · x+ iφ(t)]}, (5)

is the small scale helical forcing with

fk =
k × (k × e)− i|k|(k × e)

2k2
√

1− (k · e)2/k2
, (6)

where e is an arbitrary unit vector needed in order to generate a vector k×e

that is perpendicular to k, φ(t) is a random phase, and N = f0cs(kcs/δt)
1/2,

where f0 is a non-dimensional factor, k = |k|, and δt is the length of the
time step. As in B2000 we choose the forcing wavenumbers such that 4.5 <
|k| < 5.5. At each time step one of the 350 possible vectors is randomly
chosen.

The equations are made non-dimensional with the choice cs = k1 = ρ0 =
µ0 = 1, where cs is the sound speed, k1 is the smallest wavenumber in the
box (so its size is 2π), ρ0 is the mean density (which is conserved), and µ0

is the vacuum permeability. The computational mesh is 1203 grid-points.
Sixth order finite differences are used for spatial derivatives.

We consider the case when shear is strong compared to turbulence, but
still subsonic. We choose for the shear parameter Cshear = 1 and for the
amplitude of the random forcing f0 = 0.01. The resulting rms velocities in
the meridional (xz) plane are around 0.015 and the toroidal rms velocities
around 0.6.

The magnetic Prandtl number is ten for the simulations considered here,
i.e. µ/(ρ0η) = 10, and η = 5 × 10−4. If calculated with respect to the
box size (= 2π), the Reynolds numbers for poloidal and toroidal velocities
are Rpol

m = 190 and Rtor
m = 7500, respectively. By poloidal and toroidal

components we mean those in the xz-plane and the y-direction, respectively.
Based, instead, on the forcing scale, the poloidal magnetic Reynolds number
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Figure 1. Evolution of the power, |B̂i(kj)|
2, of a few selected Fourier modes (left panel).

After t = 1700, most of the power is in the mode |B̂y(kz)|
2, i.e. in the toroidal field

component with variation in the z-direction. The three-dimensional power spectrum of
the three field components is shown on the right. 1203 mesh-points, t = 5000.

is only about 40, and the kinetic Reynolds number is only 4, which is not
enough to allow for a proper inertial range. The turnover time based on the
forcing scale and the poloidal rms velocity is τ = 70.

3. Time evolution of the field

A strong dynamo amplifies an initially weak random seed magnetic field
exponentially on a dynamical time-scale up to equipartition. In Figure 1
we plot the evolution of the power, |B̂i(kj)|

2, in a few selected modes. After

t = 1700, most of the power is in the mode |B̂y(kz)|
2, i.e. the toroidal

field component with variation in the z-direction. The ratio of toroidal to
poloidal field energies are around 104, so Btor/Bpol ≈ 100.

A three dimensional power spectrum of the field components in Figure 1
shows the different behaviour of the poloidal and toroidal components. The
dominating toroidal field has a k−5/3-like spectrum from the largest scale
to the dissipative cut-off. Poloidal fields, instead, are noisy and possess
significant power near k = 5. The poloidal field saturates earlier than the
toroidal, which is by then already dominated by large scales.

Longitudinal cross-sections show that the small scale contributions to
the poloidal field result from variations in the toroidal direction. Whilst
the toroidal field is relatively coherent in the toroidal direction, the poloidal
field components are much less coherent and show significant fluctuations in
the y-direction. We thus define mean fieldsB to be the y-averaged fields. As
can be seen from Figure 2 this is compatible with the definition of the mean
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Figure 2. Images of the three components of B in an arbitrarily chosen xz plane (first
row), compared with the y-averaged fields (second row). 1203 mesh-points, t = 5000.

field as the large-scale Fourier expansion. Two-dimensional power-spectra
of this averaged field show that poloidal mean field components also gain
significant power at the largest scale (i.e. at k2 < 2) at later times.

4. Helicity constraint and the mean magnetic field

In an unbounded or periodic system the magnetic helicity, 〈A ·B〉, evolves
according to

d

dt
〈A ·B〉 = −2η〈J ·B〉. (7)

Taking into account the spectral properties of the above quantities, we may
separate large-scale and small-scale contributions and write

〈J ·B〉/k1 ≈ ∓BtorBpol ≈ k1〈A ·B〉. (8)

The expression above would for instance be true for a field of the form

B =





Bpol cos(k1z + ϕx)
Btor sin(k1z + ϕy)

0



 , (9)
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where we have allowed for an additional phase shift between the two com-
ponents (relative to the already existing π/2 phase shift), ϕy−ϕx, but such
a phase shift turned out to be small in our case. Furthermore, an additional
x-dependence of the mean field, which is natural due to the x-dependence
of the imposed shear profile could be accounted for. However, for the fol-
lowing argument all we need is relation (8). The amplitudes Bpol and Btor

can be calculated as

Btor ≡ 〈B
2
y〉

1/2, Bpol ≡ 〈B
2
x +B

2
z〉

1/2. (10)

Brackets denote here volume averaging while an overbar indicates an aver-
age over the toroidal direction (y). The upper sign applies to the present
case where the kinetic helicity is positive (representative of the southern
hemisphere), and the approximation becomes exact if Eq. (9) is valid.

