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1 Apologia

In these informal Lecture Notes on formalism, I gather together a few elements of covariant linear

perturbation theory and its applications to inflation, dark energy or matter and the cosmic mi-

crowave background (CMB). I make no attempt to cite properly the original source material. My

usual, lame defense is “it’s all in Bardeen’s paper [1]” – go read it and ignore these lecture notes!

Seriously though, in addition to [1], I have heavily relied on a few sources in compiling the

various sections and refer the reader to references therein. The covariant formalism presented in §2
and gauge transformation material in §3 draws from [2] distilled in [3]. Applications to inflation in

§4 draw from [4], to dark energy and matter in §5 from [5], and to the CMB in §6 from [6]. For the

last topic, despite great recent progress on the phenomenology, I have limited myself to the formal

aspects that relate to covariant perturbation theory. My defense here is “everything that doesn’t

go out of date as soon as it’s written is in Peebles & Yu [7]” – go read it and stop looking for CMB

reviews! My other defense is Matias Zaldarriaga was supposed to cover that in this School so blame

him! As for the equation density and opaqueness of these Lecture Notes, I have no excuse – take

it as an homage to the Dick Bond lectures of my own student days – at least there are no figures

with 100 curves. As Martin White would say, you are physicists; you don’t need figures!

2 Formalism

2.1 Covariant Approach

Perturbation theory proceeds by linearizing the Einstein equations

Gµν = 8πGTµν , (1)

around a background metric. Here Gµν is the Einstein tensor and Tµν is the stress energy tensor.

The Bianchi identity ∇µG
µν = 0 guarantees the covariant conservation of the total stress-energy

∇µT
µν = 0 . (2)

The conservation equation is redundant with the Einstein equation but is a particularly useful rep-

resentation of the equations when there are multiple components to the matter that are separately

conserved.

Let us begin by distinguishing between covariant equations and invariant variables:

Covariant = equations takes same form in all coordinate systems

Invariant = variable takes the same value in all coordinate systems

In an evolving universe, the meaning of a density perturbation necessarily requires the specification

of the time slicing in relation to the background and hence there is no such thing as a gauge

or coordinate invariant density perturbation. Likewise for elements of the metric. The general

covariance of the Einstein and conservation equations, on the other hand, can be preserved. With

covariant equations one can, after the fact of their derivation, choose the gauge that best suits a

given physical problem, e.g. the evolution of inflationary, dark energy, or CMB fluctuations.

2.2 Metric Representation

Let us take the background metric to be the general homogeneous and isotropic, or Friedmann-

Robertson-Walker form. Here the degrees of freedom are the (comoving) spatial curvature K and
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an overall scale factor for the expansion a such that the line element

ds2 = gµνdx
µdxν = a2(−dη2 + γijdx

idxj) . (3)

The time variable is η the conformal time and we normalize the scale factor to a = 1 today,

η(a = 1) = η0. The three metric γij can be represented in spherical coordinates as

γijdx
idxj = dD2 +D2

AdΩ , (4)

where D is the comoving distance and DA = K−1/2 sin(K1/2D) is the angular diameter distance.

A general perturbation to the FRW metric may be represented as

g00 = −a−2(1− 2A) ,

g0i = −a−2Bi ,

gij = a−2(γij − 2HLγ
ij − 2H ij

T ) , (5)

yielding (1) A ≡ a scalar potential; (3) Bi a vector shift; (1) HL a scalar perturbation to the spatial

curvature; (5) H ij
T a trace-free distortion to spatial metric, for a total of (10) degrees of freedom.

This gives a complete representation of the symmetric 4× 4 metric tensor.

2.3 Matter Representation

Likewise expand the matter stress energy tensor around a homogeneous density ρ and pressure p

by introducing 10 degrees of freedom

T 0
0 = −ρ− δρ ,

T 0
i = (ρ+ p)(vi −Bi) ,

T i
0 = −(ρ+ p)vi ,

T ij = (p + δp)δij + pΠij , (6)

yielding (1) δρ a scalar density perturbation; (3) vi a vector velocity, (1) δp a scalar pressure

perturbation; (5) Πij a tensor anisotropic stress perturbation. So far the treatment of the matter

and metric is fully general and applies to any type of matter or coordinate choice including non-

linearities in the matter, e.g. cosmological defects.

2.4 Closure

The Einstein equations do not specify a closed system of equations and require the addition of

supplemental conditions provided by the microphysics to fix the dynamical degrees of freedom. In

the simplest cases this closure is established through equations of state for the background and

perturbations.

In counting the dynamical degrees of freedom, one must recall that the conservation equations

are redundant with the Bianchi identities and that 4 degrees of freedom are absorbed by the choice
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of coordinate system

20 Variables (10 metric; 10 matter)

−10 Einstein equations

−4 Conservation equations

+4 Bianchi identities

−4 Gauge (coordinate choice 1 time, 3 space)

——

6 Degrees of freedom

Without loss of generality these six dynamical degrees of freedom can be taken to be the 6 compo-

nents of the matter stress tensor.

Since the background is isotropic, the unperturbed matter is described entirely by the pressure

p(a) or equivalently w(a) ≡ p(a)/ρ(a), the equation of state parameter. For the perturbations

specification of the relationship between δp, Π and the other perturbations, e.g. δρ and v suffices.

2.5 Friedmann Equations

The unperturbed Einstein equation yields the ordinary Friedmann equation which relates the ex-

pansion rate to the energy density
(

ȧ

a

)2

+K =
8πG

3
a2ρ , (7)

where overdots represent conformal time derivatives, and the acceleration Friedmann equation

which relates the change in the expansion rate to the equation of state

d

dη

(

ȧ

a

)

= −4πG

3
a2(ρ+ 3p) , (8)

so that w ≡ p/ρ < −1/3 implies acceleration of the expansion.

The conservation law ∇µTµν = 0 implies

ρ̇

ρ
= −3(1 +w)

ȧ

a
, (9)

which by virtue of the Bianchi identity can be derived from the Friedmann equation.

The counting exercise for the background becomes

20 Variables (10 metric; 10 matter)

−17 Homogeneity and Isotropy

−2 Einstein equations

−1 Conservation equations

+1 Bianchi identities

——

1 Degree of freedom

Without loss of generality this degree of freedom can be chosen to be the equation of state w(a) =

p(a)/ρ(a).
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2.6 Linearization and Eigenmodes

For the inhomogenous universe, the Einstein tensor Gµν is in general constructed out of a nonlinear

combination of metric fluctuations. Metric fluctuations typically remain small even in the presence

of larger matter fluctuations. Hence we linearize the left hand side of the Einstein equations to

obtain a set of partial differential equations that are linear in the variables.

These equations may then be decoupled into a set of ordinary differential equations by employing

normal modes under translation and rotation. The scalar, vector and tensor eigenmodes of the

Laplacian operator form a complete set

∇2Q(0) = −k2Q(0) S ,

∇2Q
(±1)
i = −k2Q(±1)

i V ,

∇2Q
(±2)
ij = −k2Q(±2)

ij T .

(10)

In a spatially flat (K = 0) universe, the eigenmodes are essentially plane waves

Q(0) = exp(ik · x) ,

Q
(±1)
i =

−i√
2
(ê1 ± iê2)i exp(ik · x) ,

Q
(±2)
ij = −

√

3

8
(ê1 ± iê2)i(ê1 ± iê2)j exp(ik · x) , (11)

where e1, e2 are unit vectors spanning the plane transverse to k.

