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ABSTRACT: The motivation for studying the rolling tachyon and non-commutative inflation
comes from string theory. In the tachyon inflation scenario, metric perturbations are created by
tachyon field fluctuations during inflation. We drive the exact mode equation for scalar pertur-
bation of the metric and investigate the cosmological perturbations in the commutative and non-
commutative inflationary spacetime driven by the tachyon field which have a Born-Infeld Lagrangian.

PACS numbers: 98.80.Cq, 11.25.Wx

I. INTRODUCTION

The cosmological parameters and the properties of
inflationary models are tightly constraint by the re-
cent result from Wilkinson Microwave Anisotropy Probe
(WMAP)[ll] and other earlier observations. The stan-
dard inflationary ACDM model provides a good fit
to the observed cosmic microwave background (CMB)
anisotropies. The first-year results of WMAP also bring
us something intriguing, some analyses [2, 3, 4, 5] show
that the new data of CMB suggesting an anomalously
low quadrupole and octupole and a larger running of the
spectral index of the power spectrum than that predicted
by standard single scalar field inflation models satisfying
the slow roll conditions.

One typically considers an inflationary phase driven by
the potential of the inflation , whose dynamics is deter-
mined by a canonical scalar action. Recently, pioneered
by Sen [f]], the study of non-BPS objects such as non-
BPS branes, brane-antibrane configurations or space-like
branes has attracted physical interests in string theory.
Sen showed that classical decay of unstable D-brane in
string theories produces pressureless gas with non-zero
energy density. Gibbons took into account the gravita-
tional coupling by adding an Einstein-Hilbert term to
the effective action of the tachyon on a brane, and initi-
ated a study of ”tachyon cosmology” [d]. This provides
a rich gamut of possibilities in the context of cosmol-
ogy, including slow-roll inflation [§]. As an inflationary
mechanism, tachyon condensation has been criticized by
some authors [9]. Their reason is that for string theory
motivated values of the parameters in potential V(T'),
there is an incompatibility between the slow-roll condi-
tion and COBE normalization of fluctuations. However,
the potential can be found for which this issue may be
circumvented [10]. Thus, one can take a phenomenolog-
ical approach and study the inflationary predictions by
the tachyon field. Tachyon inflation leads to a devia-
tion in one of the second order consistency relations, and
its predictions are typically characteristic of small field
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or chaotic inflation [11]. All the typical tachyon models
predict a negative and very small running of the scalar
spectral index, and they consistently lie within the lo
contour of the data set. However, the regime of blue
scalar spectral index and large gravitational waves is not
explored by these model.

On the other hand, it is well known that during the pe-
riod of inflation, the classical gravitational theory, gen-
eral relativity, might break down due to the very high
energies at that time and the correction from string the-
ory may take effect. In the nonperturbative string/M
theory, any physical process at the very short distance
takes an uncertainty relation, called stringy spacetime
uncertainty relation (SSUR),

At, Az, > 12, (1)

where t, and x, are the physical time and space, [ is
the string length scale. It is suggested that the SSUR
is a universal property for strings as well as D-branes
[12]. Unfortunately, we now have no ideas to derive cos-
mology directly from string/M theory. Brandenberger
and Ho [13] have proposed a variation of spacetime non-
commutative field theory to realize the stringy spacetime
uncertainty relation without breaking any of the global
symmetries of the homogeneous isotropic universe. If in-
flation is affected by physics at a scale close to string
scale, one expects that spacetime uncertainty must leave
vestiges in the CMB power spectrum [14, [15, [16, [17]. Tt is
found that the modification from the non-commutative
spacetime or SSUR delayed the cosmological perturba-
tion mode crosses the Hubble horizon for a smaller Hub-
ble constant and thus suppress the fluctuation which im-
plies that the running of the spectral index is larger than
the one in the commutative case.

