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ABSTRACT

Gravitational waves from the coalescence of binary black holes carry away linear momentum, causing
center of mass recoil. This “radiation rocket” effect has important implications for systems with
escape speeds of order the recoil velocity. We revisit this problem using black hole perturbation
theory, treating the binary as a test mass spiraling into a spinning hole. For extreme mass ratios
(q ≡ m1/m2 ≪ 1) we compute the recoil for the slow inspiral epoch of binary coalescence very
accurately; these results can be extrapolated to q ∼ 0.4 with modest accuracy. Although the recoil
from the final plunge contributes significantly to the final recoil, we are only able to make crude
estimates of its magnitude. We find that the recoil can easily reach ∼ 100− 200 km/s, but most likely
does not exceed ∼ 500 km/s. Though much lower than previous estimates, this recoil is large enough
to have important astrophysical consequences. These include the ejection of black holes from globular
clusters, dwarf galaxies, and high-redshift dark matter halos.
Subject headings: black hole physics—gravitation—gravitational waves — galaxies: nuclei

1. INTRODUCTION AND BACKGROUND

Along with energy and angular momentum, gravita-
tional waves (GWs) carry linear momentum away from a
radiating source (Bonnor & Rotenberg 1961; Peres 1962;
Bekenstein 1973). Global conservation of momentum
requires that the center of mass (COM) of the system
recoil. This recoil is independent of the system’s total
mass.
Fitchett (1983) first computed GW recoil for binaries.

He treated the members as non-spinning point masses
(m1,m2), the gravitational force as Newtonian, and in-
cluded only the lowest GW multipoles needed for mo-
mentum ejection. For circular orbits Fitchett’s recoil is

VF ≃ 1480 km/s
f(q)

fmax

(

2GM/c2

rterm

)4

, (1)

where rterm is the orbital separation where GW emission
terminates, q = m1/m2 ≤ 1 is the mass ratio, and M =
m1 +m2 is the total mass. The function f(q) = q2(1 −
q)/(1 + q)5 has a maximum fmax at q ≃ 0.38, is zero for
q = 1, and has the limit f(q) ≈ q2 for q ≪ 1.
Equation (1) tells us that in the coalescence of binary

black holes (BHs)—where rterm can approach GM/c2—
the kick might reach thousands of km/s. This is far
greater than the escape velocity of many globular clus-
ters (typically ∼ 30 km/s), and may even exceed galactic
escape velocities (∼ 1000 km/s). Recoil could thus have
important astrophysical implications (Redmount & Rees
1989) [some of which are explored in a companion paper
(Merritt et al. 2004; Paper II)]. This has motivated us
to revisit this problem.
Equation (1) indicates that the recoil is strongest at

small separations, when the relativistic effects neglected
by Fitchett are most important. This issue has been
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addressed in restricted circumstances using perturbation
theory (Nakamura & Haugan 1983; Fitchett & Detweiler
1984; Nakamura, Oohara, & Kojima 1987), post-
Newtonian expansions (Wiseman 1992; Kidder 1995),
and numerical relativity (Andrade & Price 1997;
Anninos & Brandt 1998; Brandt & Anninos 1999;
Lousto & Price 2004). Unlike previous analyses, our
treatment applies to the strong-gravity, fast-motion
regime around spinning holes undergoing binary coa-
lescence. Using BH perturbation theory we model the
dynamics of the binary, the generation of GWs, and the
backreaction of those waves on the system up to the
inner-most stable circular orbit (ISCO). Our results are
accurate only for extreme mass ratio inspirals (q ≪ 1),
but we can extrapolate to q ∼ 0.4 with modest error.
We model the GW emission from the final plunge more
crudely.

2. OVERVIEW OF GRAVITATIONAL RADIATION RECOIL

The rate at which momentum is radiated is given by

dP k
GW

dt
=

r2

16π

∫

dΩ
〈

ḣ2
+ + ḣ2

×

〉

nk , (2)

where h+,× are the “plus” and “cross” GW polarizations,
nk is a unit radial vector from the source, and r is the
distance to the observer (Thorne 1980). [We have set
G = c = 1; an overdot refers to a derivative with respect
to coordinate time t; angle brackets denote averaging
over several wavelengths.] The binary’s COM recoil is
dP k

COM/dt = −dP k
GW/dt.

