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ABSTRACT

The most commonly used definition of halo formation is the time when a halo’s most
massive progenitor first contains at least half the final mass of its parent. Reasonably
accurate formulae for the distribution of formation times of haloes of fixed mass have
been available for some time. We use numerical simulations of hierarchical gravita-
tional clustering to test the accuracy of formulae for the mass at formation. We also
derive and test a formula for the joint distribution of formation masses and times.
The structure of a halo is expected to be related to its accretion history. Our tests
show that our formulae for formation masses and times are reasonably accurate, so
we expect that they will aid future analytic studies of halo structure.
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1 INTRODUCTION

There is a simple analytic approximation for the distribu-
tion of halo formation times, when formation is defined as
the time when the most massive progenitor first contains
at least half the mass of the final object (Lacey & Cole
1993, 1994). (Throughout, we will use the word parent to
denote the final object, and the word progenitor to denote
the smaller pieces which made up the mass of the parent
at some earlier time.) This formula provides a good descrip-
tion of what is seen in numerical simulations of gravitational
clustering from Gaussian initial conditions, although recent
work indicates that the agreement is not perfect (e.g., Wu
2001; Lin, Jing & Lin 2003). The sense of the discrepancy
is that haloes in simulations appear to form slightly earlier
than predicted, in qualitative agreement with previous work
by Tormen (1998).

A related question is, what is the distribution of the
mass of a halo at formation? Absent other information, nat-
ural assumptions about this distribution are (i) that it is
a delta function centered at one-half, or (ii) that the for-
mation mass is uniformly distributed between one-half and
unity. The second assumption is motivated by the fact that
halo formation is expected to be a stochastic process; haloes
of the same mass may have had different formation histo-
ries. The main purpose of the present paper is to derive
and test a formula for the joint distribution of formation
times and masses. Section 2 studies the distribution of for-
mation masses whatever the formation time. It shows that
the distribution of masses just prior to, and just after forma-
tion, measured in simulations are both significantly different
from delta functions, or from a uniform distribution, but are

rather similar to simple formulae for these quantities derived
by Nusser & Sheth (1999). Section 3 studies the conditional
distribution of the formation mass, when the formation time
is known. This distribution is much better fit by a formula we
derive here, than by a delta function or a uniform distribu-
tion. A final section summarizes our findings, and discusses
possible applications.

2 THE DISTRIBUTION OF FORMATION

MASSES

For what follows, it is useful to introduce some notation.
We will use δsc(z) to denote the value of the overdensity
required for spherical collapse at z, extrapolated using linear
theory to the present time (e.g. Peebles 1993), and σ2(m)
will denote the variance in the initial density fluctuation
field when smoothed with a tophat filter of comoving scale
R = (3m/4πρ̄)1/3, extrapolated using linear theory to the
present time, where ρ̄ is the comoving background density.
Thus, the shape of the initial power spectrum determines the
relation between σ and m. At any z, there is a characteristic
mass scale defined by σ2(m) = δsc(z). We will use M∗(z) to
denote this mass scale, and will often express masses in units
of this characteristic mass.

Later in this section we will compare our results with
simulations; these were kindly made available to the public
by the Virgo consortium (Frenk et al. 2000). We will analyse
results from the set of runs known as the GIF simulations. In
particular, we will show results from the SCDM and ΛCDM
models, for which Λ = 1 − Ω and (Ω, σ8) = (1, 0.6) and
(0.3, 0.9) respectively. Particle positions and velocities from
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2 R. K. Sheth & G. Tormen

both simulations were output at a range of redshifts, ap-
proximately evenly spaced in logarithmic expansion factor:
∆ ln(1 + z) ≈ 0.0596. For each output time, we identified
haloes using the spherical overdensity method (e.g. Lacey &
Cole 1994; Tormen, Moscardini & Yoshida 2003) which con-
tained at least twenty particles. The required overdensity is
a cosmology dependent factor times the background density,
as specified by the spherical collapse model. For the SCDM
model, this factor is 178, and it is independent of redshift;
for the ΛCDM model, it is 323 at z = 0, and is smaller
at higher redshifts (e.g. Peebles 1993). At any given output
time z1, we selected the halos which were composed of more
than two hundred particles, and studied the formation times
and masses at formation of these haloes as follows. (For ref-
erence, an M∗ halo at z = 0, 0.5 and 1.0 has 1289, 170 and
31 particles in the SCDM run, and 807, 185 and 40 particles
in the ΛCDM run, so the high redshift runs mainly probe
the formation times and masses of objects much larger than
M∗.)