The motivation for studying the tachyon inflation
comes from type II string theory. It is not unique, but has
its counterpart. The non-commutative inflation which
takes into account some effects of the spacetime uncer-
tainty principle motivated by ideas from string theory.
Therefore, in this paper, we investigate cosmological per-
turbations of the metric during the tachyon inflation in
non-commutative spacetime. Using the ”Mukhanov vari-
able” z, after a prolix but straightforward calculation, we
show the exact mode equation for the scalar perturbation
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of metric. In the tachyon inflation scenario, we conform
that the non-commutative spacetime effects always sup-
press the power spacetime of both the scalar and tensor
perturbations, and may provide a large enough running
of the spectral index to fit the WMAP data.

II. HAMILTON-JACOBI EQUATION OF
TACHYON INFLATION
The flat FRW line element is given by:

dt* — a®(t)(dz® + dy* + dz?)
a*(1)[dr? — (da® + dy* + dz?)] (2)

ds? =

where 7 is the conformal time, with d¢t = adr. The La-
grangian density of a rolling tachyon is

R

L=v—g (% —V(T)\/1— gW@HT&,T) (3)

where £ = 81G = M, 2. For a spatially homogenous
tachyon field T', we have the equation of motion

VVI(1—T2):0 (4)

which is equivalent to the entropy conservation equation.
Here, the Hubble parameter H is defined as H = (%), and
V' = dV/dT. If the stress-energy of the universe is domi-
nated by the tachyon field 7', the Einstein field equations
for the evolution of the background metric, G, = KT},
can be written as

T+3HT(1—T2) n

and

gzmmzfﬂ(l_%#) (6)

Eqgs.@)-@) form a coupled set of evolution equations of
the universe. The fundamental quantities to be calcu-
lated are T'(t) and a(t), and the potential V(T') is given
when the model is specified. The period of accelerated ex-

pansion corresponds to 72 < % and decelerate otherwise.

In the limit case 7' = 0, there is no difference in meaning
of the expansion of universe between tachyon inflation
and ordinary inflation driven by inflaton. However, the
case of T' # 0 forms a sharp contrast. Although the for-
mulas of tachyon inflation are correspond to those of the
inflation driven by ordinary scalar field, there is obvi-
ous difference between them which can not be neglected.
From Egs.®)-@), we have two first-order equations

__2H/(T)
" 3H%(T) (™)

K2

, 9
H(T)P - SHYT) = -2viT) ()

These equations are wholly equivalent to the second-
order equation of motion (@).

Analogous to the inflation driven by ordinary scalar
field, for example in Ref.[1§], we need define the ”slow-
roll” parameters. In general, there are two ways to define
them. One is that we can take the definitions are inde-
pendent of field driving inflation [11], ¢ = H,/H and
€41 = dlnle;|/dN (i > 0), where H, is the Hubble pa-
rameter at some chosen time. They are an advantageous
choice to use in order to compare ordinary and tachyon
inflation, though the observables (such as spectral in-
dices) will no longer be related to the parameters in the
same way. And the other is called tachyonic slow-roll
parameters as follows

_ 2/ H(D)Y?

@ = 5 (7w Y
o0 = 3 (s ) (10)
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Obviously, the definitions of the parameters Eqs.()- ([T
are quite different from those defined in ordinary infla-
tion. This is very natural for the Born-Infeld action is
sharply different from that of the ordinary scalar field.
In next section these parameters will be conveniently ap-
plied to exact mode equation of tachyon inflation. In
term of €(T") parameter, Eq.([§) can be reexpressed as

1
HYT)[1 = 3e(T)] = 5 V(T) (12)
which is referred to as the Hamilton-Jacobi equation of
tachyon inflation. Using Eq.([d), we have

«(T) = gT? (13)
Note that the Hamilton-Jacobi equation has the same
form as that of the ordinary inflaton field only up to first
order term in €(7"). This can be found by comparing the
Hamilton-Jacobi equation for an ordinary scalar field [19]
with the one for the tachyon, Eq.([[2),

1 k(1 =3iTHV(T) 87G
Jre {1_56@)] R v<T)+o((62))
14

The number of e-folds of the inflation produced when
the tachyon field rolls from a particular value T' to the
end point T, is

te Te H
N(T,T.) = H(t)dt = —dT (15)
t r T
Therefore, we have
a(T) = a. exp[-N(T)] (16)



where a. is the value of the scale factor at the end of
inflation. Since after tachyon inflation the dynamics of
the reheating is still unclear, in the following we shall
typically assume a conservative value of e-folds 40 < N <
70 [11].