Vector modes represent divergence-free vectors (vorticity); tensor modes represent transverse

traceless tensors (gravitational waves)

∇iQ
(±1)
i = 0 , ∇iQ

(±2)
ij = 0 , γijQ

(±2)
ij = 0 . (12)

Curl free vectors and the longitudinal components of tensors are represented with covariant deriva-

tives of the scalar and vector modes

Q
(0)
i = −k−1∇iQ

(0) ,

Q
(0)
ij = (k−2∇i∇j +

1

3
γij)Q

(0) ,

Q
(±1)
ij = − 1

2k
[∇iQ

(±1)
j +∇jQ

(±1)
i ] , (13)

For the kth eigenmode, the scalar components become

A(x) = A(k)Q(0) , HL(x) = HL(k)Q
(0) ,

δρ(x) = δρ(k)Q(0) , δp(x) = δp(k)Q(0) ,
(14)

the vectors components become

Bi(x) =

1
∑

m=−1

B(m)(k)Q
(m)
i , vi(x) =

1
∑

m=−1

v(m)(k)Q
(m)
i , (15)

and the tensors components become

HT ij(x) =
2

∑

m=−2

H
(m)
T (k)Q

(m)
ij , Πij(x) =

2
∑

m=−2

Π(m)(k)Q
(m)
ij . (16)

An arbitrary set of spatial perturbations can be formed through a superposition of the eigenmodes

given their completeness.
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2.7 Covariant Scalar Equations

The Einstein equations for the scalar modes (suppressing 0 superscripts) become

(k2 − 3K)[HL +
1

3
HT +

ȧ

a
(
B

k
− ḢT

k2
)] = 4πGa2

[

δρ+ 3
ȧ

a
(ρ+ p)

v −B

k

]

,

k2(A+HL +
1

3
HT ) +

(

d

dη
+ 2

ȧ

a

)

(kB − ḢT ) = −8πGa2pΠ ,

ȧ

a
A− ḢL − 1

3
ḢT − K

k2
(kB − ḢT ) = 4πGa2(ρ+ p)

v −B

k
,

[

2
ä

a
− 2

(

ȧ

a

)2

+
ȧ

a

d

dη
− k2

3

]

A−
[

d

dη
+
ȧ

a

]

(ḢL +
kB

3
) = 4πGa2(δp +

1

3
δρ) . (17)

The conservation equations become the continuity and Navier-Stokes equations
[

d

dη
+ 3

ȧ

a

]

δρ+ 3
ȧ

a
δp = −(ρ+ p)(kv + 3ḢL) , (18)

[

d

dη
+ 4

ȧ

a

]

(ρ+ p)
v −B

k
= δp − 2

3
(1− 3

K

k2
)pΠ+ (ρ+ p)A . (19)

In the absence of anisotropic stress, the Navier-Stokes equation is known as the Euler equation.

These equations are not independent due to the Bianchi identity. For numerical solutions it

suffices to retain 2 Einstein equations and the 2 conservation laws. The counting exercise becomes

8 Variables (4 metric; 4 matter)

−4 Einstein equations

−2 Conservation equations

+2 Bianchi identities

−2 Gauge (coordinate choice 1 time, 1 space)

——

2 Degrees of freedom

Without loss of generality we may choose the dynamical components to be those of the stress

tensor δp, Π. Microphysics defines their relationship to the density and velocity perturbations. In

fluid dynamics this is the familiar need of a prescription for viscosity and heat conduction (entropy

generation) to close the system of equations.

2.8 Covariant Vector Equations

The vector Einstein equations become

(1− 2K

k2
)(kB(±1) − Ḣ

(±1)
T ) = 16πGa2(ρ+ p)

v(±1) −B(±1)

k
,

[

d

dη
+ 2

ȧ

a

]

(kB(±1) − Ḣ
(±1)
T ) = −8πGa2pΠ(±1) , (20)

and the conservation equations become
[

d

dη
+ 4

ȧ

a

]

(ρ+ p)
v(±1) −B(±1)

k
= −1

2
(1− 2

K

k2
)pΠ(±1) . (21)
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Since gravity provides no source to vorticity, any initial vector perturbation will simply decay unless

vector anisotropic stresses are continuously generated in the matter. In the absence of nonlinearities

in the matter, e.g. from cosmological defects, vector perturbations can generally be ignored.

The counting exercise for vectors becomes

8 Variables (4 metric; 4 matter)

−4 Einstein equations

−2 Conservation equations

+2 Bianchi identities

−2 Gauge (coordinate choice 2 space))

——

2 Degrees of freedom

Without loss of generality, we can choose these to be the vector components of the stress tensor

Π(±1).

2.9 Covariant Tensor Equations

The Einstein equation for the tensor modes is

[

d2

dη2
+ 2

ȧ

a

d

dη
+ (k2 + 2K)

]

H
(±2)
T = 8πGa2pΠ(±2) , (22)

and the counting exercise becomes

4 Variables (2 metric; 2 matter)

−2 Einstein equations

−0 Conservation equations

+0 Bianchi identities

−0 Gauge (coordinate choice 1 time, 1 space)

——

2 Degrees of freedom

without loss of generality we can choose these to be represented by the tensor components of the

stress tensor Π(±2).

In the absence of anisotropic stresses and spatial curvature, the tensor equation becomes a

simple source-free gravitational wave propagation equation

Ḧ
(±2)
T + 2

ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 0 , (23)

which has solutions

H
(±2)
T (kη) = C1H1(kη) + C2H2(kη) , (24)

H1(x) ∝ x−mjm(x) ,

H2(x) ∝ x−mnm(x) ,
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where m = (1 − 3w)/(1 + 3w). If w > −1/3 then the gravitational wave amplitude is constant

above horizon x ≪ 1 and then oscillates and damps. If w < −1/3 then gravity wave oscillates

and freezes into some value. It will be useful to recall these solutions when considering the Klein

Gordon equation for scalar field fluctuations during inflation and dark energy domination.

2.10 Multicomponent universe

With multiple matter components, the Einstein equations of course remain valid but with the

associations

δρ =
∑

J

δρJ ,

(ρ+ p)v(m) =
∑

J

(ρJ + pJ)v
(m)
J ,

pΠ(m) =
∑

J

pJΠ
(m)
J , (25)

where J indexes the different components, e.g. photons, baryons, neutrinos, dark matter, dark

energy, inflaton, cosmological defects. The conservation equations remain valid for each non-

interacting subsystem. Interactions can be represented as non-ideality in the specification of the

stress degrees of freedom (e.g. viscous and entropic terms) in each subsystem or by explicitly

writing down energy and momentum exchange terms in separate conservation equations (see e.g.

§6).

3 Gauge

3.1 Semantics

The covariant equations of the last section hold true under any coordinate choice for the relation-

ship between the unperturbed FRW background and the perturbations. Choice of a particular

relationship, called a gauge choice can help simplify the equations for the physical conditions at

hand. The price to pay is that the perturbation variables are quantities that take on the meaning

of say a density perturbation or a spatial curvature perturbation only on a specific gauge – but

that is in any case unavoidable.

Since the preferred gauge for simplifying the physics can change as the universe evolves, it

is often useful to access the perturbation variables of one gauge from those of another gauge.

This operation proceeds by writing down a covariant form for gauge specific variables through

the properties of gauge transformation. It is the analogue of deriving covariant equations for the

dynamics but for the perturbation variables themselves. Since these gauge specific variables are

now thought of in a coordinate independent way, this procedure is called in the literature endowing

a variable with a “gauge invariant” meaning. Note neither the numerical values nor the physical

interpretation of the variables has changed. “Gauge invariance“ here is an operational distinction

that indicates a freedom to calculate gauge specific quantities from an arbitrary gauge. Perturbation

variables still only take on their given meaning in the given gauge. Under this definition of gauge

invariance, the perturbation variables of any fully specified gauge is gauge invariant. We will

hereafter avoid using this terminology.
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To reduce the opportunity for confusion, we will name the metric perturbations in the various

common gauges separately. We will however rely on context to distinguish between matter variables

on the various gauges.

3.2 Gauge Transformation

In an evolving inhomogeneous universe, metric and matter fluctuations take on different values in

different coordinate systems. Consider a general coordinate transformation

η = η̃ + T , (26)

xi = x̃i + Li .