Given a halo of mass M1 (i.e., containing N1 particles)
at z1, we go to the previous output time (z1+dz2, say), iden-
tify the object which contributes the most number of parti-
cles toN1, and call it the most massive progenitor at z1+dz2.
Suppose this most massive progenitor had N2 particles. We
then go to the preceding output step (z1 + dz2 + dz3, say)
and identify the most massive progenitor, N3, ofN2. We con-
tinue in this way until the number of particles in the most
massive progenitor first falls below N1/2. If the mass just
before formation is Nn, then the mass just after formation
is Nn−1, and the redshift of formation is z1 + · · · + dzn−1.
We store these values for each halo M1 at z1.

The main quantity of interest in what follows is p(m,zf),
the joint distribution of formation masses and times, where
formation is defined to be the time when one of the sub-
clumps of a halo first accounts for at least half the final
mass M1 of its parent. Because of this definition of forma-
tion, m/M1 is distributed between one-half and unity (recall
that the mass of the most massive progenitor must exceed
half the mass of its parent).

The formation time distribution of haloes which have
final mass M1 at redshift z1,

p(zf) dzf =

∫

p(m,zf) dm, (1)

is expected to be well approximated by

p(zf) dzf = p(ω) dω = 2ω erfc

(

ω√
2

)

dω (2)

(Lacey & Cole 1993), where ω2 ≡ (δcf − δc1)
2/(Sf − S1),

δcf = δsc(zf), δc1 = δsc(z1), and Sf = σ2(M1/2). As Lacey
& Cole note, this formula is only well-behaved for white-
noise initial conditions (for which σ2(m) ∝ 1/m), although
it provides a reasonable approximation in the more general
case.

The distribution of formation masses, obtained by
marginalizing over the formation time distribution, is

p(m) dm =

∫

p(m,zf) dzf . (3)

Nusser & Sheth (1999) describe a model for the evolution
of the mass of the most massive progenitor which is able to
reproduce the formation time distribution of equation (2).

Figure 1. Distribution of scaled formation times in two dif-
ferent cosmological models, for haloes identified at two differ-
ent redshifts. In these scaled units, the formation time distribu-
tion is expected to be independent of halo mass and final time.
Solid curve shows the precise form which this universal forma-
tion time distribution is expected to have (equation 2). In all
panels, squares and hexagons show the simulation results for par-
ent haloes with masses in the range 4 ≤ M1/M∗(z1) < 8 and
16 ≤ M1/M∗(z1) < 32. Simple bars in the panels on the left
show results for slightly lower halo masses: M1/M∗(z1 = 0) ≤ 2.
Error bars were estimated assuming Poisson counts. Evidently,
equation (2) provides a reasonable, but not perfect description of
halo formation times in the simulations.

In their model, it is possible to derive an expression for the
associated formation mass distribution of equation (3). In
particular, they argue that

p(µ) dµ =
2

π

√

1− µ

2µ− 1

dµ

µ2
, where 1/2 ≤ µ ≤ 1, (4)

and µ ≡ m/M1 (equation A15 in Nusser & Sheth 1999).
Strictly speaking this formula, like equation (2), is valid for
white-noise initial conditions, but Nusser & Sheth argued
that it should provide a good approximation even if the ini-
tial spectrum has more large-scale power (see their Fig. A2
and associated discussion).

