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Abstract—We performed accurate numerical calculations of angle-, time-, and frequency-dependent
radiative transfer for the relativistic motion of matter in gamma-ray burst (GRB) models. Our technique
for solving the transfer equation, which is based on the method of characteristics, can be applied to the
motion of matter with a Lorentz factor up to 1000. The effect of synchrotron self-absorption is taken into
account. We computed the spectra and light curves from electrons with a power-law energy distribution
in an expanding relativistic shock and compare them with available analytic estimates. The behavior of the
optical afterglows from GRB 990510 and GRB 000301c is discussed qualitatively.
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INTRODUCTION

The nature of the central sources of cosmic
gamma-ray bursts (GRBs) has not yet been estab-
lished. However, it is clear that GRBs with afterglows
are at cosmological distances and release energy
∼1051 erg on a time scale of the order of 100 s.
The observed GRB peculiarities (nonthermal spectra,
rapid temporal variability) require an ultrarelativis-
tic motion of emitting plasma with characteristic
Lorentz factors Γ ∼ 100–300 (see Piran 2000; Blin-
nikov 2000).

In the standard GRB model (Rees and Mészáros
1992), a photon–lepton fireball is produced (see
Postnov 1998; Piran 2000). Initially, however, the
GRB energy can also be electromagnetic (Usov 1994;
Spruit 1999; Blandford 2002) and it probably propa-
gates in a narrow cone (jet). The observed gamma-
ray photons are generated by a nonthermal mecha-
nism at the fronts of relativistic shocks (although the
apparent nonthermal spectrum can also be explained
in terms of the model of optically thick shells moving
at relativistic velocities; see Blinnikov et al. 1999).

Here, we develop a technique for solving the
angle-, time-, and frequency-dependent transfer
equation, which is based on the method of character-
istics. It can be applied to the motion of matter with a
Lorentz factor up to 1000. The main object of appli-
cation of this technique must be the early generation
phases of gamma-ray emission (during collisions

*E-mail: sergei.blinnikov@itep.ru

between internal shocks), for which the optical-
depth effects can be noticeable. For now, however,
we consider the radiation from the matter behind
the front of an external shock and use an analytic
solution (Blandford and McKee 1976) to describe the
post-shock matter by taking into account the syn-
chrotron self-absorption [cf. Downes et al. (2002),
where the self-absorption was disregarded, but the
hydrodynamics and spectrum of ultrarelativistic par-
ticles were computed in a self-consistent way]. We
computed the spectra and light curves from electrons
with a power-law energy distribution in an expanding
relativistic shock and compare them with available
analytic estimates.

FORMULATION OF THE PROBLEM

One of the most popular models for GRB after-
glows involves the propagation of a relativistic shell
being decelerated by an external medium. The rela-
tivistic shock heats up the captured matter as it enters
the shell and causes the particles to be accelerated
to ultrarelativistic energies. The X-ray and optical
afterglows from GRBs in these models are associated
with the nonthermal (synchrotron) radiation of rela-
tivistic particles at the front of an external shock being
decelerated in a circumstellar or interstellar medium
(Mészáros and Rees 1997). Consider this problem
in more detail by highlighting the most important
points.
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Fig. 1. The shape of the surface (the quasi-ellipsoid on the right) from which photons reach a remote observer (on the left)
simultaneously. The explosion center is located at the vertex of the angle α. The farthest point of the visible surface lies at a
small distance of∼(1− β) of the semimajor axis from the explosion center; the semiminor axis is∼1/γ of the semimajor axis.

The Propagation of Radiation from a Relativistic
Shell

Because of the high shock velocity, light from the
ellipsoidal structure shown in Fig. 1 reaches the ob-
server at a certain time. Let us determine the shape of
the surface more accurately.

Consider an emitting spherical shell of initial
radius R(t0) = R0 with an observer located at dis-
tance D from its center. The shell begins to ex-
pand as R = R(t). We assume that the time t0
at which the shell expansion begins corresponds
to the time t0obs at which the observation begins;
t0obs = t0 + (D −R0)/c, where c is the speed of light.