Decomposing h+,× into multipoles in the wave zone
(Thorne 1980), Eq. (2) can be expanded (to lowest order)
as
dP k

GW

dt
=

2

63

〈

d4Iijk

dt4
d3Iij

dt3

〉

+
16

45

〈

ǫkpq
d3Ipj

dt3
d3Sqj

dt3

〉

,

(3)
where Iij , Sij , and Iijk are the symmetric, trace-free
mass quadrupole, current quadrupole, and mass octupole
moments. Recoil thus arises from “beating” between dif-
ferent multipoles. Applying Eq. (3) to a Newtonian bi-
nary and integrating yields Eq. (1).
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Fig. 1.— Recoil from prograde coalescence with a/M = 0.8,
η = 0.1 (q = 0.127). Solid (blue) lines represent quantities during
the inspiral, as calculated using our Teukolsky equation solver.
Dashed (red) lines are calculations during the plunge (using the
“upper-limit” prescription discussed in section 4). The plunge is
truncated shortly before the particle enters the event horizon. The
different panels are: (a) Orbit of the mass µ about the central
spinning hole. The dashed circle is the location of the ISCO. (b)
Recoil velocity of the center of mass. The spiral ends when GW
emission is cut off. (c) Motion of the binary’s center of mass. (d)

Total center of mass recoil velocity, (v2x + v2y)
1/2.

Wiseman (1992) provides an intuitive description of
the recoil: When two non-spinning bodies are in circular
orbit, the lighter mass moves faster and is more effective
at “forward beaming” its radiation. Net momentum is
ejected in the direction of the lighter mass’s velocity, with
opposing COM recoil. When m1 = m2, the beaming is
symmetric and the recoil vanishes. The instantaneous re-
coil continually changes direction over a circular orbit, so
the COM traces a circle. Neglecting radiation reaction,
this circle closes, and the recoil averages to zero over each
orbit. With radiative losses, the orbit does not close, and
the recoil accumulates. This accumulation proceeds un-
til the holes plunge and merge, shutting off the radiated
momentum flux and yielding a net, non-zero kick velocity
(cf. Fig. 1).
Spin complicates this picture by breaking the binary’s

symmetry. Consider an equal-mass binary, with one
member spinning parallel to the orbital angular momen-
tum. Due to spin-induced frame dragging, the non-
spinning body’s speed—and hence radiation beaming—is
enhanced. Kidder (1995) has treated this spin-orbit in-
teraction in post-Newtonian theory. Specializing his Eq.
(3.31) to a circular, non-precessing orbit, the total kick
for two bodies with spins S1,2 = ã1,2m

2
1,2ẑ parallel (or

antiparallel) to the orbital angular momentum is

Vkick =

∣

∣

∣

∣

∣

VF + 883 km/s
fSO(q, ã1, ã2)

fSO,max

(

2M

rterm

)9/2
∣

∣

∣

∣

∣

,

(4)
where the spin-orbit scaling function fSO(q, ã1, ã2) =

q2(ã2−qã1)/(1+q)5. The “correction” causes significant
recoil even when q = 1 (and hence VF = 0). The spin-
orbit term is largest when q = 1 and the spins are max-
imal and antiparallel (ã1 = −ã2 = ±1; fSO,max ≡ 1/16).
The recoil vanishes for q = 1 and spins equal and parallel
(ã1 = ã2)—a symmetric binary.
Since we work in the q ≪ 1 limit, we ignore the smaller

body’s spin, which incurs an error ∼ q2ã1 in the orbital
dynamics (Kidder 1995). Our extreme mass ratio anal-
ysis treats the binary in an effective-one-body sense: a
non-spinning point particle with mass µ = m1m2/M or-
bits a Kerr hole with mass M = m1 +m2 and spin S =
ãM2