Following B2000, in the steady case 〈A · B〉 = const, see Eq. (7), and
so the r.h.s. of Eq. (7) must vanish, i.e. 〈J · B〉 = 0, which can only be
consistent with Eq. (8) if there is a small scale component, 〈j · b〉, whose
sign is opposite to that of 〈J ·B〉. Hence we write

〈J ·B〉 = 〈J ·B〉+ 〈j · b〉 ≈ 0. (11)

This yields, analogously to B2000,

−
d

dt
(BtorBpol) = +2ηk21 (BtorBpol)− 2ηk1|〈j · b〉|, (12)

which yields the solution

Btor Bpol = ǫ0B
2
eq

[

1− e−2ηk2
1
(t−ts)

]

, (13)

where ǫ0 = |〈j · b〉|/(k1B
2
eq) is a prefactor, Beq is the equipartition field

strength with B2
eq = µ0〈ρu

2〉, and ts is the time when the small scale
field has saturated which is when Eq. (12) becomes applicable. All this

is equivalent to B2000, except that 〈B
2
〉 is now replaced by the product

BtorBpol. The significance of this expression is that large toroidal fields are
now possible if the poloidal field is weak.

In Figure 3 we show the evolution of the product BtorBpol as defined
in (10) and compare with Eq. (13). There are different stages; for 1200 <
t < 2200 and 3000 < t < 3700 the effective value of k21 is 2 (because there
are contributions from kx = 1 and kz = 1; see Figure 1), whilst at other
times (2500 < t < 2800 and t > 4000) the contribution from kx = 1 (for
2500 < t < 2800) or kz = 1 (for t > 4000) has become subdominant and we
have effectively k21 = 1. This is consistent with the change of field structure
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Figure 3. Growth of the product of poloidal and toroidal magnetic fields on a linear scale.
The inset shows separately the evolution of poloidal and toroidal fields on a logarithmic
scale. For the fit we have used k2

1 = 2 and ǫ0 = 3.8.

discussed in the previous section: for 2000 < t < 3000 and around t = 4000
the By(kx = 1) mode is less powerful than the By(kz = 1) mode.

5. Conclusions

The effects of the helicity constraint can clearly be identified in in our
system even though much of the field amplification results from the shearing
of a poloidal field. The constraint on the geometrical mean of the energies
in the poloidal and toroidal field components is evident from Figure 3. The
fit shows that the prefactor ǫ0 is about 3.8. Theoretically one may estimate
ǫ0, which is proportional to |〈j · b〉|, by estimating |〈j · b〉| ≈ ρ0|〈ω · u〉| ≈
kfρ0〈u

2〉 ≈ kfB
2
eq. Since ǫ0 = |〈j · b〉|/(k1B

2
eq) this yields ǫ0 ≈ kf |/k1 = 5,

in good agreement with the simulation.

Power spectra of the poloidal field show that most of the power is in
the small scales, making the use of averages at first glance questionable.
However, once the field is averaged over the toroidal direction the resulting
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poloidal field is governed by large scale patterns (the slope of the spectrum is
steeper than k−1, which is the critical slope for equipartition). The presence
even of a weak poloidal field is crucial for understanding the resulting large
scale field generation in the framework of an αΩ dynamo.

In another paper (Brandenburg et al. 2000) we have elaborated further
on the similarity between the present simulations and αΩ dynamos. In
particular, we have discussed anisotropic turbulent magnetic diffusivities
as a possible explanation for the difference between the resistive growth
time of the field on the one hand and a shorter cycle period seen in the
simulation on the other. With just one simulations so far it is impossible to
verify any scaling, but it is worth mentioning that the present cycle time
of around 1000 time units is close to the geometrical mean of resistive and
dynamical timescales. Nevertheless, one must not forget that the real sun
does have open boundaries, and it is now important to understand their
role on the magnetic helicity constraint.
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