The radiation from points of a sphere with a radius
depending on the cosine of the angle µ = cosα will
reach the observer at some time tobs. For convenience,
tobs is defined in such a way that it is equal to zero at
the arrival time of the first signal on the shell motion.
To determine the shape of the surface from which the
radiation arrives, we take into account the fact that
the time at which the propagation of photons from
points of a sphere with a µ-dependent radiusR begins
is the same and is specified only by tobs.

In other words,

t+
(D2 +R2 − 2RDµ)1/2

c
= tobs + t0obs.

The surface shape can be determined from this
equation by substituting in t = R−1(t). If we consider
the simplest shell propagation equation

R = R0 + βc(t− t0), 0 < β < 1,

where β is the v/c ratio and γ = (1 − β2)−1/2 is the
Lorentz factor, then we obtain the equation of the
surface

R−R0

βc
+ t0 +

(D2 +R2 − 2RDµ)1/2

c

= tobs + t0obs,

R =
βctobs +R0(1 − β)

1 − µβ
(D ≫ R).

As we see, in the approximation D ≫ R, this
equation is the equation of an ellipse (Rees 1967).
In Fig. 1, the shape is more complex, because it
corresponds to a variable velocity, as suggested by
the solution of Blandford and McKee (1976).

Each point on the sphere is characterized by the
intensity I0(µ, r, ν0, cos δ0) in the intrinsic frame of
reference. In the observer’s frame of reference, we
write this intensity as I(µ, r, ν, cos δ)

The intensity along the line of light propagation
does not change in the absence of emission and ab-
sorption sources and at the point of observation it
will be the same as that at the point of radiation.
Therefore, denoting µ′ = cos θ, we have for the flux

Fν = 2π

1
∫

cos θmax

I(µ, r, ν, cos δ)µ′dµ′.

Here, it is more convenient to pass from integration
over θ to integration over α (Fig. 1):

Fν = 2π

1
∫

µmin

I(µ, r, ν, cos δ)µ′(µ)dµ′(µ).

Denote R(µ)/D = p(µ) and express cos θ and d cos θ
in terms of p(µ) and µ. The dependence R(µ) appears
in the observer’s frame of reference. It should be re-
membered that p also depends on t and t, in turn, can
be expressed in terms of tobs. However, to simplify
our formulas, we will omit this dependence. For our
subsequent calculations, we will need the following
geometrical relations between the angles:

cos θ =
1 − µp(µ)

l(µ)
, d cos θ = p2µ− p(µ)

l3(µ)
,

cos δ =
µ− p(µ)

l(µ)
, cos δ0 =

cos δ − β

1 − β cos δ
,

ν

ν0

=
1

γ(µ)(1 − cos δβ(µ))
,
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where l(µ) = (1 + p2(µ) − 2p(µ)µ)1/2. For the flux,
we then have

Fν(tobs) = 2π

1
∫

µmin

(µ− p(µ))(1 − µp(µ))

(1 + p2(µ) − 2p(µ)µ)2
p2I0 (1)

×

(

r(µ), ν
(ν0

ν

)

, cos δ0(cos δ)
) ( ν

ν0

)3

dµ.

When the flux is calculated, the condition imposed
on the lower integration limit µmin is determined by
the angle that corresponds to the maximum angular
size of the shell from the point of observation:

p
′

µ(1 − µ2) − p(µ− p) = 0

Our subsequent calculations are associated with
a specific expression for the intensity I(r, ν0, cos δ0)
on the shell surface and a specific shell propagation
law R(t).

The Transfer Equation

For the intensity on the surface of a relativistic
emitting shell to be calculated, we must solve the
transfer equation in a comoving frame of reference.
This is Eq. (2.12) from Mihalas (1980):

γ

c
(1 + βµ)

∂I(µ, ν)

∂t
+ γ(µ+ β)

∂I(µ, ν)

∂r
(2)

+ γ(1 − µ2)
[(1 + βµ)

r
−
γ2

c
(1 + βµ)

∂β

∂t

− γ2(µ+ β)
∂β

∂r

]∂I(µ, ν)

∂µ
− γ

[β(1 − µ2)

r

+
γ2

c
(1 + βµ)

∂β

∂t
+ + γ2µ(µ+ β)

∂β

∂r

]

ν
∂I(µ, ν)

∂ν

+ 3γ
[β(1 − µ2)

r
+
γ2µ

c
(1 + βµ)

∂β

∂t

+ γ2µ(µ+ β)
∂β

∂r

]

I(µ, ν) = η(ν) − χ(ν)I(µ, ν).