Under this general transformation, the metric and stress energy tensors transform as tensors. The

elements of these tensors are the perturbation variables and their numerical values change with the

transformation.

The coordinate choice represented by (T,Li) can be decomposed into scalar and vector modes.

With L(0) = L, the scalar mode variables transform as

A = Ã− Ṫ − ȧ

a
T ,

B = B̃ + L̇+ kT ,

HL = H̃L − k

3
L− ȧ

a
T ,

HT = H̃T + kL , (27)

for the metric and

δρJ = δρ̃J − ρ̇JT,

δpJ = δp̃J − ṗJT,

vJ = ṽJ + L̇ (28)

for the matter.

For the vector mode variables

B(±1) = B̃(±1) + L̇(±1) ,

H
(±1)
T = H̃

(±1)
T + kL(±1) ,

v
(±1)
J = ṽ

(±1)
J + L̇(±1) . (29)

The tensor mode variables are invariant under the gauge transformation as are the components of

the anisotropic stress tensor.

A gauge is fully specified if there is an explicit prescription for (T,L) for scalars and (L(±1)) for

the vectors to get to the desired frame. Gauges are typically defined by conditions on the metric

or matter fluctuations. We now consider several common scalar gauge choices and their uses.
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3.3 Newtonian Gauge

The Newtonian or longitudinal gauge is defined by diagonal metric fluctuations

B = HT = 0 ,

Ψ ≡ A (Newtonian potential) ,

Φ ≡ HL (Newtonian curvature) , (30)

where Ψ plays the role of the gravitational potential in the Newtonian approximation and Φ is

the Newtonian spatial curvature. This condition completely fixes the gauge by giving explicit

expressions for the gauge transformation

L = −H̃T

k
,

T = − B̃
k

+
1

k2
d

dη
H̃T . (31)

The Einstein equations become

(k2 − 3K)Φ = 4πGa2
[

δρ+ 3
ȧ

a
(ρ+ p)

v

k

]

,

k2(Ψ + Φ) = −8πGa2pΠ . (32)

Note that for scales inside the Hubble length k(ȧ/a)−1 ≫ 1, the first equation becomes the Poisson

equation for the perturbations and if the anisotropic stress of the matter is much less than the

energy density perturbation (as in the case of non-relativistic matter), Ψ ≈ −Φ.

The conservation laws for the Jth non-interacting subsystem becomes
[

d

dη
+ 3

ȧ

a

]

δρJ + 3
ȧ

a
δpJ = −(ρJ + pJ)(kvJ + 3Φ̇) , (33)

[

d

dη
+ 4

ȧ

a

]

(ρJ + pJ)
vJ
k

= δpJ − 2

3
(1− 3

K

k2
)pJΠJ + (ρJ + pJ)Ψ . (34)

Aside from the Φ̇ term, these are the usual relativistic fluid equations. Since Φ represents a

perturbation to the scale factor, Φ̇ represents the perturbation to the redshifting of the density in

an expanding universe [see Eqn. (9)].

The Newtonian gauge is useful since it most closely corresponds to Newtonian gravity. A

drawback is that as k(ȧ/a)−1 → 0 there are relativistic corrections to the Poisson equation which

make a straightforward implementation of the equations numerically unstable. Likewise in this

limit, the metric effects on density though Φ̇ muddle the interpretation of the conservation law.

3.4 Comoving Gauge

The comoving gauge is defined by

B = v (T 0
i = 0) ,

HT = 0 ,

ξ = A ,

ζ = HL (comoving curvature) , (35)
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which completely fixes the gauge through

T = (ṽ − B̃)/k ,

L = −H̃T/k . (36)

The Einstein equations become

ζ̇ +Kv/k − ȧ

a
ξ = 0 ,

v̇ + 2
ȧ

a
v + k(ζ + ξ) = −8πGa2pΠ , (37)

and the conservation laws become
[

d

dη
+ 3

ȧ

a

]

δρJ + 3
ȧ

a
δpJ = −(ρJ + pJ)(kvJ + 3ζ̇) , (38)

[

d

dη
+ 4

ȧ

a

]

(ρJ + pJ)
vJ − v

k
= δpJ − 2

3
(1− 3

K

k2
)pJΠJ + (ρJ + pJ)ξ . (39)

In particular the Navier-Stokes equation for the total matter becomes an algebraic relation between

total stress fluctuations and the potential

(ρ+ p)ξ = −δp+ 2

3

(

1− 3K

k

)

pΠ (40)

so that these equations are a complete set.

Eliminating ξ allows us to write a conservation law for the comoving curvature

ζ̇ +Kv/k =
ȧ

a

[

− δp

ρ+ p
+

2

3

(

1− 3K

k2

)

p

ρ+ p
Π

]

. (41)

On scales well below the curvature scale, this equation states that the comoving curvature only

changes in response to stress gradients which move matter around. This statement corresponds to

the non-relativistic intuition that causality should prohibit evolution above the horizon scale. This

conservation law is the fundamental virtue of the comoving gauge. An auxiliary consideration is

that the comoving gauge variables are numerically stable.

From an alternate gauge choice, one can construct the Newtonian variables via the gauge

transformation relation

ζ = H̃L +
1

3
H̃T − ȧ

a

ṽ − B̃

k
. (42)

For example, since in the Newtonian gauge HT and v take on the same values

Φ = ζ +
ȧ

a

v

k

= ζ +
2

3

1

1 + w

1

1 +K(ȧ/a)−2
[Ψ− Φ̇/(ȧ/a)] . (43)

If the curvature is negligible, stress perturbations are negligible, and the equation of state w is

constant

Φ =
3 + 3w

5 + 3w
ζ , (44)
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so that Φ tends to be of the same order as ζ but changes when the equation of state changes.

The Newtonian curvature can also be obtained through the comoving density perturbations via

(k2 − 3K)Φ = 4πGa2δρ
∣

∣

∣

comoving
, (45)

which has the added benefit of taking the form of a simple non-relativistic Poisson equation. This

Poisson equation allows us to rewrite the conservation equation for the comoving curvature in the

case of negligible background curvature and anisotropic stress as

d ln ζ

d ln a
= −Φ

ζ

2

3 + 3w
k2(ȧ/a)−2 δp

δρ

∣

∣

∣

comoving

≈ − 2

5 + 3w
k2(ȧ/a)−2 δp

δρ

∣

∣

∣

comoving
. (46)

For adiabatic stresses where δp = c2aδρ, the change in the comoving curvature is negligible for

cak(ȧ/a)
−1 ∼ cakη ≪ 1, i.e. on scales below the sound horizon.

3.5 Synchronous Gauge

The synchronous gauge confines the metric perturbations to the spatial degrees of freedom

A = B = 0 ,

ηT ≡ −1

3
HT −HL ,

hL = 6HL ,

T = a−1

∫

dηaÃ+ c1a
−1 ,

L = −
∫

dη(B̃ + kT ) + c2 . (47)

The metric conditions do not fully specify the gauge and need to be supplemented by a definition

of (c1, c2). Usually one defines c1 through the condition that the dark matter has zero velocity

in the initial conditions and c2 through the setting of the initial curvature perturbation. With a

completely specified gauge condition, the synchronous gauge is as valid as any other gauge. The

variables ηT and hL form a stable system for numerical solutions and hence the synchronous gauge

has been extensively used in numerical solutions.

The Einstein equations give

η̇T − K

2k2
(ḣL + 6η̇T ) = 4πGa2(ρ+ p)

v

k
,

ḧL +
ȧ

a
ḣL = −8πGa2(δρ+ 3δp) , (48)

while the conservation equations give
[

d

dη
+ 3

ȧ

a

]

δρJ + 3
ȧ

a
δpJ = −(ρJ + pJ)(kvJ +

1

2
ḣL) , (49)

[

d

dη
+ 4

ȧ

a

]

(ρJ + pJ)
vJ
k

= δpJ − 2

3
(1− 3

K

k2
)pJΠJ . (50)

Note that the lack of a potential in synchronous gauge implies that there are no gravitational forces

in the Navier-Stokes equation. Hence for stress free matter like cold dark matter, zero velocity

initially implies zero velocity always.
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3.6 Spatially Flat Gauge:

Conversely the spatially flat gauge eliminates spatial metric perturbations

HL = HT = 0 ,

αF ≡ A ,

βF ≡ B ,

T =

(

ȧ

a

)−1(

H̃L +
1

3
H̃T

)

.

