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ABSTRACT
We present a 3-dimensional lensing analysis of the z = 0.16 supercluster A901/2,
resulting in a 3-D map of the dark matter distribution within a 3 × 105[h−1Mpc]3

volume. This map is generated from a combined catalogue of 3-D galaxy coordinates
together with shear estimates, using R-band imaging and photometric redshifts from
the COMBO-17 survey. To estimate the 3-D positions and masses of the main clusters
in the supercluster from lensing alone, we perform a χ2-fit of isothermal spheres to
the tangential shear pattern around each cluster as a function of redshift. Motivated
by the appearance of a second cluster behind A902 in galaxy number density, we also
fit a two-cluster model to A902.

We then present the first 3-D map of the dark matter gravitational potential
field, Φ, using the Kaiser-Squires (1993) and Taylor (2001) inversion methods. These
maps clearly show the potential wells of the main supercluster components, including
the new cluster behind A902, and demonstrates the applicability of 3-D dark matter
mapping and projection free-mass-selected cluster finding to current data. Finally, we
develop the halo model of dark matter and galaxy clustering and compare this with the
auto- and cross-correlation functions of the 3-D gravitational potential, galaxy num-
ber densities and galaxy luminosity densities measured in the A901/2 field. We find
significant anti-correlations between the gravitational potential field and the galaxy
number density and luminosities, as expected due to baryonic infall into dark matter
concentrations. We find good agreement with the halo model for the number densities
and luminosity correlation functions, but some disagreement with the shape of the
gravitational potential correlation function, which we attribute to finite-field effects.

Key words: Gravitation; gravitational lensing; Cosmology: observations, Dark Mat-
ter, Large-Scale Structure of Universe

1 INTRODUCTION

Gravitational lensing is a valuable method for measuring the
matter distribution in the Universe (see e.g. Mellier 1999,
Bartelmann & Schneider 2001). Light rays are deflected by
the gravitational potential along their paths causing distor-
tions in the shapes of background galaxies together with
a change in their local number counts. These measurables
are sensitive to all forms of matter, whether visible or dark,
which brings gravitational lensing to the fore in studies of
non-baryonic matter in the Universe. For most regions of the
sky, observations of shape distortions (shear) reveal that the
phenomenon is very weak (≈ 1% change in ellipticity of an

object). However we are still able to measure this effect by
averaging the ellipticity of many galaxies to overcome the
random intrinsic ellipticity of galaxies.

Many studies have used weak shear measurements to
measure the two dimensional projected matter distribution
of regions of space. This has led to precise understanding
of the masses and mass profiles of galaxy clusters (see e.g.
Tyson et al 1990, Kaiser & Squires 1993, Bonnet et al 1994,
Squires et al 1996, Hoekstra et al 1998, Luppino & Kaiser
1997, Gray et al 2002). The 2-D shear field is also used to
measure the large-scale structure distribution, and conse-
qeuently to measure cosmological parameters (see e.g. van
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Waerbeke et al 2001, Hoekstra 2002, Bacon et al 2002, Re-
fregier et al 2002, Jarvis et al 2003, Brown et al 2003, Pen
et al 2003).

Recently, there has been much interest in using red-
shift information with weak gravitational lensing in order to
add depth to our picture of the mass distribution in the Uni-
verse. Lensing tomography has been developed as a means of
studying the growth of the weak lensing power spectrum as a
function of redshift (e.g. Seljak 1998, Hu 1999, 2002, Huterer
2002, King & Schneider 2002b), and the use of redshift infor-
mation to remove the impact of intrinsic galaxy alignments
on lensing measurements has been explored (Heymans &
Heavens 2002, King & Schneider 2002a,b, Heymans et al
2003). Observationally, Wittman et al (2001, 2002) have
used 3-D shear information to directly measure the mass
and redshift of two clusters discovered through this shear
field.