Given a non-commutative spacetime that obeys the
stringy spacetime uncertainty relation, the cosmologi-
cal background will still be described by the Einstein
equations since the background fields only depend on
one spacetime variable [13]. Thus, the formula for the
tachyon field that drives the non-commutative spacetime
inflating have the same form as in the ordinary commu-
tative spacetime. But the equations for the linear fluc-
tuations should be modified. Brandenberger and Ho [13]
argued that the modifications take the form of an inter-
action of the fluctuating field with the background which
is nonlocal in time.

IIT. THE COSMOLOGICAL PERTURBATIONS
IN COMMUTATIVE SPACETIME

During inflation, quantum fluctuations are stretched
on scale larger than the horizon. There they are frozen
until they reenter the horizon after inflation. Regardless
of the field which drives inflation, a quasi scale invari-
ant spectrum are generated for large scale perturbations.
The most important observational test of inflation is ob-
servation of the Cosmic Microwave Background (CMB)
radiation. Temperature fluctuations in the CMB can be
related to perturbations in the metric at the surface of
last scattering. The metric perturbations are created by
tachyon fluctuations during inflation. In the inflation sce-
nario, quantum fluctuations on small scales are rapidly
red-shifted to scales much larger than the horizon size.
The metric perturbations can be decomposed according
to their spin with respect to a local rotation of the spatial
coordinates on hypersurfaces of constant time. This leads
to two types: scalar, or curvature perturbations, which
couple to the tachyon and form the ”seeds” for structure
formation, and tensor, or gravitational wave perturba-
tions, which do not couple to tachyon. Both scalar and
tensor perturbations contribute to CMB anisotropy.

Considering small fluctuations of the tachyon field,
that is

T(t,x) = To(t) + 0T (t,x) (17)

and one can take the metric of the ”perturbed universe”
in the longitudinal gauge as [2(]

ds? = (14 2®)dt* — (1 — 2®)a*(t)d;;dx'da?  (18)

where ® is the newtonian gravitational potential. The
linearized Einstein equations can be written as

_a V(D)T?
- H?, /1 — T2
H?2 (1 _ T2)3/2

4 2
C= v T (20)

where the new variables y and ( are respectively defined
as
2a oT
= —0, =0+ H—. 21

X= S5 (=2+ 7 (21)
The intrinsic curvature perturbation of the comoving hy-
persurfaces ( is gauge invariant. It is not difficult to
show that one can relate the fluctuation of the gravita-
tional potential ® to the fluctuation of the tachyon field
0T on superhorizon scales. The canonical quantization
variable wu is defined as u = z(, where

_a V(T)T?
2= m, (22)

is the so-called ” Mukhanov variable” [21]]. From ([[d) and
€&0), we have

2(2)] =Za-1v? 23
=G =c0-1ve ey
Using the conformal time 7 instead of physical time ¢, af-

ter a prolix but straightforward calculation, Eq.(23) can
be reduced to

du 2 1d?z
L _(1-ZVu—ZZu=0 24
dr? ( 36> o ’ (24)
where
1d?%z 1 5 3
-— =2d°H*|1 =
- ar [ * (1_2)2<2 K
+ —62—46774—17724—152
2 2
4 2 1
+ §E2n+ §6n2 — 5652”. (25)

As usual, the zeroth order term 2a?H? ensures that
the spectrum is scale invariant. Expanding the quantity
u in Fourier modes

3
w(r,x) = / ﬁuw)eikﬁ (26)

the mode function uy satisfies the following equation

d2uk + |: 2

1d?z
1— Ze)k? —
dr2 ( 36>

-—— =0. 27
z d72} Uk (27)
Therefore, the spectrum of curvature perturbation Pr (k)
as function of wavenumber k could be expressed as

kg U
P = /5 ‘; . (28)

Clearly, the above expression Eq.H) is different from
that of the ordinary scalar field because the coupling of
curvature perturbations to the stress-energy of tachyon
field is in a very different manner.