L = −H̃T/k , (51)

The Einstein equations give

β̇F + 2
ȧ

a
βF + kαF = −8πGa2pΠ/k ,

ȧ

a
αF − K

k
βF = 4πGa2(ρ+ p)

v − βF
k

, (52)

and the conservation equations give
[

d

dη
+ 3

ȧ

a

]

δρJ + 3
ȧ

a
δpJ = −(ρJ + pJ)kvJ , (53)

[

d

dη
+ 4

ȧ

a

]

(ρJ + pJ)
vJ − βF

k
= δpJ − 2

3
(1− 3

K

k2
)pJΠJ + (ρJ + pJ)αF . (54)

The spatially flat gauge is useful in that it is the complement of the comoving gauge. In particular

the comoving curvature is constructed from Eqn. (42) as

ζ = − ȧ
a

v − βF
k

. (55)

This gauge is most often used in inflationary calculations where v−βF is closely related to pertur-

bations in the inflaton field.

3.7 Uniform Density Gauge:

Finally, one can eliminate the density perturbation δρ = 0 with the choice

HT = 0 ,

ζδ ≡ HL

Bδ ≡ B

Aδ ≡ A

T =
δρ̃

ρ̇

L = −H̃T /k (56)

The Einstein equations become

(k2 − 3K)[ζδ +
ȧ

a

Bδ
k
] = 12πGa2

ȧ

a
(ρ+ p)

v −Bδ
k

,

ȧ

a
Aδ − ζ̇c −

K

k
Bδ = 4πGa2(ρ+ p)

v −Bδ
k

, (57)
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from which Aδ may be eliminated in favor of ζδ and Bδ. The conservation equations become

[

d

dη
+ 3

ȧ

a

]

δρJ + 3
ȧ

a
δpJ = −(ρJ + pJ)(kvJ + 3ζ̇δ) ,

[

d

dη
+ 4

ȧ

a

]

(ρJ + pJ)
vJ −Bδ

k
= δpJ − 2

3
(1− 3

K

k2
)pJΠJ + (ρJ + pJ)Aδ . (58)

Notice that the continuity equation for the net density perturbation becomes a conservation law

ζ̇δ = − ȧ
a

δp

ρ+ p
− 1

3
kv . (59)

Furthermore since δρ = 0, δp is the non-adiabatic stress [see Eqn. (46)] and the conservation law

resembles that of the comoving curvature [see Eqn. (41)]. More specifically, the two curvatures are

related by

ζδ = ζ +
1

3

δρ̃

(ρ+ p)

∣

∣

∣

comoving
. (60)

By the same argument as that following Eqn. (46), these two curvatures coincide outside the horizon

if the stresses are adiabatic. Hence they are often used interchangeably in the literature. It bears

an even simpler relationship to density fluctuations in the spatially flat gauge

ζδ =
1

3

δρ̃

(ρ+ p)

∣

∣

∣

flat
. (61)

For a single particle species δρ/(ρ + p) = δn/n, the number density fluctuation. These simple

relationships make ζδ and related variables useful for the consideration of relative number density

or isocurvature perturbations in a multicomponent system.

4 Inflationary Perturbations

4.1 Horizon, Flatness, Relics Redux

Inflation was originally proposed to solve the horizon, flatness and relic problem: that the cosmic

microwave background (CMB) temperature is isotropic across scales larger than Hubble length

at recombination; that the spatial curvature scale is at least comparable to the current Hubble

length; that the energy density is not dominated by defect relics from phase transitions in the early

universe.

Measurements of fluctuations in the CMB imply a stronger version of the problems. They

imply spatial curvature fluctuations above the Hubble length and rule out cosmological defects as

the primary source of structure in the universe, i.e. they are absent as a significant component of

the perturbations as well as the background. The conservation of the comoving curvature above

the comoving Hubble length (ȧ/a)−1 ≪ 1 leaves a paradox as to their origin. As long as the Hubble

length monotonically increases, there will always be a time η ∼ k−1 before which ζ cannot have

been generated dynamically. For sufficiently small k, this time exceeds the recombination epoch at

a ∼ 10−3 where the CMB fluctuations are formed.

The comoving Hubble length decreases if ρ scales more slowly than a−2 or w < −1/3, i.e. if

the expansion accelerates [see Eqn. (7-8)]. Vacuum energy or a cosmological constant can provide

for acceleration but not for re-entry into the matter-radiation dominated expansion. On the other
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hand, a scalar field has both a potential and kinetic energy and provides a mechanism by which

acceleration can end. A major success of the inflationary model is that the same mechanism that

solves the horizon, flatness and relic problems by making the observed universe today much smaller

than the Hubble length at the beginning of inflation predicts super-Hubble curvature perturbations

from quantum fluctuations in the scalar field. The evolution of scalar field fluctuations can be

usefully described in the gauge covariant framework.

4.2 Scalar Fields

The covariant perturbation theory described in the previous sections also applies to the inflationary

universe. The stress-energy tensor of a scalar field rolling in the potential V (φ) is

T µν = ∇µϕ∇νϕ− 1

2
(∇αϕ∇αϕ+ 2V )δµν . (62)

For the backround φ̄ ≡ φ0 and

ρφ =
1

2
a−2φ̇20 + V , pφ =

1

2
a−2φ̇20 − V . (63)

If the scalar field is kinetic energy dominated wφ = pφ/ρφ → 1, whereas if it is potential energy

dominated wφ = pφ/ρφ → −1.

The equation of motion for the scalar field is simply the energy conservation equation

ρ̇φ = −3(ρφ + pφ)
ȧ

a
, (64)

re-written in terms of φ0 and V

φ̈0 + 2
ȧ

a
φ̇0 + a2V ′ = 0 . (65)

Likewise for the perturbations φ = φ0 + φ1

δρφ = a−2(φ̇0φ̇1 − φ̇20A) + V ′φ1 ,

δpφ = a−2(φ̇0φ̇1 − φ̇20A)− V ′φ1 ,

(ρφ + pφ)(vφ −B) = a−2kφ̇0φ1 ,

pφπφ = 0 , (66)

the continuity equation implies

φ̈1 = −2
ȧ

a
φ̇1 − (k2 + a2V ′′)φ1 + (Ȧ− 3ḢL − kB)φ̇0 − 2Aa2V ′ , (67)

while the Euler equation expresses an identity.

4.3 Gauge Choice

We are interested in inflation as a means of generating comoving curvature perturbations and so

naively it would seem that inflationary perturbations should be calculated in the comoving gauge.

However for a scalar field dominated universe, the comoving gauge sets B = v = vφ and hence

φ1 = 0. In the comoving gauge, the scalar field carries no perturbations by definition! This fact

will be useful for treating scalar fields as a dark energy candidate in the next section: in the absence
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of scalar field fluctuations, energy density and pressure perturbations come purely from the kinetic

terms so that δpφ = δρφ yielding stable perturbations within the Hubble length.

The gauge covariant approach allows us to compute the comoving curvature from variables in

another gauge. Since a scalar field transforms as a scalar field

φ1 = φ̃1 − φ̇0T (68)

the comoving gauge is obtained from an arbitrary gauge by the time slicing change T = φ̃1/φ̇0.