A further significant development has been the realisa-
tion that a full reconstruction of the 3-D gravitational poten-
tial and dark matter density field is possible using just weak
shear and redshifts (Taylor 2001). A 3-D gravitational lens-
ing analysis is clearly of importance for cosmology. With a
3-D analysis we will have, for the first time, a way of imaging
the full dark matter distribution from cluster scales upwards
and over a order of magnitude in redshift, independent of the
galaxy distribution. With such depth one can hope to visu-
ally see the growth of structure. A 3-D lensing survey can
also be used to construct a mass-selected galaxy cluster cata-
logue, which would have many important cosmological uses.
A three dimensional lensing survey would remove the pro-
jection effects that contaminate standard 2-D projected sur-
veys (White, van Waerbeke & Mackey, 2002). In the case of
individual clusters this can cause biases in mass estimation
due to both foreground and background structures. With a
3-D lensing analysis, both the mass and position of clusters
can be found independently of the baryonic content.

Following Taylor (2001), Hu & Keeton (2003) subse-
quently developed a pixelised version of the 3-D reconstruc-
tion, while Bacon & Taylor (2003) examined the practical
implementation of Taylor’s (2001) method. Bacon & Taylor
(2003) demonstrated that one can hope to reconstruct the
gravitational potential on cluster mass scales with ground-
based shear surveys to a depth of z = 1 by including photo-
metric redshifts with accuracy ∆z ≃ 0.05.

To date the idea of reconstructing the full 3-D grav-
itational or matter distribution has only been applied to
simulated data. However, data of this quality already exist;
the COMBO-17 survey (Wolf et al 2001) is a 17-band photo-
metric redshift survey with accuracy ∆z = 0.05 throughout
0 < z < 0.8 and has already been used for weak shear stud-
ies of a supercluster (Gray et al 2002), large-scale structure
(Brown et al 2002), star formation efficiency (Gray et al
2003) and galaxy alignment effects (Heymans et al 2003). It
is therefore an ideal dataset with which to carry out a first
direct reconstruction of the 3-D gravitational potential.

In this paper we carry out a full 3-dimensional anal-
ysis of the A901/2 supercluster field from the COMBO-17
survey, including measurements of the 3-D shear, lensing
potential and gravitational potential fields. We describe the
necessary methodological tools for these measurements in
Section 2. In particular we summarise our approach to mea-
surement of tangential shear, the Kaiser-Squires inversion

for the lensing potential and reconstruction of the gravi-
tational potential. In Section 2 we also develop the halo
model of mass and galaxy clustering allowing an analysis
of the correlations between the 3-D gravitational potential
and the galaxy number and luminosity densities. In Section 3
we describe the COMBO-17 dataset, discussing the imaging
and photometric redshift data, and the means of obtaining
a shear catalogue. We describe the A901/2 field in detail,
recalling the relevant shear measurements obtained by Gray
et al (2002) for this supercluster.

In Section 4 we measure the 3-D tangential shear of
the COMBO-17 A901/2 supercluster field, where we fit 3-
D shear models to the clusters, following the approach of
Wittman et al (2001, 2002), and measure the mass and red-
shift for the clusters directly from the gravitational distor-
tions. We examine the evidence for a lensing signature of a
cluster behind the supercluster at z = 0.48, and constrain its
mass using a two-cluster fit to the shear data. This is com-
pared to the results of a 2-D lensing analysis by Gray et al
(2002). In Section 5 we calculate the 3-dimensional lensing
potential and reconstruct the 3-dimensional dark matter po-
tential of the A901/2 supercluster field. We find significant
potential wells at the expected position of the supercluster
in 3-D, and also find a significant potential well at the posi-
tion of the background cluster. We discuss the measurement
significance for each of these detections.

In Section 6 we explore a natural application of 3-
D gravity measurements to measure the auto- and cross-
correlation of the 3-D gravitational potential with two other
quantities: the galaxy number density, and the luminosity
distribution. We find that there are anti-correlations for each
of these quantities, and describe how this can be understood
in terms of baryonic infall into dark matter concentrations.
We compare our results with theoretical predictions of the
halo model. Finally, we present our conclusions in Section 7.

2 METHODOLOGY

In this section we discuss the methodology we will use to
extract 3-D information from our survey. We begin by dis-
cussing the tangential shear, which we will use for a χ2 anal-
ysis of the mass and position of mass concentrations in our
survey. Following this, we will describe our method for fully
reconstructing the gravitational potential in 3-D. Finally we
present and develop the halo model of nonlinear mass and
galaxy clustering for analysing correlation functions of the
gravitational potential, the galaxy number density and the
galaxy luminosity fields.