Here, η is the emission coefficient and χ is the absorp-
tion coefficient; the subscript 0 was omitted, because
all quantities refer to the comoving frame.

Our numerical method of solution is described in
the next section.

Hydrodynamics

The transfer equation (2) explicitly or implicitly
(via η and χ) includes variables of the medium: its
velocity, density, temperature, etc. For these vari-
ables to be determined, we must solve the system
of hydrodynamic equations. In general, the transfer
and hydrodynamic equations constitute a combined
system of equations. In our problem, however, we

solve the transfer equation separately from the hydro-
dynamic equations. At the same time, to determine
the variables of the medium, we use a self-similar
solution for a relativistic shock (with a Lorentz factor
of the post-shock matter γ ≫ 1) in the spherically
symmetric case for an ultrarelativistic gas (Blandford
and McKee 1976). Let us give the formulas of this
solution that we will need below.

Taking the law of time variations in the shock-
front Lorentz factor in the form Γ2 ∝ t−m and choos-
ing, for convenience, the self-similar variable ζ = [1 +
2(m+ 1)Γ2](1− r/t), we derive the following expres-
sions for the pressure, velocity, and density of the
post-shock matter from the conditions at the shock
front:

p =
2

3
w1Γ

2f(ζ), γ2 =
1

2
Γ2g(ζ), (3)

n′ = 2n1Γ
2h(ζ).

Here, w1 is the enthalpy of the pre-shock matter,
n1 is its density, Γ is the shock-front Lorentz factor,
and n′ is the density of the post-shock matter in the
observer’s frame of reference. The matter density in
the intrinsic frame of reference is related to the latter
by n′ = γn.

Substituting Eqs. (3) into the hydrodynamic
equations yields a system of equations for f(ζ), g(ζ),
and h(ζ) as a function ofm. Consider the casem = 3,
which corresponds to the conservation of total shell
energy. The shock energy contained in the layer
between the radii R0(t) and R1(t) is given by the
expression

E(R0, R1, t) =

R1
∫

R0

16πpγ2r2dr.

If we substitute in the solution for the functions f(ζ),
g(ζ), and h(ζ) atm = 3:

f = ζ−17/12, g = ζ−1, h = ζ−7/4,

then the total energy will be E = 8πw1 ×

×t3Γ2/17, which gives the proportionality constant
between Γ2 and t−3.

Synchrotron Radiation

An accurate calculation of the spectrum requires
knowing not only the hydrodynamic quantities but
also the electron energy spectrum and the magnetic-
field strength.

We assume that the electrons have a power-law
distribution and that their total energy behind the
shock front accounts for ǫe of the internal energy:

N(γ) = K0γ
−p, γ ≥ γmin,0 =

ǫee0
n0mec2

,
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where me is the electron rest mass and K0 = (p −

1)n0γ
p−1

min,0.

The magnetic field is parametrized by the quan-
tity ǫB, which is equal to the fraction of the inter-
nal energy contained in the magnetic field: B2 =
8πǫBe. The magnetic field is randomly oriented and
decreases with time due to the adiabatic shell ex-
pansion. Other assumptions about the magnetic-field
evolution and orientation weakly affect the resulting
spectrum (Granot 1999).

After the electrons have derived energy immedi-
ately behind the shock front, they begin to lose it
through adiabatic cooling determined by the solu-
tion of Blandford and McKee (1976) and through
synchrotron radiation. This process was described in
more detail by Granot and Sari (2001). We present
only the basic formulas for synchrotron radiation used
in our calculations.