The comoving curvature becomes

ζ = H̃L − k

3
L− ȧ

a
T ,

= H̃L +
H̃T

3
− ȧ

a

φ̃1

φ̇0
, (69)

and hence the simplest gauge from which to calculate the comoving curvature is one in which

HL = HT = 0, i.e. the spatially flat gauge. In this case

ζ = − ȧ
a

φ̃1

φ̇0
(70)

and so a calculation of φ̃1 trivially gives ζ. Notice that the proportionality constant involves φ̇0.

The slower the background field is rolling, the larger the curvature fluctuation implied by a given

field fluctuation. The reason is that the time surfaces must be warped by a correspondingly larger

amount to compensate φ̃1. We will hereafter drop the tildes and assume that the scalar field

fluctuation applies to the spatially flat gauge.

4.4 Perturbation Evolution

In the spatially flat gauge the scalar field equation of motion can be written in a surprisingly

compact form. Beginning with the spatially flat gauge equation

φ̈1 = −2
ȧ

a
φ̇1 − (k2 + a2V ′′)φ1 + (α̇F − kβF )φ̇0 − 2αFa

2V ′ .

the metric terms may be eliminated through Einstein equations

αF = 4πGa2
(

ȧ

a

)−1

(ρφ + pφ)(vφ − βF )/k

= 4πG

(

ȧ

a

)−1

φ̇0φ1 ,

and (k2 ≫ |K|)

kβF = 4πGa2
(

ȧ

a

)−1 [

δρφ + 3
ȧ

a
(ρφ + pφ)(vφ − βF )/k

]

= 4πG

[

(

ȧ

a

)−1

(φ̇0φ̇1 + a2V ′φ1)−
(

ȧ

a

)−2

(4πGφ̇0)
2φ̇0φ1 + 3φ̇0φ1

]

(71)
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so that αF , α̇F − kβF ∝ φ1 with proportionality that depends only on the background evolution,

i.e. the Einstein and scalar field equations reduce to a single second order differential equation with

the form of an expansion damped oscillator

φ̈1 + 2
ȧ

a
φ̇1 + [k2 + f(η)]φ1 . (72)

The expression for f(η) can be given explicitly in terms of the parameters

ǫ ≡ 3

2
(1 + wφ) =

3
2 φ̇

2
0/a

2V

1 + 1
2 φ̇

2
0/a

2V
, (73)

which represents the deviation from a de Sitter expansion and

δ ≡ φ̈0

φ̇

(

ȧ

a

)−1

− 1 , (74)

which represents the deviation from the overdamped limit of d2φ0/dt
2 = 0, where dt = adη. When

small, these quantities are known as the slow-roll parameters. The Friedmann equations become

(

ȧ

a

)2

= 4πGφ̇20ǫ
−1 ,

d

dη

(

ȧ

a

)

=

(

ȧ

a

)2

(1− ǫ) , (75)

and the background field equation becomes

φ̇0
ȧ

a
(3 + δ) = −a2V ′ , (76)

Together they yield the equation of motion for ǫ

ǫ̇ = 2ǫ(δ + ǫ)
ȧ

a
. (77)

It is straightforward now to show that defining u ≡ aφ the perturbation equation becomes

ü+ [k2 + g(η)]u = 0 , (78)

where

g(η) ≡ f(η) + ǫ− 2 = −
(

ȧ

a

)2

[2 + 3δ + 2ǫ+ (δ + ǫ)(δ + 2ǫ)]− ȧ

a
δ̇

= − z̈
z

(79)

and

z ≡ a

(

ȧ

a

)−1

φ̇0 . (80)

For any background field, Eqn. (78) can be solved to yield the evolution of the scalar field fluctua-

tion.
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4.5 Slow Roll Limit

In the slow roll limit ǫ, δ ≪ 1 and the calculation simplifies dramatically. The slow roll parameters

are usually written in terms of the derivatives of the potential

ǫ =
3
2 φ̇

2
0/a

2V

1 + 1
2 φ̇

2
0/a

2V
≈ 1

16πG

(

V ′

V

)2

,

δ =
φ̈0

φ̇0

(

ȧ

a

)−1

− 1 ≈ ǫ− 1

8πG

V ′′

V
. (81)

The slow roll limit requires a very flat potential.

In the slow roll limit, the perturbation equation is simply

ü+ [k2 − 2

(

ȧ

a

)2

]u = 0 . (82)

With the conformal time measured from the end of inflation

η̃ = η − ηend ,

η̃ =

∫ a

aend

da

Ha2
≈ − 1

aH
, (83)

where aH = ȧ/a, the equation becomes

ü+ [k2 − 2

η̃2
]u = 0 . (84)

This equation has the exact solution

u = A(k +
i

η̃
)e−ikη̃ , (85)

where A is a constant. For |kη̃| ≫ 1 (early times, inside Hubble length) the field behaves as free

oscillator

lim
|kη̃|→∞

u = Ake−ikη̃ . (86)

For |kη̃| ≪ 1 (late times, ≫ Hubble length), the fluctuation freezes in

lim
|kη̃|→0

u =
i

η̃
A = iHaA ,

φ1 = iHA ,

ζ = −iHA
(

ȧ

a

)

1

φ̇0
,

which in the slow-roll approximation can be simplified through
(

ȧ

a

)2 1

φ̇20
=

8πGa2V

3

3

2a2V ǫ
=

4πG

ǫ
=

4π

m2
plǫ

, (87)

yielding the comoving curvature power spectrum

∆2
ζ ≡

k3|ζ|2
2π2

=
2k3

π

H2

ǫm2
pl

A2 . (88)

All that remains is to set the normalization constant A through quantum fluctuations of the free

oscillator.



22 Perturbation Theory

4.6 Quantum Fluctuations

Inside the Hubble length, the classical equation of motion for u is the simple harmonic oscillator

equation

ü+ k2u = 0 , (89)

which can be quantized as

û = u(k, η)â + u∗(k, η)â† , (90)

and normalized to zero point fluctuations in the Minkowski vacuum [û, dû/dη] = i,

u(k, η) =
1√
2k
e−ikη̃ . (91)

Thus A = (2k3)1/2 and curvature power spectrum becomes

∆2
ζ ≡

1

π

H2

ǫm2
pl

. (92)

The curvature power spectrum is scale invariant to the extent thatH is constant during inflation.

Evolution in H produces a tilt in the spectrum

d ln∆2
ζ

d ln k
≡ nS − 1

= 2
d lnH

d ln k
− d ln ǫ

d ln k
, (93)

evaluated at Hubble crossing when the fluctuation freezes

d lnH

d ln k

∣

∣

−kη̃=1
=

k

H

dH

dη̃

∣

∣

−kη̃=1

dη̃

dk

∣

∣

−kη̃=1
(94)

=
k

H
(−aH2ǫ)

∣

∣

−kη̃=1

1

k2
= −ǫ , (95)

where aH = −1/η̃ = k. Finally with

d ln ǫ

d ln k
= − d ln ǫ

d ln η̃
= −2(δ + ǫ)

ȧ

a
η̃ = 2(δ + ǫ) , (96)

the tilt becomes

nS = 1− 4ǫ− 2δ (97)

in the slow-roll approximation.

4.7 Gravitational Waves

Any nearly massless degree of freedom will acquire quantum fluctuations during inflation. The

inflaton is only special in that it carries the energy density of the universe. Other degrees of

freedom result in isocurvature perturbations. In particular consider the gravitational wave degrees

of freedom. Their classical equation of motion resembles the scalar field equation

Ḧ
(±2)
T + 2

ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 0 , (98)
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and hence acquires fluctuations in same manner as φ. Setting the normalization with

φ1 → H
(±2)
T

√

3

16πG
, (99)

the gravitational wave power spectrum in each component (polarization components H
(±2)
T = (h+±

ih×)/
√
6) is

∆2
H =

16πG

3 · 2π2
H2

2
=

4

3π

H2

m2
pl

. (100)

The gravitational wave fluctuations are scale invariant with power ∝ H2 ∝ V ∝ E4
i where Ei

is the energy scale of inflation. A detection of gravitational waves from inflation would yield a

measurement of the energy scale of inflation.