2.1 Tangential shear

Weak gravitational shear distorts images in a way that can
be described by the shear matrix

γij =

(
γ1 γ2
γ2 −γ1

)
, (1)

where γ1 and γ2 represent the two orthogonal states of dis-
tortion (see e.g. Bartelmann & Schneider 2001). In Section
4 we use the methods discussed by Kaiser, Squires & Broad-
hurst (1995) to obtain γij estimates for all galaxies in our
survey, and use the tangential shear measurements to find
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estimates of cluster mass and redshift position (c.f. Gray et
al 2002). In order to do this, we choose a centre for each clus-
ter, which we take to be the optical centre (see Section 4).
We then calculate the tangential shear in radial bins around
each cluster,

γt = −(γ1 cos 2θ + γ2 sin 2θ), (2)

where θ is the position angle taken from the cluster centre.
In order to estimate the mass and redshift of each cluster, we
will fit a singular isothermal sphere to the tangential shear
values (see Section 4).

2.2 Lensing Potential

To measure the 3-dimensional gravitational potential, we
must first calculate the lensing potential, φ, which we con-
sider as a 3-dimensional field (c.f. Taylor 2001, Bacon &
Taylor 2003). This is related to the shear field (in the limit
of a flat sky) by

γij(r, rθ) =
(
∂i∂j −

1

2
δKij ∂

2
)
φ(r, rθ), (3)

where θ is a position angle on the sky, ∂i ≡ r(δij−θiθj)∇j =
r(∇i − θi∂r) is the dimensionless transverse differential op-
erator and ∂2 ≡ ∂i∂

i is the transverse Laplacian. Here r is
a comoving distance,

r(z) =

∫ z

0

dz′

H(z′)
, (4)

where

H(z) = H0[ Ωm(1 + z)3 + Ωv ]
1/2 (5)

is the Hubble parameter, Ωm is the present-day matter den-
sity parameter and Ωv is the energy density associated with
the vacuum. Throughout we shall assume a spatially flat
universe with Ωm = 0.3 and Ωv = 0.7.

The inverse relation, for calculating φ from γij , is given
by the Kaiser-Squires (1993) relation, generalised to 3-D:

φ̂(r, rθ) = 2∂−4∂i∂j γij(r, rθ), (6)

where φ̂ is an estimate of φ. In order to calculate this quan-
tity in practice, the shear field must be smoothed in the
transverse direction in order to overcome the formally infi-
nite noise amplitude (Kaiser & Squires 1993). In this equa-
tion we have used the operator ∂−2; this is the (flat sky)
inverse 2-D Laplacian operator, given by

∂−2 ≡ 1

2π

∫
d2θ ln |θ − θ

′|. (7)

We measure transverse positions θ in units of radians, lead-
ing to dimensionless lensing quantities.

Equation (6) reconstructs the lensing potential up to an
arbitrary function of comoving distance (Taylor 2001, Bacon
& Taylor 2003):

φ̂(r, rθ) = φ(r, rθ) + ψ(r,θ), (8)

where

ψ(r,θ) = ω(r) + η(r)θx + µ(r)θy + ν(r)(θ2x + θ2y), (9)

and where ω(r), η(r), µ(r) and ν(r) are arbitrary functions.
Here φ is the true lensing potential, and ψ(r,θ) is a solution
to

(
∂i∂j − 1

2
δKij ∂

2
)
ψ(r,θ) = 0. (10)

This arbitrary behaviour along the line-of-sight is due to the
fact that the shear only defines the lensing potential up to a
quadratic in angle for each slice in depth, and is the potential
analogue of the more familiar sheet-mass degeneracy for the
lens convergence, κ; φ = 2∂−2κ + C. These terms can be
removed by taking moments of the measured lens potential
over the area of a survey (Bacon & Taylor 2003);

ψmn(r) =
1

A

∫

A

d2θ φ̂(r, rθ)(θmx + θny ), (11)

where A is the area of the survey. An estimate of the lensing
potential with zero mean, gradient and paraboloid contribu-
tions is then given by

∆φ(r, rθ) = φ̂(r, rθ)− ψ̂(r, rθ), (12)

where ψ̂ is a correction term composed of the coefficients
ψmn. We have neglected higher order polynomial contribu-
tions to φ which could in general lead to a bias in the esti-
mated gradient and paraboloid terms; however, in practice
our boundary conditions at the field edge (continuity for am-
plitude and gradient) mean that we do not have such terms
in our reconstruction.