The spectral power of a single electron averaged
over the pitch angle is

P (ω) =
35/2

8π

Psy

ω0

F
( ω

ωc

)

,

where

Psy =
1

6π
σTcB

2(γ2
e − 1), ωc =

3π

8

eB

mec
γ2

e

and F (u) is the standard function of synchrotron radi-
ation (Rybicki and Lightman 1979). The synchrotron
absorption coefficient is specified by the formula

χ =
1

8πmeν2

γmax
∫

γmin

dγ
N(γ)

γ2

d

dγ

(

γ2P (ω, γ)
)

.

NUMERICAL SOLUTION
OF THE TRANSFER EQUATION

The numerical solution of the problem is based on
the simple and well-known method of characteristics
(Mihalas 1980). We consider the relativistic transfer
equation (2) in the spherically symmetric case in a
comoving frame of reference.

The main complexity of the equation is the pres-
ence of four independent variables. The linearity of
the equation allows its complexity to be decreased by
constructing the characteristics for a given velocity
field along which the differential operator is a total dif-
ferential. If we choose the rays by describing them by
a set of parameters and define s as some length along
the ray, then we can determine the characteristics, the
paths [t(s), r(s), µ(s), ν(s)], in such a way that

dI

ds
=
dr

ds

∂I

∂r
+
dµ

ds

∂I

∂µ
+
dν

ds

∂I

∂ν
+
dt

ds

∂I

∂t
.

We then derive the following system of equations that
describe the characteristics from Eq. (2):

dt

ds
=
γ

c
(1 + βµ),

dr

ds
= γ(µ+ β),

dµ

ds
= γ(1 − µ2)

[1 + βµ

r
−
γ2

c
(1 + βµ)

∂β

∂t

− γ2(µ+ β)
∂β

∂r

]

,

dν

ds
= γ

[β(1 − µ2)

r
+
γ2

c
(1 + βµ)

∂β

∂t

+ γ2µ(µ+ β)
∂β

∂r

]

ν.

With the introduction of the characteristic rays,
the transfer problem simplifies to

dI(s)

ds
= η(s) − χ′(s)I(s),

where

χ′(s) = χ(s) + 3γ
[β(1 − µ2)

r

+
γ2µ

c
(1 + βµ)

∂β

∂t
+ γ2µ(µ+ β)

∂β

∂r

]

The characteristics are numerically computed by
the fourth-order Runge–Kutta method with an adap-
tive step. The step is adaptive, because at β close to
unity, a small increment along the ray can lead to a
significant angular jump comparable to the angular
size of the emitting region.

Note also that the variable quantities in the
method must be of the order of unity, as follows from
the constraint imposed on the cosine of the angle.
Therefore, it is convenient to use a new system of
units. We denote the physical and dimensionless
(used in the program) quantities by the subscripts r
and p, respectively. So, let

rr = Rrp, tr = Ttp, mr = Mmp.

Denoting

cr = Ccp, Ir = Y Ip,

ηr = Jηp, χr = Xχp,

where c is the speed of light and R, T , C, Y , J ,and X
are constants, we then derive the following expression
for C, Y , J , and X in terms of R, T , and M after a
simple work with dimensions:

C = RT−1, Y = MT−2,

J = MR−1T−2, X = R−1.
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The Analytic Solutions Used to Test the Numerical
Method

Below, we give some of the analytic solutions that
we used to test the numerical method.

Let us first consider the time- and frequency-
independent transfer equation (2):

γ(µ+ β)
∂I(r, µ)

∂r
+ γ(1 − µ2)

×

[1 + µβ

r
− γ2(µ+ β)

∂β

∂r

]∂I(r, µ)

∂µ

+ 3γ
[β(1 − µ2)

r
+ γ2µ(µ+ β)

∂β

∂r

]

I(r, µ)

= η(r, µ) − χ(r, µ)I(r, µ).

For constant emission and absorption coefficients
and β = 0, the characteristics have the shape of
straight lines r

√

1 − µ2 = p (p is the parameter) and
the equation has the analytic solution

I(r, µ)

=
η

χ

[

1 − exp
{

− χ
(

µr +
√

R2 − r2(1 − µ2)
)}]

.

If we now assume β to be constant, then the shape of
the characteristics changes: p(1 + βµ) = r

√

1 − µ2,
and the solution becomes slightly more complex,

I(s) = I(r, µ)

=
η

χ

{

1 − exp
[

− χ
( γµr

1 + βµ
−

γξ(p)R

1 + βξ(p)

)]}

,

where

ξ(p) =
−βp2 −

√

β2p4 + (R2 + βp2)(R2 − p2)

R2 + β2p2
.