Finally the tensor tilt

d ln∆2
H

d ln k
≡ nT = 2

d lnH

d ln k
= −2ǫ , (101)

which yields a consistency relation between tensor-scalar ratio and tensor tilt

∆2
H

∆2
ζ

=
4

3
ǫ = −2

3
nT . (102)

5 Dark Matter and Energy

5.1 Degrees of Freedom

A dark component interacts with ordinary matter only through gravity and hence its observable

properties are completely specified by the degrees of freedom in its stress-energy tensor. We have

seen that without loss of generality these can be taken as the elements of the symmetric 3×3 stress

tensor. Two of these elements represent the scalar degrees of freedom that influence the formation

of structure. In the background only one of these remain due to isotropy leaving only the pressure

pD of the dark component or equivalently the equation of state wD = pD/ρD. Let us generalize

the concept of equations of state to the fluctuations in the stress tensor.

5.2 Generalized Equations of State

It is convenient to separate out the non-adiabatic stress or entropy contribution

pDΓD = δpD − c2DaδρD , (103)

where the adiabatic sound speed is

c2Da ≡
δp

δρ

∣

∣

∣

ΓD=0
=
ṗD
ρ̇D

= wD − 1

3

ẇD
1 +wD

(

ȧ

a

)−1

. (104)

Therefore, pD = wDρD does not imply δpD = wDδρD and furthermore if ΓD 6= 0, the function

wD(a) does not completely specify the pressure fluctuation. For the dark energy, wD < 0 and is

slowly-varying compared with the expansion rate (ȧ/a) such that c2Da < 0 The adiabatic pressure
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fluctuation produces accelerated collapse rather than support for the density perturbation. There-

fore a dynamical dark energy component must have substantial non-adiabatic stress fluctuations

ΓD 6= 0 to be phenomenologically viable.

One cannot simply parameterize the pressure fluctuation by a non-adiabatic sound speed

δpD/δρD since this is not a gauge invariant quantity and the non-adiabatic stress fluctuation is.

The gauge covariant approach allows us to define the equation of state covariantly.

As we have seen the comoving gauge gives the closest general relativistic analogue to non-

relativistic physics. The generalization of the comoving gauge to an individual dark component has

the conditions

B = vD , HT = 0 , (105)

which we will call the rest gauge since T 0
i = 0. Taking

δp

δρ

∣

∣

∣

rest
= c2D , (106)

we obtain via gauge transformation

δpD = c2DδρD − (c2D ρ̇D − ṗD)
vD −B

k

= c2DδρD + 3(1 + wD)
ȧ

a
ρD(c

2
D − c2Da)

vD −B

k
, (107)

yielding a manifestly gauge invariant non-adiabatic stress

pDΓD = (c2D − c2Da)

[

δρD + 3(1 + wD)
ȧ

a
ρD

vD −B

k

]

. (108)

The anisotropic stress can also affect the density perturbations. A familiar example is that

of a fluid, where it represents viscosity and damps density perturbations. More generally, the

anisotropic stress component is the amplitude of a 3-tensor that is linear in the perturbation. A

natural choice for its source is kvD, the amplitude of the velocity shear tensor ∂ivjD. However it must

also be gauge invariant and generated by the corresponding shear term in the metric fluctuation

HT . Gauge transforming from a gauge with HT = 0 yields an invariant source of kvD− ḢT . These

requirements are satisfied by

(

d

dη
+ 3

ȧ

a

)

wDπD = 4c2Dv(kvD − ḢT ) . (109)

5.3 Examples

Cold dark matter provides a trivial example of a dark component. Here stress fluctuations are

negligible compared with the rest energy density and so wCDM = c2D = c2Dv = 0. Scalar field

dark energy provides another simple example. Here the competition between kinetic and potential

energy can drive wφ < 0. As we have already seen a slowly rolling scalar field has c2φ = 1 by virtue

of the absence of scalar field fluctuations in the rest gauge. In this case the fluctuations bear only

the kinetic contributions and so the relationship is exact.

The non-adiabatic sound speed c2D is also useful in characterizing k-essence, a scalar field with

a non-canonical kinetic term. Since in the rest gauge the potential fluctuation vanishes, the sound

speed directly reflects the modification to the kinetic term. A special case occurs when the kinetic



25

Type wD c2D c2Dv

CDM 0 0 0
Λ -1 – –

Massless ν 1/3 1/3 1/3
Tight coupled γ 1/3 1/3 0
Hot/Warm DM 1/3 → 0 same same
Quintessence variable 1 0
k-essence variable variable 0

Phantom energy < −1 1 0
Decaying ν 1/3 → 0 → 1/3 same same
Axions 0 small 0

Fuzzy Dark Matter 0 scale dependent 0

term has the wrong sign. Here wφ < −1 and the energy density increases as the universe expands.

This type of matter has been dubbed phantom dark energy.

The viscosity term is relevant for dark radiation components. Massless neutrinos can be ap-

proximated by wν = c2ν = c2νv = 1/3. A massive neutrino has an equation of state that goes from

wmν = 1/3 to 0 as the neutrinos become non-relativistic. Fitting to the numerical integration of

the distribution gives

wmν =
1

3

[

1 + (a/anr)
2p
]−1/p

, (110)

with p = 0.872 and anr = 6.32 × 10−6/Ωνh
2. We can model its behavior as c2mν = c2mνv = wD.

A summary of the phenomenological parameterization of various particle candidates are given

in the table.

5.4 Initial Conditions

With the equations of motion for the dark components defined, all that remains is to specify the

initial conditions. Conservation of the comoving curvature outside the Hubble length allows us to

ignore the microphysics of the intermediate reheating phase between inflation and the radiation

dominated universe. One can then simply take the initial conditions for structure formation to be

in the radiation dominated universe. Accounting for the neutrino anisotropic stress as described

in the previous section, the initial conditions for the total perturbations in the comoving gauge

become

δ = Aδ(kη)
2ζ ,

v = Av(kη)ζ ,

Π = AΠ(kη)
2ζ , (111)



26 Perturbation Theory

where δ = δρ/ρ, and η is now understood as the conformal time elapsed after the inflationary

epoch. The constants are

Aδ =
4

9

1 + 2fν/15

1 + 4fν/15
(1− 3K/k2) ,

Av = −1

3

1

1 + 4fν/15
,

AΠ = − 4

15

1

1 + 4fν/15
, (112)

and

fν =
ρν

ργ + ρν
. (113)

The dark component initial conditions can then be determined by detailed balance

δJ = AδJ (kη)
2ζ

vJ − v = A∆vJ (kη)
3ζ ,

ΠJ = AΠJ(kη)
2ζ (114)

with

AΠJ =
c2Jv
wJ

AΠ ,

A∆vJ =

2
15 [2− 3(wJ − c2J)](fν − 4

1+wJ
c2Jv)− [2(c2J − 1

3) + (wJ − c2J)](1 +
2
15fν)

(4− 3c2J )[2− 3(wJ − c2J)] + 9(c2J − c2Ja)c
2
J

(1− 3
K

k2
)Av ,

AδJ =
3

4
(1 + wJ)

Aδ − 12(c2J − c2Ja)A∆vJ

1− 3(wJ − c2J)/2
. (115)

These initial conditions apply to all particle species J , including the photons and neutrinos, save

that for the baryons rapid Thomson scattering with the photons sets vb = vγ . In fact for most

numerical purposes one can simply set vJ − v = 0 in the initial conditions and let the velocity

differences arise dynamically in the integration. The initial conditions in an arbitrary gauge can be

established from these relations and the gauge transformation properties of the perturbations.