For a general survey geometry, the coefficients ψmn can
be calculated numerically. The removal of the first few mo-
ments will reduce the power on the largest scales of the sur-
vey. This effect and the noise properties of the reconstructed
∆φ field are discussed further in Bacon & Taylor (2003).

2.3 Gravitational Potential

Having calculated an estimate of the lensing potential, ∆φ,
we are now in a position to reconstruct the 3-D gravitational
potential. The lensing potential is related to the gravita-
tional potential by the line-of-sight integral

φ(r, rθ) = 2

∫ r

0

dr′
(
r − r′

rr′

)
Φ(r′, r′θ), (13)

where we have assumed a spatially flat universe and the
Born approximation. Treating φ(r, rθ) as a 3-D variable, we
can invert equation (13) to arrive at an estimate of the 3-D
gravitational potential (Taylor 2001):

Φ(r, rθ) =
1

2
∂rr

2∂r φ(r, rθ), (14)

where ∂r = θ.∇ is a radial derivative. The solution to equa-
tion (14) can be checked by direct substitution into equation
(13) and integrating by parts. In practice we shall use the
corrected potential, ∆φ, from equation (12), yielding

Φ(r, rθ) =
1

2
∂rr

2∂r∆φ(r, rθ) (15)

as an estimate of the dark matter potential. For complete-
ness we note that the density field is

δ(r, rθ) =
a(r)

3ΩmH2
0

∇2∂rr
2∂r∆φ(r, rθ), (16)

where a is the expansion factor. However the dataset we
shall consider here is too noisy to reconstruct the 3-D den-
sity field. Hence we shall use the set of equations, (6), (11),
(12) and (15) to generate the 3-D lensing convergence, 3-D
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lensing potential and 3-D dark matter potential from com-
bined shear and redshift information.

2.4 Wiener filtering

Hu & Keeton (2003) and Bacon & Taylor (2003) have shown
that reconstruction of the 3-D gravitational potential ben-
efits enormously from Wiener filtering. For realistic lens-
ing surveys cluster-mass concentrations are typically unde-
tectable in the unfiltered gravitational potential, due to the
large shot-noise. However cluster masses can be detected
with a signal-to-noise ratio of ≃ 2 per pixel in the Wiener
filtered field. We need only filter in the redshift direction
(Bacon & Taylor, 2003), leaving the potential field in the
transverse direction unfiltered.

For each x, y position, we construct a vector, Φi, com-
posed of the gravitational potential measurement in the ith

redshift bin, along the z direction. We also construct a noise
covariance matrix, Nij , for the gravitational potential co-
variance in the z direction, measured from 100 reconstruc-
tions of the Φ-field with randomised ellipticities. A further
matrix, Sij , represents the expected signal covariance along
the line of sight. For this we use a unit matrix multiplied by
S = (1.3 × 10−7)2 which equals the square of the expected
gravitational potential amplitude for a 5 × 1013M⊙ cluster
(c.f. Bacon & Taylor 2003);

Sij = Sδij . (17)

We then apply the Wiener filtering,

Φ′ = S(S +N )−1Φ, (18)

where Φ′ is the Wiener filtered gravitational potential we
require.

2.5 Statistical properties and the halo model

Having shown how one can reconstruct the 3-D Newto-
nian gravitational potential from lensing, we now turn to
the statistical properties of the reconstructed field. In ad-
dition to the gravitational field, we can also measure the
3-D galaxy number density, n(r), and the luminosity den-
sity, L(r) ≡ ρL(r). It is of interest to estimate the auto-
and cross-correlations of these fields from theory, in order to
compare with the results of our data analysis.