In the absence of absorption and for a constant
emission coefficient on the right-hand side of the
transfer equation, the analytic solution for the central
characteristic (µ = ±1) is

I(0) =
ηR

γ(1 − β)
, I(R) = 2ηRγ,

at β = const and

I(0) = ηR
[

2
ln(1 +B)

B
− 1

]

,

I(R) = 2ηR
(1 −B

1 +B

)3/2[ 1

B
ln

1 +B

1 −B
− 1

]

,

where B = β(R), at β ∼ r.
To test the temporal component, we used the

problem of intensity change near the surface of
an emitting static transparent spherical shell with
time when the emission coefficient abruptly changes
from η0 to η1. If we use the following notation: p =
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Fig. 2. Instantaneous afterglow spectra at various times
t = 10N s, where N is the number near the curve;Fm and
νa are the analytically estimated flux and self-absorption
frequency, respectively.

R/D is the ratio of the shell radius to the distance
from the shell center to the point of observation,
t+ is the time measured from the beginning of the
intensity change at the point of observation, c is the
speed of light, and τ = t+c/D, d = 1 − p+ τ , then
the solution for this problem is

F1(τ) = G1(η1, (1 − p)2) −G1(η1, d
2)

+G1(η0, d
2) −G1(η0, 1 − p2),

G1(η, x) =
πηR

4p

[2

3

(1 − p2)3

x3/2
− 2

(1 − p2)2

x1/2

+ 2(1 − p2)x1/2
−

2

3
x3/2.

]

Here, τ changes from 0 to τ∗ =
√

1 − p2 − 1 + p, i.e.,
within the interval during which the changes at the
point of observation occur, and F1(τ) is the flux. In
the static case, this flux is

F = 2π

p
∫

0

(µ− p)(1 − µp)p2

(1 + p2 − 2pµ)2
I (µ∗) dµ,

where

µ∗ ==
µ− p

(1 + p2 − 2pµ)1/2

is the cosine of the angle to the normal to the sphere
surface on which the intensity depends.

Comparison of the solutions considered above
with the calculations based on our numerical method
shows that the numerical method is applicable to the
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Fig. 3. Afterglow light curves for a set of frequencies
ν = 10N Hz, where N is the number near the curve.

motion of matter up to Lorentz factors γ ∼ 1000 with
an error less than 1%.

RESULTS OF THE NUMERICAL SOLUTION

We chose the following parameters for our nu-
merical calculations of the afterglow spectra. These
include the parameters that describe the hydrody-
namics: the energy E0 released through the process
that leads to a GRB and the ambient density n1; the
parameters that describe the radiation: the fraction of
the internal energy contained in the magnetic field ǫB ,
the fraction of the internal energy transferred to elec-
trons ǫe, and the power-law index in the electron
energy distribution p; and one more parameter: the
photometric distance to the GRBD.

Our main calculation, whose results are presented
here, is based on the following published parame-
ters: E0 = 1053 erg, n1 = 1 cm−1, ǫe = 0.5, ǫB = 0.1,
p = 2.5, and D = 1027 cm.

The large amount of released energy E0 is related
to the spherical symmetry of the problem, while the
observed GRBs can represent a jet with a solid an-
gle Ω. The total energy will then be lower by a factor
of Ω/4π.

The computed spectra and light curves are shown
in Figs. 2 and 3. Here and below, the time is measured
in the observer’s frame of reference. Let us compare
our results with available theoretical estimates (Hur-
ley et al. 2002). In these estimates, the synchrotron
spectrum is described by the maximum flux Fmax and
three characteristic frequencies (νmin, νc, νa), where
νmin is the synchrotron frequency of the electron with
minimum energy whose Lorentz factor is γmin,0, νc is
the cooling frequency, and νa is the self-absorption
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Fig. 4. Comparison of the frequencies that correspond
to the maximum flux of the instantaneous spectra in the
numerical calculations and analytic estimates.