Figure 1 compares the formation time formula, equa-
tion (2), with measurements in the GIF simulations. (We
have used the notation ω0.5 to emphasize that formation is
when the largest progenitor subclump contains at least half
the mass of the final parent halo. Our requirement that par-
ent haloes have at least two hundred particles means that
we only probe the formation statistics of the most massive
haloes at high redshift. ) Although lower mass haloes identi-
fied at a given time tend to have formed at higher redshifts
than more massive haloes (cf. Figure 4 below), equation (2)
suggests that, when appropriately rescaled, all dependence
on mass, time and the shape of the power spectrum should
be removed. The different panels in the figure show that
the scaled formation time distributions in the SCDM and
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Formation times and masses 3

Figure 2. The distribution of masses m at formation, for parent
haloes which have mass M1 at z1 = 0. Symbols show the sim-
ulation results for M1/M∗(z1) ≤ 1 (dots), 2 ≤ M1/M∗(z1) < 4
(triangles), and M1/M∗(z1) ≥ 8 (squares). Error bars were esti-
mated assuming Poisson counts. Curves on the right and the left
of m/M1 = 1/2 show the distributions in equations (4) and (5) re-
spectively. There is no obvious trend with M1, although haloes in
simulations appear to have m/M1 ≈ 1/2 slightly more frequently
than the model predicts. Results for formation masses of parent
haloes identified at other redshifts are similar.

ΛCDM runs are reasonably, but not perfectly-well described
by equation (2).

Our next task is to test the accuracy of the for-
mation mass formula, equation (4). The symbols in Fig-
ure 2 show the distribution of masses m at formation for
haloes in the GIF simulations which have final mass M1 at
z1 = 0; dots show M1/M∗(z1) < 1, open triangles show
2 ≤ M1/M∗(z1) < 4, and squares show M1/M∗(z1) > 8.
Error bars were estimated assuming Poisson counts. The
figure shows no clear trend with M1. A similar analysis of
the formation masses, using haloes identified at z = 0.5 and
z = 1, yields similar results. The solid curves which span
the range 1/2 ≤ m/M1 ≤ 1 in the two panels of Fig. 2 show
equation (4). Although the formation mass distribution mea-
sured in the simulations is significantly different from either
a delta function, or a uniform distribution, equation (4) is
able to provide a reasonable description of its shape.

We also studied the mass of the most massive progen-
itor just before the formation time; these are shown by the
symbols which span the range 1/4 ≤ m/M1 ≤ 1/2 in the two
panels. Once again, the measured distribution is neither a
delta function nor is it uniform. In this case, also, there is a
simple formula for the distribution of formation masses:

q(µ) dµ =
dµ/µ2

π(1− µ)

(√

µ

1− 2µ
−
√

1− 2µ

)

, (5)

where 1/4 ≤ µ ≤ 1/2, and µ ≡ m/M1 as before (equa-
tion A19 in Nusser & Sheth 1999). The curves which span
the range 1/4 ≤ m/M1 ≤ 1/2 in the two panels of Fig. 2

Figure 3. Same as previous plot, but now shown logarithmically,
to emphasize the discrepancy near the peak and in the tails.

show this formula; it provides a reasonable description of
the measurements in the simulations.

Although the analytic formulae provide a reasonable de-
scription of the measurements, haloes in the simulations ap-
pear to have slightly more occurences of m/M1 ∼ 0.45, and
m/M1 ∼ 0.55 than the formulae predict. Some of the dis-
crepancy may arise because the simulation outputs are not
spaced arbitrarily closely in time (the typical redshift steps
are of order ∆z ∼ 0.1). As a result, the measured distri-
butions almost certainly smooth-out the divergence around
µ ∼ 1/2. (To better illustrate the behaviour around the
peak, Figure 3 shows the same distributions, but this time
on a logarithmic scale.) In principle, the analysis in Nusser
& Sheth (1999) can be used to estimate this smearing-out
(their equations A14 and A18 actually depend on the red-
shift difference), but we believe it will be better to use sim-
ulations with better time resolution instead, as these will be
available shortly.