ẑ. There is an ambiguity, however, in how one trans-
lates the physical spin parameter ã2 of the hole to the
“effective” spin parameter ã. Damour (2001) provides
a relation between these parameters, valid in the post-
Newtonian limit for ã < 0.3: ã = ã2(1 + 3q/4)/(1 + q)2.
Because of this ambiguity, we present our results in terms
of the effective-spin-parameter ã. Even if the larger hole’s
spin is nearly maximal (ã2 ≃ ±1), finite mass ratios
q & 0.1 restrict our results to spins with |ã| . 0.8− 0.9.
When applied to a perturbation calculation of the

head-on collision of two BHs, an effective-one-body scal-
ing of the GW energy flux (ĖGW ∝ q2) in which q →
η = µ/M = q/(1 + q)2 has been shown to agree with
results from full numerical relativity (Smarr 1978). We
use a similar “scaling up” procedure for the momentum
flux: In perturbation theory Ṗ j

GW ∝ q2. We then sub-
stitute q2 → f(q) (Fitchett & Detweiler 1984). [In terms
of η, the scaling function is given by f(q) → f(η) =
η2
√
1− 4η, and is maximized at η = 1/5.] Using f(q) [or

f(η)] to scale the momentum flux assumes both bodies
are non-spinning and that the orbit is quasi-circular. For
simplicity, approximate spin corrections to f(q) based on
Eq. (4) are ignored (incurring errors . 30% if q . 0.4)
(cf. Paper II).

3. INSPIRAL RECOIL FROM PERTURBATION THEORY

Our model binary consists of a mass µ in circular, equa-
torial orbit about a BH with mass M and effective spin
a = ãM . (GWs rapidly reduce eccentricity, so circularity
is a good assumption for many astrophysical binaries.)
When µ ≪ M , binary evolution is well described using
BH perturbation theory (Teukolsky 1973). We treat the
binary’s spacetime as a Kerr BH plus corrections from
solving the perturbed Einstein equations—the Teukol-
sky equation. Specifically, we solve a linear wave equa-
tion for the complex scalar function Ψ4, which describes
radiative perturbations to the hole’s curvature. Far from
the binary, Ψ4 = (ḧ+−iḧ×)/2; it therefore encodes infor-
mation about the GW fields in the distant wave zone, as
well as the energy, momentum, and angular momentum
carried by those fields.
Far from the binary Ψ4 has the expansion:

Ψ4 =
1

r

∑

lm

ZlmSlm(θ; aωm)eimφ−iωmtR . (5)

In terms of Boyer-Lindquist coordinates (t, r, θ, φ), tR =
t− r is retarded time, ωm = mΩorb is a harmonic of the
orbital frequency, Slm(θ; aωm) is a spheroidal harmonic,
and Zlm is a complex number found by solving a partic-
ular ordinary differential equation (Hughes 2000).
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The linear momentum flux can be extracted by com-
bining Eqs. (2) and (5). The resulting expression is sim-
plest in the “corotating” frame, φcorot = φ(t)− Ωorbt:

ṖGW =
1

2

∑

ll′m

ZlmZ̄l′(m+1)

ωmωm+1

∫ π

0

SlmSl′(m+1) sin
2 θdθ .

(6)

Here, ṖGW = e−iφ(t)[Ṗ x
GW + iṖ y

GW], and an overbar de-
notes complex conjugation. Similar expressions give the
energy and angular momentum fluxes. The recoil veloc-
ity is found by integrating Eq. (6), starting at initial time
T0 when the binary is at large separation [and the recoil
is well described by Eq. (1)], and ending at time T when
GW emission terminates:

vx + ivy = − 1

M

∫ T

T0

eiφ(t)ṖGW dt . (7)