6 Cosmic Microwave Background

6.1 Boltzmann Equation

The gauge covariant formalism is useful for CMB studies as well. The interpretation of CMB

anisotropy formation is simplest in the Newtonian gauge where the manifestations of gravitational

redshift and infall correspond to Newtonian intuition. The numerical solution of the perturbation

equations is best handled under the comoving or synchronous gauge where the fundamental pertur-

bation variables are stable. The link to inflationary initial conditions is best seen in the comoving

gauge. The gauge covariant approach allows one to calculate in one gauge and interpret in or relate

to another.

Most of the physics of CMB perturbation evolution is contained in the general discussion of §2.
However the cosmic microwave background differs from the dark components in that it undergoes
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interactions with the baryons that can exchange energy and momentum. Thus the conservation

law for its stress energy tensor must be supplemented with an interaction term. CMB observable

properties are also not the energy density and velocity perturbations but the higher order angular

distribution of its temperature and polarization.

Generally the CMB is described by the phase space distribution function photons in each of the

two polarization states fa(x,q, η), where x is the comoving position and q is the photon momentum.

The evolution of the distribution function under gravity and collisions is governed by the Boltzmann

equation
d

dη
fa,b = C[fa, fb] , (116)

where C denotes the collision term.

In absence of collisions, the Boltzmann equation becomes the Liouville equation. Rewriting the

variables in terms of the photon propagation direction n̂,

d

dη
fa(x, n̂, q, η) = ḟa + ni∇ifa + q̇

∂

∂q
fa = 0 . (117)

The last term represents the gravitational redshifting (or Sachs-Wolfe effect) of the photons under

the metric and is given by the geodesic equation as

q̇

q
= − ȧ

a
− 1

2
ninjḢT ij − ḢL + niḂi − ni∇iA . (118)

We have in fact already derived these gravitational effects in the general covariant perturbation

formalism. To establish this fact note that the stress energy tensor of the photons is the integral

of the photon distribution function over momentum states

T µν =

∫

d3q

(2π)3
qµqν

E
(fa + fb) . (119)

The Liouville equation then expresses the conservation of the stress-energy tensor. Given that the

CMB distribution is observed to be close to blackbody, it is suffices to calculate the evolution of

these integrated quantities. In particular let us define the temperature perturbation

Θ(x, n̂, η) =
1

4
δγ =

1

4ργ

∫

q3dq

2π2
(fa + fb)− 1 (120)

and likewise for the linear polarization states Q and U as the temperature differences between

the polarization states. The redshift terms then become the metric terms in the continuity and

Navier-Stokes equations.

6.2 Eigenmodes

As in the case of the purely spatial perturbations, we decompose the temperature and polarization

in normal modes of the spatial and angular distributions. For the k-th spatial eigenmode

Θ(x, n̂, η) =
∑

ℓm

Θ
(m)
ℓ Gmℓ (k,x, n̂) ,

[Q± iU ](x, n̂, η) =
∑

ℓm

[E
(m)
ℓ ± iB

(m)
ℓ ]±2G

m
ℓ (k,x, n̂) . (121)
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They are generated by recursion (0G = G)

ni( sG
m
ℓ )|i =

q

2ℓ+ 1

[

sκ
m
ℓ ( sG

m
ℓ−1)− sκ

m
ℓ+1( sG

m
ℓ+1)

]

− i
qms

ℓ(ℓ+ 1) sG
m
ℓ , (122)

where

q2 = k2 + (|m|+ 1)K ,

sκ
m
ℓ =

√

[

(ℓ2 −m2)(ℓ2 − s2)

ℓ2

] [

1− ℓ2

q2
K

]

. (123)

The lowest order modes begin the recursion and are related to the spatial harmonics as

0G
m
j = ni1 . . . ni|m|Q

(m)
i1...i|m|

,

±2G
m
2 ∝ (m̂1 ± im̂2)

i1(m̂1 ± im̂2)
i2Q

(m)
i1i2

, (124)

where m̂1, m̂2 span the plane perpendicular to n̂. The normalization is set so that

sG
m
ℓ (0, 0, n̂) = (−i)ℓ

√

4π

2ℓ+ 1 sY
m
ℓ (n̂) . (125)

Here the spin spherical harmonics sY
m
ℓ are the eigenfunctions of the 2D Laplace operator on a

rank s tensor. They are given explicitly by rotation matrices as

sY
m
ℓ (θ, φ) =

√

2ℓ+ 1

4π
Dℓ

−ms(φ, θ, 0) . (126)

The meaning of these modes becomes clear in a spatially flat cosmology. Here the modes are

simply the direct product of plane waves and spin-spherical harmonics

Gmℓ (k,x, n̂) ≡ (−i)ℓ
√

4π

2ℓ+ 1
Y m
ℓ (n̂) exp(ik · x) ,

±2G
m
ℓ (k,x, n̂) ≡ (−i)ℓ

√

4π

2ℓ+ 1
±2Y

m
ℓ (n̂) exp(ik · x) . (127)

The main content of the Liouville equation is purely geometrical and describes the projection of

inhomogeneities into anisotropies. Photon propagation takes gradients in the spatial distribution

and converts them to anisotropy as

n̂ · ∇eik·x = in̂ · keik·x = i

√

4π

3
kY 0

1 (n̂)e
ik·x . (128)

This dipole term adds to angular dependence through the addition of angular momentum

√

4π

3
Y 0
1 Y

m
ℓ =

κmℓ
√

(2ℓ+ 1)(2ℓ − 1)
Y m
ℓ−1 +

κmℓ+1
√

(2ℓ+ 1)(2ℓ + 3)
Y m
ℓ+1 , (129)

where κmℓ = sκ
m
ℓ =

√
ℓ2 −m2 is related to the Clebsch-Gordon coefficients.
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6.3 Collision Term

The dominant collision process for CMB photons is Thomson scattering off of free electrons which

has the differential cross section
dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT , (130)

where Ê′ and Ê denote the incoming and outgoing directions of the electric field or polarization

vector.

To evaluate the collision term we begin in the electron rest frame and in a coordinate system

fixed by the scattering plane, spanned by incoming and outgoing directional vectors −n̂′ · n̂ = cos β,

where β is the scattering angle. Denoting Θ‖ as the in-plane polarization temperature fluctuation

and Θ⊥ as the perpendicular polarization state, we obtain the geometrical content of the transfer

equation

Θ‖ ∝ cos2 βΘ′
‖, Θ⊥ ∝ Θ′

⊥ , (131)

where the proportionality reflects the scattering rate

τ̇ = neσTa . (132)

To calculate the Stokes parameters in this basis, we also need to calculate the polarization states

with axes rotated by 45◦

Ê1 =
1√
2
(Ê‖ + Ê⊥) , Ê2 =

1√
2
(Ê‖ − Ê⊥) , (133)

yielding the transfer

Θ1 ∝ |Ê1 · Ê1|2Θ′
1 + |Ê1 · Ê2|2Θ′

2

∝ 1

4
(cos β + 1)2Θ′

1 +
1

4
(cos β − 1)2Θ′

2

Θ2 ∝ |Ê2 · Ê2|2Θ′
2 + |Ê2 · Ê1|2Θ′

1

∝ 1

4
(cos β + 1)2Θ′

2 +
1

4
(cos β − 1)2Θ′

1 . (134)

Now the transfer properties of the Stokes parameters

Θ ≡ 1

2
(Θ‖ +Θ⊥), Q ≡ 1

2
(Θ‖ −Θ⊥), U ≡ 1

2
(Θ1 −Θ2) (135)

arranged in a vector T ≡ (Θ, Q+ iU , Q− iU) becomes

T ∝ S(β)T′ , (136)

S(β) =
3

4





cos2 β + 1 −1
2 sin

2 β −1
2 sin

2 β
−1

2 sin
2 β 1

2(cos β + 1)2 1
2(cos β − 1)2

−1
2 sin

2 β 1
2(cos β − 1)2 1

2(cos β + 1)2



 ,

where the normalization factor is set by photon conservation in the scattering.
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Finally convert the the polarization quantities referenced to the scattering basis to a fixed basis

on the sky by noting that under a rotation T′ = R(ψ)T where

R(ψ) =





1 0 0
0 e−2iψ 0
0 0 e2iψ



 , (137)

giving the scattering matrix

R(−γ)S(β)R(α) =

1

2

√

4π

5







Y 0
2 (β, α) + 2

√
5Y 0

0 (β, α) −
√

3
2Y

−2
2 (β, α) −

√

3
2Y

2
2 (β, α)

−
√
6 2Y

0
2 (β, α)e

2iγ 3 2Y
−2
2 (β, α)e2iγ 3 2Y

2
2 (β, α)e

2iγ

−
√
6−2Y

0
2 (β, α)e

−2iγ 3−2Y
−2
2 (β, α)e−2iγ 3−2Y

2
2 (β, α)e

−2iγ






, (138)

where α, γ are the angles required to rotate into and out of the scattering frame.