Some of the discrepancy may be associated with the fact
that the approach leads to an underestimate of the mean for-
mation redshift. This discrepancy could plausibly affect the
formation mass distribution, since, if formation happens at
higher redshift when the basic building blocks are smaller,
then the formation masses are less likely have values as large
as m/M1 ∼ 1. Moreover, equations (2)–(5) are derived from
an approach which predicts fewer massive parent haloes than
are actually observed in simulations (e.g. Sheth & Tormen
1999). If the abundance of parent haloes is modified so that
it is in better agreement with simulations, then the forma-
tion mass and time distributions will also be modified (for
reasons made explicit in Sheth & Tormen 2002). Accounting
for this is left for future work, since the agreement between
the model and the simulations is quite good.
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4 R. K. Sheth & G. Tormen

3 CONDITIONAL DISTRIBUTION OF

FORMATION MASS AND TIME

The joint distribution of formation mass and time for parent
haloes with mass M1 at z1 is

p(m,z) dmdz = ds

∫ sm

Sf

dS p(S, z +∆z|s, z) p(s, z|S1, z1), (6)

where s ≡ σ2(m), S1 ≡ σ2(M1), Sf ≡ σ2(M1/2), sm ≡
σ2(m/2),

p(s, z|S0, z0) ds =
dν

ν

√

ν

2π
exp(−ν/2), (7)

with ν ≡ [δsc(z)−δsc(z1)]
2/(s−S1), and a similar expression

holds for p(S, z + ∆z|s, z). When inserted in equation (1),
equation (6) yields equation (2), and when inserted in equa-
tion (3) it yields equation (4).

In the limit of small time steps (∆z ≪ 1), and a white-
noise power spectrum, equation (6) simplifies considerably.
A little algebra shows that, for haloes of fixed mass M1, the
conditional distribution of formation masses m when it is
known that the formation time was zf is given by

p(µ|zf) dµ ≡ p(µ, zf) dµ

p(zf)
=

p(µ) dµ

s/S1 − 1

exp
[

−ω2

2
(Sf−S1)
(s−S1)

]

2 erfc(ω/
√
2)

, (8)

where µ = m/M1, s ≡ σ2(m), S1 ≡ σ2(M1), Sf ≡
σ2(M1/2), and ω was defined in equation (2). For a white-
noise spectrum, s/S1 = 1/µ and it is straightforward to ver-
ify that this distribution is correctly normalized. For more
general power spectra, s/S1 ∼ µ−α, say, this conditional dis-
tribution must be multiplied by a normalization factor which
depends on α. We have checked that use of the white-noise
expression is a good approximation to the curves associ-
ated with α < 1, provided we insure that the distribution is
correctly normalized to unity. Thus, although equation (8)
only holds for a white-noise power spectrum, we expect it
to be more generally applicable for the same reasons that
our equations (4) and (5) are more generally applicable. In
what follows, therefore, we will simply set s/S1 = 1/µ and
Sf/S1 = 2. In this approximation, our expression for the
conditional distribution of formation masses is independent
of power spectrum.

The factor which multiplies p(µ) is largest at s/S1−1 =
ω2, so objects which form at redshifts which are lower than
the mean value for that mass (i.e., ω < 1), are expected to
have formation masses which are biased towards µ ≈ 1 (i.e.,
s ≈ S1). Conversely, objects which form at abnormally high
redshifts (ω > 1) are expected to have formation masses
which are closer to the minimum value allowed: µ ≈ 1/2.
Presumably, this is a consequence of the fact that, to have
µ ≈ 1 requires two pieces each of size µ ≈ 1/2. In a hi-
erarchical model, the building blocks available to form the
parent halo are, on average, smaller at early times: when the
probability of having an object of mass µ ≈ 1/2 is small, the
chance of having two such objects is smaller still. In effect,
our formula (8) quantifies the importance of this effect.