The Born-Infeld action is quite different from that of
the ordinary scalar field. Therefore, although the ex-
pressions of tachyon inflation correspond to those of the
inflation driven by the ordinary scalar field, there is obvi-
ous difference between them, which can not be neglected.
We find that the usual relation between the scalar and
tensor spectral index is modified. Therefore, at least in
principle, tachyon inflation is distinguishable from stan-
dard inflation. Here, it is worth noting that some authors
[L1] have obtained the mode equation of tachyon infla-
tion where the slow-roll approximation is appealed from
the beginning of the reduction, but the expressions given
above are all exact without slow roll approximation. Es-
pecially, at lowest order of slow roll formalism the predic-
tions of ordinary and tachyon inflation are shown to be
the same. Higher order deviation are present in Eq.(2H).

IV. PERTURBATION SPECTRUM IN
NON-COMMUTATIVE TACHYON INFLATION

The action which reproduces the equation of motion
@) can be written as

5= % / drd®z2((0:)1(0:¢) — (VO (VQ)],  (29)

where intrinsic curvature perturbation ¢ and mode func-
tion u have the relationship z{ = u, and c¢s denotes sound
velocity which determined by background tachyon field.
In the momentum space, Eq. 9) can be rewritten as

S = %VT / drd®k22((0:C-k)(0-Ck) — 2R k], (30)

where Vr is the total spatial coordinate volume and k is
the comoving wave number. Following the similar pro-
cess proposed in Ref.[13], the SSUR is compatible with
an unchanged homogeneous background, but it leads to
changes in the action for the metric fluctuation. We get
a model with non-commutative modifications

1 -
S = §VT/de3kz,3[ngc,g — AEC kG, (31)
where z; is defined as
2 = (B Bz, (32)

in which z is the ” Mukhanov variable” defined in Eq.([22),
and
1

By = [0 (F + kI2) + a™>(F — kI2)].

. O (39)

Here, the new time variable 7 is defined as d7 = a?dr.
The primes appeared in the Eq.(BIl) denote the derivative
with respect to the new time variable 7, and 7 is related
to the conformal time 7 via

dF = a? (ﬁ—k) . dr (34)
B '

Apparently, if the string length scale 5 goes to zero, the
action (BIl) will reduce to the action (B for the fluctua-
tions in the classical spacetime, which leads to the equa-
tion of motion of perturbations (). From the action
@), the equation of motion of the scalar perturbations
can be written as

Z/I

uf + (c§k2 - —’f) ug =0, (35)

2k
where the mode function is defined by uy = zx(x and the
sound velocity cs satisfies

2
Z=1- 3¢ (36)
Let
H%k?
= 2T (37)

where k is the comoving wave number of a perturba-
tion mode, and M, = [;! is the string mass scale. A is
a small dimensionless quantity, because we assume the
string mass scale My is very large. Using the slow-roll
parameters and %% in Eq.(2H), we get

2y 1d?z

polilioey m: [1—-2(1+¢€))

+ 2a°H?) |3en — 26> + 5+ 1 +

3e(2e —n)(n —e+1),

3 — 2¢ 0

up to the first order of A. Clearly, when [, — 0 or My —
00, the quantity 2 /2, and 7 will be reduced to %% and
7 respectively, and then the motion equation (BH) of the
mode py in noncommutative spacetime will recover the
one in ordinary commutative spacetime (7).