frequency. For these four parameters, the theoretical
estimates are given by the formulas

νa = 2 × 109HzE1/5

52
n

3/5

1
ǫ−1
e ǫ

1/5

B = 4 × 109Hz,

νcool = 9 × 1012HzE−1/2

52
n−1

1
ǫ
−3/2

B t
−1/2

day

= 2.66 × 1016Hzt−1/2
s ,

νmin = 5 × 1015HzE1/2

52
ǫ2eǫ

1/2

B t
−3/2

day

= 3.80 × 1022Hzt−3/2
s ,

Fmax = 20mJyE52n
1/2

1
ǫ
1/2

B d−2
28

= 6.32 × 10−23mJy.

Between these frequencies, the spectrum is a
power law with indices (2, 1.3,−1/2,−p/2) for t <
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Fig. 5. Comparison of the times that correspond to the
maximum flux of the light curves in the numerical calcu-
lations and analytic estimates.
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curve.

t0 = 4.2 × 105 s and (2, 1.3,−(p − 1)/2,−p/2) for
t > t0.

Let us also compare the computed light curves
with theoretical estimates (Sari et al. 1998), in which
the characteristic times (tmin, tcool) were calculated
from the flux Fmax and the characteristic frequencies
(νmin, νcool, νa):

tcool = 7.3 × 10−6E−1

52
n−2

1
ǫ−3

B ν2
15 day = 63ν−2

15
s,

tmin = 0.69E
1/3

52
ǫ4/3
e ǫ

1/3

B ν
−2/3

15
day

= 2.37 × 104ν
−2/3

15
s.

By introducing the frequency ν0 = νcool(t0) =
tmin(t0) = 1.14 × 1013 Hz, we separate two cases:
tmin < tcool for ν > ν0 and tmin > tcool for ν < ν0.

The results of our comparison are presented in
Figs. 4 and 5. These figures show the frequencies for
the spectra and the times for the light curves that
correspond to the maximum flux calculated numer-
ically and analytically, in accordance with the above
estimates.

The plot of afterglow intensity versus observation
angle (α ∼ θ) (Fig. 6) at different frequencies reveals
a bright ring attributable to the hotter matter at early
afterglow stages. The higher the radiation frequency,
the larger the contrast between the image center and
edge. The same result was obtained by Granot et al.
(1999).

The GRB energy must be released in a narrow
cone, a jet. However, at early stages, the pattern for
an observer near the cone axis will differ only slightly
from the pattern produced by a spherical shock. At
late stages, the jet becomes spherical.

In Fig. 7, the part of the theoretical light curve
near the R and K bands is highlighted. We see that
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at longer wavelengths, the light curve passes to a de-
cline more slowly than it does at shorter wavelengths.
This chromatic behavior is characteristic of the opti-
cal afterglows fromGRB 990510 (Stanek et al. 1999)
and GRB 000301c (Jensen et al. 2001).

These objects deserve a more detailed study, but so
far our model disregards several physical effects (the
inverse Compton radiation, the Klein–Nishina effect,
the non-power-law shape of the self-consistent elec-
tron spectrum, and others). Therefore, it cannot be
directly used to interpret the spectra of early GRB af-
terglows. The work to take these effects into account
is being continued.

CONCLUSIONS

The most popular method for analytically estimat-
ing the spectra and light curves of GRB afterglows
involves deriving the characteristic frequencies and
times, determining their behavior, and calculating the
corresponding flux and constructing the power-law
segments of the spectra and light curves from the de-
rived values. These methods are extensively presented
in the literature (Granot and Sari 2001; Sari et al.
1998; Wijers and Galama 1999; Waxman 1997). The
characteristic frequencies in different papers for the
same cases occasionally differ by a factor of 70, in-
cluding those in the same papers, suggesting that
these treatments are insufficient.

Our calculations unambiguously describe the af-
terglow spectra and light curves in terms of the model
under consideration by removing the uncertainty in
characteristic parameters and without using the next
approximations. The behavior of our results shows a
relationship to the observed afterglows, which gives
confidence that our technique can be used to study
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the early generation phases of gamma-ray emission
(during collisions between internal shocks).
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