Our procedure starts with a point-source on a circu-
lar geodesic orbit with specified energy E and angular
momentum Lz. Solving the Teukolsky equation gives us
the energy, momentum, and angular momentum fluxes
of GWs to infinity and down the event horizon. (The
linear momentum flux down the horizon does not affect
the recoil.) In the adiabatic limit (in which GW back-
reaction changes the orbit very slowly, r/ṙ ≪ 2π/Ωorb),

the energy and angular momentum fluxes (ĖGW, L̇z,GW)

are used to evolve to a new geodesic with E − ĖGW∆t
and Lz − L̇z,GW∆t. Repeating this procedure for a se-
quence of geodesics generates a slow inspiral trajectory.
The momentum flux along this trajectory and associated
recoil velocity are then calculated via Eqs. (6) and (7).
This prescription can be used to calculate the recoil

velocity only up to the ISCO. There the slow, adiabatic
inspiral of the particle transitions to a rapid “plunge”
that terminates when the particle crosses the event hori-
zon (cf. Fig. 1a). Our Fourier decomposition of Ψ4 is no
longer valid as there are no well-defined harmonics ωm

for plunging trajectories.
Figure 2a shows the perturbation theory calculation

of the ISCO recoil for a binary with reduced mass ratio
η = 0.1 (q = 0.127). The solid curve in Figure 1a can be
fit by

Visco = 422 km/s
f(q)

fmax

(

2M

risco

)2.63+0.06risco/M

, (8)

where risco is the spin-dependent ISCO radius [defined
for q = 0 by Eq. 2.21 of Bardeen, Press, & Teukolsky
(1972)], and we have included the appropriate scaling
function (valid for q . 0.4). Although our adiabatic
assumption is violated for η = 0.1 (especially for large,
prograde spins) our results are still valid since Visco/f(q)
is only weakly dependent on q (and is independent of q
in the q → 0 limit).
For retrograde orbits around rapidly spinning holes,

the ISCO is at large radius (9M for ã = −1) and Fitch-
ett’s Newtonian formula [Eq. (1)] agrees well with our
result. For prograde inspiral into rapidly spinning holes,
the ISCO is deep in the strong field, where relativistic ef-
fects become important and suppress the recoil relative
to Fitchett’s result.

4. RECOIL ESTIMATES FROM THE FINAL PLUNGE

Fig. 2.— Recoil velocity versus effective spin a/M for η = 0.1
(q = 0.127). (a) Recoil velocity up to the ISCO. The solid (blue)
curve is our Teukolsky equation result. The dashed (red) curve
shows the Newtonian recoil prediction [Eq. (1)], which is sub-
stantially higher for large, prograde spins (smaller ISCO radius).
(b) Upper and lower limits for the total recoil. The shaded re-
gion represents our uncertainty in the final kick velocity. The de-
tailed shape of the upper-limit curve depends on the nature of our
truncated-power-law ansatz.

During the plunge, the small body’s motion is dom-
inated by the Kerr effective potential rather than
radiation-reaction forces (Ori & Thorne 2000). It is easy
to match a plunging geodesic with constant E and Lz

onto an inspiral trajectory near the ISCO. With a code
that does not Fourier expand Ψ4 (Khanna 2003; Martel
2003), one could properly compute the GW emission and
associated recoil along such a plunging trajectory (when
q ≪ 1).
Since we do not have such a code at hand, we must

estimate the wave emission more crudely. Our results
from the inspiral show that, for a given spin, ṖGW is
well described by a power law in radius, ṖGW ∝ r−α,
from large r up to the ISCO. As an approximate “upper
limit” of the recoil, we make the ansatz that this power
law can be continued past the ISCO. This must break
down at some point: the power-law reflects the circu-
larity of the inspiral orbit and should be suppressed by
the increasingly radial motion during the plunge. To pre-
vent the momentum flux from diverging, we truncate the
power law at 3M , replacing it with the condition that
(dt/dτ)ṖGW = constant, where τ is proper time along
the plunge geodesic. This allows the momentum flux to
“redshift away” as the particle approaches the horizon.
Using the recoil velocity at the ISCO as initial condi-
tions [Sec. 3] and a plunge trajectory with coordinates
[r(t), φ(t)], we use Eq. (7) and our truncated-power-law
ansatz to compute the accumulated recoil until a cutoff
time T when the horizons of the holes come into contact
(in a quasi-Newtonian interpretation of the coordinates).
The upper-curve of Figure 2b shows the result of this cal-
culation (for η = 0.1).
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We also perform a separate “lower-limit” calculation.
A plunge trajectory is computed as before, but in place
of the power-law ansatz for ṖGW, we integrate the trun-
cated, multipole expansion of Eq. (3) instead. In this cal-
culation the momentum flux initially grows like a power
law, but then decreases as the plunging trajectory nears
the event horizon. Because we neglect higher multi-
poles (which are extremely important in the fast-motion,
strong-gravity region), this method likely underestimates
the recoil. The total accumulated recoil at the cutoff time
T using this method is shown in the lower curve of Figure
2b (also for η = 0.1).
The shaded region between the two curves in Figure 2b