Figure 4 shows the joint distribution of formation mass
and time for parent haloes identified at z1 = 0 in the SCDM
(top) and ΛCDM (bottom) simulations. (The stripes are a
result of the fact that simulation outputs are written to file
only at finitely many time-steps.) The axis labels use the

Figure 4. Joint distribution of formation times and masses mea-
sured in the simulations. Haloes which form at higher redshifts
appear to have a smaller spread in formation masses. This is
quantified in the next figure, which includes a comparison with
the model predictions.

notation m/M1 to denote the ratio of the formation mass
to final mass, zf the formation redshift, and z1 the redshift
at which the parent object was identified. The two panels
for each simulation show results for different choices of the
parent halo mass. Analogous plots for z1 = 0.5 and z1 = 1.0
look very similar, provided we scale the formation time axis
to δsc(zf)/δsc(z1) − 1 as we have done, rather than simply
show zf . We have chosen to not include them here. (The nat-
ural rescaling would have been to show ω, defined in equa-
tion 2, along the x-axis. This would differ from the rescaling
we show by a factor of (Sf − S1)/δsc(z1). We chose not to
scale by this additional factor because one of the points we
wish to emphasize is that the formation mass formulae turn
out to be approximately independent of power spectrum.)

The formation time distribution discussed in the previ-
ous section is obtained by summing up all haloes with the
same zf whatever their value of m/M1 > 1/2. The forma-
tion mass distributions studied in the previous section were
obtained by summing up all haloes with the same m/M1

whatever their value of zf .
Notice that there appears to be a tendency for the ob-

jects with large zf to have small values ofm/M1, but because
there are many fewer haloes with high formation redshifts,
it is not obvious if this trend is real, or if it is simply a
consequence of small-number stastistics.

To address this in more detail, Figure 5 shows p(µ|zf),
the conditional distribution of formation masses at fixed for-
mation time. The plot was made by choosing all haloes with
masses in the range 1 < M1/M∗(z1) < 2 at z1 = 0.5, and
then studying the mass at formation in the subset which
formed at zf = 0.61, 1.31 and 2.31. Histograms show the
measurements in the simulations. Comparison of the differ-
ent panels shows that the objects which form at higher red-
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Figure 5. Conditional distribution of masses m at formation,
given that the mass of the parent halo was in the range 1 <
M1/M∗(z1) < 2 at z1 = 0.5, for a range of choices of the red-
shift of formation (labeled in the middle of each panel). Symbols
show the measurements in the simulations, and curves show equa-
tion (8).

shifts have formation masses which are close to 1/2, whereas
there is an obvious tail of higher formation masses at lower
formation redshifts. The smooth curves show equation (8);
it reproduces the trend with formation redshift seen in the
simulations quite well. We find similar agreement for other
choices of M1, z1 and zf , so we conclude that equation (8)
provides a reasonable description (by which we mean it is a
better fit than is a delta function, or a uniform distribution)
of the conditional distribution of formation mass when the
formation time is known.

4 DISCUSSION

We presented evidence that formulae for the distribution of
formation masses (equations 4 and 5), were reasonably accu-
rate (Figure 2). These formulae do not depend on the shape
of the underlying power spectrum, so they are simple to
use. We then derived an expression for the conditional dis-
tribution of formation masses if the formation time is known
(equation 8), and showed that it was also in quite good
agreement with measurements made in simulations (Fig. 5).
Application of Bayes’ rule then gives the joint distribution
of formation mass and time.

Our results indicate that haloes which form at abnor-
mally early times are more likely to have formation masses
of order one-half that of the final mass of the parent, whereas
haloes which form at abnormally late times are more likely
to have formation masses which are closer to that of the par-
ent. One consequence of this is that haloes which form late
are more likely to have experienced a recent major merger.

We argued that this was a generic consequence of hierarchi-
cal formation.

Our formulae for the joint distribution of formation
masses and times will find use in studies which attempt to
relate the structure of a halo to its formation history (e.g.
Tormen 1997, 1998; Tormen, Diaferio & Syer 1998; van den
Bosch 2002; Wechsler et al. 2002; Zhao et al. 2003). For
instance, haloes which formed recently with large forma-
tion masses are almost certainly further from equilibrium
than haloes which formed at higher redshift with formation
masses of order fifty-percent. Such haloes (i.e. ones which
have suffered major-mergers recently) may plausibly be less
centrally concentrated than haloes of the same mass which
had more quiescent accretion histories. Addressing such is-
sues is the subject of on-going work. If these formulae do
prove to be useful, it will become necessary to modify them
slightly so that they are more fully consistent with the par-
ent halo mass function described by Sheth & Tormen (1999).
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