In practice we shall use a projected correlation function,
where the statistical correlations are calculated in slices in
redshift and then averaged. This is convenient since each
redshift bin is much larger than the transverse size of the
field, and helps to reduce the effect of the line-of-sight
Wiener filter which will distort the statistical properties of
the filtered field. We define the projected correlation be-
tween two fields, X and Y , by

CXY (r⊥) =
1

Nz

Nz∑

i=1

〈X(x⊥, zi)Y (x⊥ + r⊥, zi)〉, (19)

where X and Y denote the fields (Φ, n, L), x⊥ and r⊥ are
transverse position vectors in the slice at redshift zi, and
r⊥ = |r⊥|. The number of redshift slices is Nz . The averag-
ing, 〈· · ·〉, is taken over the fields at each slice. In practice
this averaging will be done over a finite survey on the sky
with pixelised data.

The observed Φ-Φ, Φ-n and Φ-L projected auto- and
cross-correlation functions can be generated from their cor-
responding power spectra by the transformation

CXY(r⊥) =

∫
k2dk

2π2
W (k, r⊥)PXY (k) |ωpix(k)|2 , (20)

where for a cylinderical survey with radius Rs = 4h−1Mpc
and length Ls = 1000 h−1Mpc the survey window function
is given by

W (k, r⊥) =

∫ 1

−1

dµ j20(kLpixµ)[1−W 2
◦ (kRs

√
1− µ2)]

× [J0(kr⊥
√

1− µ2)−W◦(kRs

√
1− µ2)] (21)

where

W◦(x) =
2J1(x)

x
, (22)

is the 2-D Fourier transform of a circular survey aperture.
Lpix = 50 h−1Mpc is the pixel length in the redshift direc-
tion. We also include the effects of pixelisation in the trans-
verse direction with the pixel window function;

ωpix(k) =

∫ +1

−1

dµW◦(kRpix

√
1− µ2), (23)

for circular pixels of radius Rpix = 0.2 h−1Mpc. The various
terms in equation (21) then correct for pixelisation, the sur-
vey window function, and removal of the mean field. There
is also an integral constraint, that the integral of the field is
zero when averaged over the survey volume.

The statistical properties of dark matter and galaxies
can be most easily modeled theoretically with the halo model
(e.g. Peacock & Smith 2000, Seljak 2000). Here the statisti-
cal distribution of dark matter is considered as a sum of lin-
ear correlations between haloes on large scales and internal
correlations within haloes on small scales. These haloes can
be populated with a distribution of galaxies and allocated
a luminosity, depending on the halo mass. The statistical
properties of the haloes and galaxies can then be calculated
by averaging over the mass function. The power spectra we
require is given by a linear and a nonlinear term;

PXY (k) =

∫
dn(M)

(2π)3

(
ρ(k,M)

ρ̄

)2

WXY (k,M)+PLIN
XY (k),(24)

where dn(M) = dM(dn/dM) = (ρ̄/M)f(ν)dν and f(ν) is
the Tolman-Sheth mass function,

νf(ν) = A

(
1 +

(
ν√
2

)−0.3
)(

ν√
2

)1/2

e−ν/2
√

2, (25)

where ν(M, z) = (δc(z)/σ(M, z))2 and σ2(M, z) is the vari-
ance on the scale of haloes of mass m at redshift z. We use
a critical collapse overdensity of δc = 1.68/(1 + z). The halo
profile, ρ(r,M), is assumed to be a Navarro-Frenk-White
(NFW; 2000) profile;

ρ(r,M) ∝ 1

(r/rs)−α(1 + r/rs)3+α
, (26)

where the inner slope is α = −1, the inner core radius is
rs = rv/c, where rv = 3M/(4πρ̄δvir) is the virial radius
and c = 10(M/M∗)

β is a halo concentration factor. He we
assume M∗ = 8 × 1011h−1M⊙ (Guzik & Seljak 2002) and
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Figure 1. The luminosity-mass relation, L(M), for the COMBO-
17 data set, estimated from equating the cumulative R-band lu-
minosity and Tolman-Sheth mass functions.