Finally, by employing the addition theorem for spin spherical harmonics

∑

m

s1
Y m∗
ℓ (n̂′) s2

Y m
ℓ (n̂) = (−1)s1−s2

√

2ℓ+ 1

4π s2
Y −s1
ℓ (β, α)eis2γ (139)

the scattering in the electron rest frame into the Stokes states becomes

Cin[T] = τ̇

∫

dn̂′

4π
R(−γ)S(β)R(α)T(n̂′)

= τ̇

∫

dn̂′

4π
(Θ′, 0, 0) +

1

10
τ̇

∫

dn̂′
2

∑

m=−2

P(m)(n̂, n̂′)T(n̂′) , (140)

where the quadrupole coupling term is

P(m)(n̂, n̂′) =







Y m∗
2 (n̂′)Y m

2 (n̂) −
√

3
2 2Y

m∗
2 (n̂′)Y m

2 (n̂) −
√

3
2 −2Y

m∗
2 (n̂′)Y m

2 (n̂)

−
√
6Y m∗

2 (n̂′) 2Y
m
2 (n̂) 3 2Y

m∗
2 (n̂′) 2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′) 2Y

m
2 (n̂)

−
√
6Y m∗

2 (n̂′)−2Y
m
2 (n̂) 3 2Y

m∗
2 (n̂′)−2Y

m
2 (n̂) 3−2Y

m∗
2 (n̂′)−2Y

m
2 (n̂)






. (141)

The full scattering matrix involves difference of scattering into and out of state

C[T] = Cin[T]− Cout[T] . (142)

In the electron rest frame

C[T] = τ̇

∫

dn̂′

4π
(Θ′, 0, 0)− τ̇T+ CP [T] (143)

which describes isotropization in the rest frame. All moments have e−τ suppression except for isotropic
temperature Θ0. Here CP is the P or ℓ = 2 term of Eqn. (140).

Transformation into the background frame simply induces a dipole term

C[T] = τ̇

(

n̂ · vb +

∫

dn̂′

4π
Θ′, 0, 0

)

− τ̇T+ CP [T] , (144)

yielding the final form of the collision term.
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6.4 Temperature-Polarization Hierarchy

The Boltzmann equation in normal modes then becomes

Θ̇
(m)
ℓ = q

[

κmℓ
2ℓ+ 1

Θ
(m)
ℓ−1 −

κmℓ+1

2ℓ+ 3
Θ

(m)
ℓ+1

]

− τ̇Θ
(m)
ℓ + S

(m)
ℓ ,

Ė
(m)
ℓ = k

[

2κ
m
ℓ

2ℓ− 1
E

(m)
ℓ−1 −

2m

ℓ(ℓ+ 1)
B

(m)
ℓ − 2κ

m
ℓ+1

2ℓ+ 3

]

− τ̇E
(m)
ℓ + E(m)

ℓ ,

Ḃ
(m)
ℓ = k

[

2κ
m
ℓ

2ℓ− 1
B

(m)
ℓ−1 +

2m

ℓ(ℓ+ 1)
B

(m)
ℓ − 2κ

m
ℓ+1

2ℓ+ 3

]

− τ̇E
(m)
ℓ + B(m)

ℓ , (145)

where the gravitational and scattering sources are

S
(m)
ℓ =







τ̇Θ
(0)
0 − Ḣ

(0)
L τ̇ v

(0)
b + Ḃ(0) τ̇P (0) − 2

3

√

1− 3K/k2Ḣ
(0)
T

0 τ̇ v
(±1)
b + Ḃ(±1) τ̇P (±1) −

√
3
3

√

1− 2K/k2Ḣ
(±1)
T

0 0 τ̇P (±2) − Ḣ
(±2)
T






,

E(m)
ℓ = −τ̇

√
6P (m)δℓ,2 ,

B(m)
ℓ = 0 , (146)

with

P (m) ≡ 1

10
(Θ

(m)
2 −

√
6E

(m)
2 ) . (147)

The physical content of the coupling hierarchy is that an inhomogeneity in the temperature or polariza-
tion distribution will eventually become a high multipole order anisotropy by “free streaming” or simple
projection.

6.5 Integral Solution

Since the hierarchy equations simply represents geometric projection, their implicit solution can be written
as the projection of the gravitational and scattering sources at a distance. This operation proceeds by writing
the normal modes themselves in spherical coordinates,

Gm
ℓs

=
∑

ℓ

(−i)ℓ
√

4π(2ℓ+ 1)α
(m)
ℓsℓ

(k,D)Y m
ℓ (n̂) ,

±2G
m
ℓs

=
∑

ℓ

(−i)ℓ
√

4π(2ℓ+ 1)[ǫ
(m)
ℓsℓ

± β
(m)
ℓsℓ

](k,D)±2Y
m
ℓ (n̂) , (148)

where D = η0 − η. Summing over the sources

Θ
(m)
ℓ (k, η0)

2ℓ+ 1
=

∫ η0

0

dηe−τ
∑

ℓs

S
(m)
ℓs

α
(m)
ℓsℓ

(k,D) ,

E
(m)
ℓ (k, η0)

2ℓ+ 1
=

∫ η0

0

dηe−τ
∑

ℓs

E(m)
ℓs

ǫ
(m)
ℓsℓ

(k,D) ,

B
(m)
ℓ (k, η0)

2ℓ+ 1
=

∫ η0

0

dηe−τ
∑

ℓs

E(m)
ℓs

β
(m)
ℓsℓ

(k,D) . (149)

Note that the polarization has only an ℓs = 2 source.
In a flat cosmology, the radial projection kernels are related to spherical Bessel functions

eik·x =
∑

ℓ

(−i)ℓ
√

4π(2ℓ+ 1)jℓ(kD)Y 0
ℓ (n̂) (150)
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by the recoupling of the “spin” angular dependence of the source ℓs to the “orbital” angular dependence of
the plane waves. For example

α
(0)
0ℓ (k,D) ≡ jℓ(kD) ,

α
(0)
1ℓ (k,D) ≡ j′ℓ(kD) ,

ǫ
(0)
2ℓ (k,D) =

√

3

8

(ℓ + 2)!

(ℓ − 2)!

jℓ(kD)

(kD)2
,

β
(0)
2ℓ (k,D) = 0 . (151)

In a curved geometry, the radial projection kernels are related to the ultraspherical Bessel functions by the
same coupling of angular momenta.

6.6 Power Spectra

The two point statistics of the temperature and polarization fields are described by their power spectra

CXX′

ℓ =
2

π

∫

dk

k

∑

m

k3〈X(m)∗
ℓ X

′(m)
ℓ 〉

(2ℓ+ 1)2
, (152)

where X,X ′ ∈ Θ, E,B.

7 Epilogue

How to conclude Lecture notes in which no conclusions have been drawn? I leave you instead with a thought:

What goes on being hateful about analysis is that it implies that the analyzed is a completed
set. The reason why completion goes on being hateful is that it implies everything can be a
completed set.

–Chuang-tzu, 23
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