In the slow-roll approximation, the conformal time 7

can be expressed approximately by

1+e€
~ — . 39
T " (39)
From Eq.(&4), we have
7~ (1= N7, (40)
and then,
1
7~ ——A1 A). 41
P (It ) (41)

On the other hand, up to the first order of slow-roll pa-
rameters, Eq. [B8) can be approximated by

1 5 3
Zk — 92 [ (1+ Qe —77—)\>. (42)

Zk 2 2
Using Eqs.( @) and ), we rewrite the equation of mo-
tion for scalar fluctuation mode (BH) as

1

1 -
" 21.2 4 —
Uy, + [csk - = ]uk =0,

(43)

b



where the parameter
3 2
~ — + 3e— = 44
pgF3e—n+g (44)

These modes are normalized so that they satisfy the
Wronskian condition

duy, duj
Uk IE

up—— = —1i. 45
2 (45)

On the subhorizon scale c2k? > 2/ /2, the equation
[E3) has a plane wave solution

1 o
Up = ———=e 1T, (46)

V2csk

which indicates that perturbation with wavelength
within the horizon oscillate like in flat spacetime. This
does not come as a surprise, since in the UR regime,
one expects that approximating the spacetime as flat is
a good approximation.

Taking the solution HH) as the initial condition, we can
obtain the solution of (@) on the superhorizon, c2k? <
Z;c//zka

1
V2csk

1 [csk(l—l—e—i-/\)]%‘u
V2csk oH '

Thus, we can express the power spectrum on super-
horizon scales of the comoving curvature as

up (—csk%)%f“

(47)

2
kg U

27T2 Zk(f')
1 1 H 2 Csk 3=2u —1-2
— (= 1 4
2e Mgl (27T> <aH) (1+2) 148)

When the perturbation mode k crosses the Hubble ra-
dius,

Pr(k) =

R

"
212 _ %k _ o 272 5 3
cck® = ” =2a"H (1+26 57 )\). (49)

At the same time, the power spectrum is reduced to be

1 1 (H\? Cgetn_2A
Prk) ~ —— (=) (2+5e—3n—2)\)"2"""3
W) = geqp (55) @532

% (1+)\)—4—66+2T}—%)\' (50)

Up to the first order of slow-roll parameters and A, we
obtain
dlnk
dt

~ (1 —e+4eNH, (51)

and

dX
—— ~ —4e. (52)
n
Therefore, the spectra index of the scalar metric pertur-
bation and its running can be expressed respectively as
follows:

dlnPR
s— 1= ~ — 2
n Tk 6e + 2n +

8(6+1n2)
3

er,  (53)

dng
dlnk

1
= 14en — 24€* — 262 + ?6(6 +1In2)enh.  (54)

Obviously, when the parameter A — 0, the contribution
from the non-commutativity of spacetime to the spec-
tral index and its running will also vanish. Similar to
the case in the ordinary noncommutative inflation [11],
the effects of the non-commutativity of spacetime sup-
press the power spectrum of the primordial perturbations
which lead to a more blue spectrum with a correction

WE/\ to the spectrum index.

V. DISCUSSION

Just as the ordinary inflation scenario, besides the
scalar perturbations that couple to the matter distribu-
tion in the universe and form the ”seeds” of the large
scale structure, tachyon inflation both in commutative
and non-commutative spacetime also predicts a tensor
perturbation, or called gravitational perturbation, of the
metric. Because the tensor perturbations during the pe-
riod of inflation depend only on the energy scale of the
inflation, we can consider that they only describe the
propagation of gravitational waves and do not couple to
the matter term. Therefore, the expressions that describe
the same as that in ordinary scalar field inflation.

Steer and Vernizzi [L1] have investigated typical infla-
tionary tachyon potentials, such as the inverse cosh po-
tential, the exponential potential and the inverse power
law potential. They also discussed their observational
consequences and compared them with WMAP data.
The regime of blue scalar spectral index and large gravi-
tational waves is not explored by these potentials. How-
ever, the effects of the non-commutativity of spacetime
suppress the power spectrum of the primordial perturba-
tions which leads to a more blue spectrum for the tachyon
inflation scenario.
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