β = −0.2. The Fourier transform of the NFW halo profile
with a sharp cut-off at the virial radius is given by

ρ(k,M) = k cos(k)[Ci(k(1 + c))−Ci(k)] +

k sin(k)[Si(k(1 + c))− Si(k)]− sin ck

1 + c
, (27)

where Ci(z) and Si(z) are the Cosine and Sine integrals,
respectively. For simplicity we shall assume that the linear
power spectrum of all of the fields is just equal to the linear
dark matter power spectrum.

The weighting functions in the nonlinear, halo-halo part
of equation (24) are given by

WΦΦ(k,M) =
9

4
H4

0Ω
2
m(1 + z)2k−4 (28)

for the potential power spectrum, and

Wnn(M) =
〈N(N − 1)〉ρ̄2

(n̄M)2
(29)

for the galaxy-galaxy power spectrum, where 〈N(N−1)(M)〉
is the variance of the number of galaxies in a halo of mass
M . The galaxy-mass weight is given by

WnΦ(k,M) = −3

2
H2

0Ωm(1 + z)k−2 〈N〉ρ̄
n̄M

, (30)

where 〈N(M)〉 is the average number of galaxies for a halo
of massM . We model the halo occupation numbers with the
same functional form;

〈N〉, 〈N(N − 1)〉1/2 =
(
M

M∗

)0.81 (
1− e−(M/M0)

2/2
)
, (31)

where M∗ = 1013.47M⊙. For the mean occupation number,
〈N〉, we use M0 = 1013M⊙, while for the scatter in the oc-
cupation number, 〈N(N − 1)〉, we use M0 = 6 × 1012M⊙.
These parameters are suitable for all galaxies with an abso-
lute magnitude threshold of MB < −19.5 (eg Seljak 2000).

The luminosity-mass weight is given by

WLΦ(k,M) = −3

2
H2

0Ωm(1 + z)k−2
〈
M

L

〉
L(M)

M
, (32)

where 〈M/L〉 is the universal mass-to-light ratio and L(M)
is the average luminosity of a halo of mass M . Finally the
luminosity-luminosity weight is

WLL(M) =
〈
M

L

〉2
(
L(M)

M

)2

. (33)

The luminosity-mass relation, L(M), can be estimated by
equating the cumulative halo number density to the cumu-
lative luminosity function, N(> M) = N(> L) (Peacock
& Smith 2000). We use the R-band luminosity function de-
rived by Wolf et al (2003) for the COMBO-17 data. Figure 1
shows the derived luminosity-mass relation for the COMBO-
17 dataset.

We should also consider the range of the mass integra-
tion in equation (24). In a finite survey, the high-mass end
of the mass function may not be well sampled, as high mass
concentrations are rare. To account for this, and to compare
results with a real survey, we may truncate this integral
at the largest mass found in the survey. This will have the
effect of suppressing the largest nonlinear scales. As the po-
tential field is weighted towards larger scales, this can have
an important effect on the statistics of the potential field.
We discuss this further in Section 6.

Having presented our methods for recovering the 3-D
dark matter gravitational potential field, and the halo model
for analysing the auto- and cross-correlation of the gravita-
tional potential, number density and luminosity densities,
we now turn to the dataset we will apply this analysis to.

3 THE COMBO-17 DATA

3.1 Observations

The quality of data required for a full 3-D gravitational lens-
ing analysis already exists. The COMBO-17 survey is a 17-
band photometric redshift survey with gravitational lensing
quality R-band data (Wolf et al 2001). The survey consists
of four separate areas, each of 30′ × 30′ comprising a total
of 1 square degrees. All of the fields were observed using the
Wide-Field Imager (WFI) at the MPG/ESO 2.2m telescope
on La Silla in Chile, with a 4× 2 array of 2048× 4096 pixel
CCDs, each pixel subtending 0.238 arcseconds. One of these
fields is centred on the A901/2 supercluster which has previ-
ously been analysed by Gray et al (2002) and it is this field
that we will use in this analysis.