represents our uncertainty in the total recoil at the end of
the plunge. This uncertainty is largest for retrograde or-
bits around rapidly spinning holes, in which the distance
the particle must “plunge” is greatest. For prograde in-
spiral into rapidly spinning holes, much of the recoil is
due to emission during the slow inspiral phase, for which
our BH perturbation techniques are well-suited. Figure
1 shows the relative contributions from the inspiral and
plunge for such a scenario.
Although the two calculations for the plunge recoil give

rather different results, useful astrophysical information
is contained in the approximate upper and lower bounds
that they represent. The estimate V ∼ 120 km/s bisects
the shaded region of Figure 2b and represents a typical
recoil velocity for this mass ratio. Note also that the
numbers in Figure 2 can be scaled to higher mass ratios
by multiplying by f(q)/f(η = 0.1). For q ≈ 0.38 this
implies that our results can be augmented by a factor
≈ 2.3.

5. DISCUSSION

The punchline of this analysis is simple: quasi-
Newtonian estimates have significantly overestimated the
kick velocity from anisotropic GW emission during bi-
nary coalescence. The recoil is strongest when the
smaller member is deep in the strong-field of the large
black hole. General relativistic effects, such as the gravi-
tational redshift and spacetime curvature-scattering, act
on the emitted GWs and reduce the recoil.
Though reduced, the recoil remains large enough to

have important astrophysical consequences. Recoils with
V ∼ 10–100 km/s are likely; kicks of a few hundred km/s

are not unexpected; and the largest possible recoils are
probably . 500 km/s. These speeds are smaller than
most galactic escape velocities, suggesting that BH merg-
ers that follow galaxy mergers will remain within their
host structures. However, these recoils are similar to the
escape speeds of dwarf galaxies; and they may be suffi-
cient to escape from mergers in high redshift structures
[z & 5 − 10; cf. Barkana & Loeb (2001), Fig. 8]. Binary
BH ejection from globular clusters is quite likely, with
significant implications for the formation of intermedi-
ate mass black holes (IMBH) via hierarchical mergers
(Miller & Colbert 2003). Our recoil estimates will also
be useful in simulations of supermassive and IMBH evo-
lution in dark halos (Volonteri, Haardt, & Madau 2003;
Madau et al. 2004).
Future papers will present the formalism used for this

analysis, and will investigate the influence of orbital in-
clination on the recoil. More work in perturbation theory
also remains in addressing the recoil from the plunge and
final ringdown of the merging black holes.
Finally, Redmount & Rees (1989) have speculated that

spin-orbit misalignment could lead to recoil directed out
of the orbital plane. This recoil might accumulate sec-
ularly rather than oscillate, and would be similar to
the “electromagnetic rocket” in pulsars with off-centered
magnetic dipole moments (Harrison & Tademaru 1975;
Lai, Chernoff, & Cordes 2001). We suspect that this ef-
fect occurs but it is likely small compared to the recoil
from the final plunge and merger. Firm estimates of the
final kick velocity will rely on correctly modelling the
final phase of BH coalescence. For comparable mass bi-
naries, full numerical relativity will ultimately be needed
to accurately compute the GW recoil.
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