3.1.1 Photometric redshifts

Each of the COMBO-17 fields was observed in 17 different
filters, with the intention of obtaining object classification
and accurate photometric redshifts. In order to provide reli-
able redshifts, the filter set included five broad-band filters
(UBV RI) and 12 medium-band filters from 350 to 930 nm.
This observing strategy allows simultaneous estimates of
Spectral Energy Distribution (SED) classifications and pho-
tometric redshifts from empirically-based templates. Wolf et
al (2001) describe in detail the photometric redshift estima-
tion methods used to obtain typical accuracies of σz = 0.05
for galaxies throughout 0 < z < 1.

c© 2003 RAS, MNRAS 000, 1–21
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3.1.2 Shear measurements

The R filter was used in best seeing conditions throughout
the observing campaign, in order to provide a deep R-band
image from which to measure the gravitational shear. Gray
et al (2002) discuss the procedure used to reduce the R band
imaging data, which totalled 6.3 hours. As described there,
the 352 individual chip exposures for the A901/2 field were
registered using linear astrometric fits, with 3σ bad pixel
rejection to remove bad columns and pixels.

We then applied the imcat shear analysis package, us-
ing Kaiser, Squires & Broadhurst’s (1995) weak lensing mea-
surement method, to our reduced image (see Gray et al 2002
for details). This resulted in a catalogue of galaxies with cen-
troids and shear estimates throughout our field, corrected for
the effects of PSF circularisation and anisotropic smearing.
We appended to this catalogue the photometric redshifts
estimated for each galaxy from the standard COMBO-17
analysis of the full multicolour dataset. Of the 37,243 galax-
ies in the shear catalogue, 36% had a reliable photometric
redshift, the remainder being fainter than the R = 24 reli-
ability limit of the redshift survey. The requirement for the
3-D lensing study that the redshift of each galaxy be known
clearly results in an immediate reduction in available galax-
ies, as it is apparent that most of the background sample
is composed of galaxies that are small and fainter than the
magnitude limit of the redshift survey.

3.2 The A901/2 supercluster

The supercluster itself is composed of three clusters of galax-
ies (A901a, A901b, and A902), all at z = 0.16 and contained
within the 0.5◦ × 0.5◦ field-of-view of the WFI. The X-ray,
number count, and 2-dimensional lensing properties of the
field are discussed in detail in Gray et al (2002). Figure 2
shows the projected mass distribution estimated by Gray et
al (2002). The three main components of the supercluster,
A901a, A901b and A902 are clearly detected. One of the
main conclusions of that work was that the distribution of
the early-type supercluster galaxies (as selected by their lo-
cation on the B − R vs R colour-magnitude diagram) does
not fully trace the distribution of the lensing-revealed mass
map. In particular, misalignments between (early-type) light
and mass were found in A901b which is the only cluster to
display extended X-ray emission in pointed ROSAT HRI
observations by Schindler (2000).

Additionally, no single mass-to-light ratio (again, con-
sidering only the light from the colour-selected early-type
galaxies) could be adequately determined for the system as
a whole: A901a, by far the most luminous of the clusters,
was under-represented in the lensing mass map. Clearly, the
mapping from early-type light to mass in this system is not
a linear one, either due to dynamical effects from an ongoing
merger or to divergent paths in galaxy evolution (and hence
total luminosity) in the three clusters.

The Gray et al. (2002) lensing study employed a stan-
dard weak lensing approximation and assumed that all the
mass measured in the projected mass map was due to a mass
concentration in a single lens plane. However, with the ad-
vent of 3-dimensional mapping techniques, we are now able
to fully probe the mass distribution throughout the entire
volume of the COMBO-17 observations. This advance al-

Figure 2. Two-dimensional projected distribution of mass in the
A901/2 field. The contours show the lensing mass map of Gray
et al. (2002), with crosses, squares, and triangles marking the lo-
cation of the peaks in the mass and light distributions and the
positions of the brightest cluster galaxies, respectively. The con-
tour levels are spaced by ∆κ = 0.02, while the noise level is
σκ = 0.027.

lows us to test whether the bulk of the mass does indeed
lie in the redshift plane of the supercluster at z = 0.16,
or whether projection effects from matter behind the su-
percluster contribute significantly. If projection effects are
found to contribute significantly to the 2-dimensional mass
map, we may have an alternative explanation to discrepant
M/L ratios observed in the system.

4 MEASURING THE MASS AND 3-D
POSITION OF CLUSTERS

4.1 Single cluster model

Using the shear estimates for the galaxies in the A901/2
field, together with photometric redshifts, we are able to
measure the redshifts and masses of the clusters from the 3-
D distortion field that they create. While constraining clus-
ter masses has been the traditional goal for weak lensing
studies, it is also of importance to be able to place addi-
tional constraints on the mass distribution along the line of
sight using a method that is independent of baryonic con-
tent. While in this case the structures we are probing are
clear overdensities of galaxies at known redshift, we shall
use this supercluster field as an illustration of what can be
achieved when the shear signal from each lensed galaxy can
be appropriately weighted by its redshift. One possible ap-
plication of such a technique would be as a way to confirm
and constrain the masses and redshift of ‘dark clusters’ (Er-
ben et al. 2000, Gray et al. 2001, Umetsu & Futamase 2003,
Weinberg & Kamionkowski 2003), or to deproject multiple
mass concentrations along a single line-of-sight. In addition,
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Figure 3. Tangential shear as a function of angular radius and redshift. Each row presents the radial profile of the tangential shear
around each of the three mass peaks in the field, according to increasing source redshift. The solid curve in each case represents with
best-fit SIS model for the redshift bin, with zlens=0.16. Note the growth of the lensing signal as the slices in redshift space become more
distant. The bottom row shows the signal for an ‘average’ cluster, calculated by stacking the catalogues for the three clusters around a
common origin (no attempt is made to scale the signal according to varying cluster mass).

3-D lensing offers the possibility of creating mass-selected
samples of dark matter concentrations. Such a sample would
allow for cleaner comparisons with theories of structure for-
mation, without resorting to a priori assumptions about how
the dark matter and baryonic distribution (in the form of
galaxies or hot X-ray gas) are related.

Consequently, in the following analysis we will treat the
masses and (known) redshifts of each cluster as free param-
eters. Figure 3 shows the radial profile of the tangential
shear, γt(θ) (Equation 2), as a function of source redshift
for each cluster, zs. In this figure each row represents a dif-
ferent cluster, with the final row representing the results
from a ‘stacked’ cluster, obtained by recentering all three
catalogues about a common origin and concatenating. Each
column shows the shear signal in increasing source redshift
slices. The solid curves show the best-fit tangential shear for
a singular isothermal sphere (SIS) model;

γt,SIS(θ) =
2π

θ

(
σv

c

)2 Dls

Ds
. (34)

Here Dls and Ds are the angular distances from lens to

source and from observer to source, respectively. We fix the
lens redshift at zlens = 0.16 so that the SIS model is charac-
terized only by a single parameter, the halo velocity disper-
sion, σv. The final column in Figure 3 shows the shear profile
for the ∼65% of source galaxies with R > 24, for which pho-
tometric redshifts are unreliable. As expected, the lensing
signal generally grows as a function of source redshift be-
hind each cluster, and no signal is detected in the lowest
redshift (0 < zs < 0.3) bin where many of the source galax-
ies are foreground to the lens.

Figure 4 shows the constraints on mass and redshift for
the clusters from a 2-parameter χ2 fit of the data points
from Figure 3, allowing both zlens and σv to vary. For
A901a the best-fit zlens is zlens = 0.30+0.10

−0.16 and a small
range in preferred mass of σv = 840+100

−105 kms
−1. For A901b,

we obtain zlens = 0.38+0.14
−0.11 and σv = 840+170

−110 kms
−1. For

A902 the best-fit parameters are zlens = 0.38+0.23
−0.20 and

σv = 760+220
−200 kms

−1. As expected, the increased number
density in the ‘stacked’ catalogue results in slightly smaller
error bars: zlens = 0.38+0.05

−0.09 and σv = 840+25
−100 kms

−1. In
each case the degeneracy in the contours is clear and the
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Figure 4. Constraints on cluster mass and redshift. Each panel
shows the 1, 2 and 3-sigma (68%, 95% and 99.5% confidence)
contours for a χ2 two-parameter fit to the data from Figure 1,
allowing both zlens and σv (for a SIS model) to vary for each
cluster.

best-fit redshift is biased towards higher redshifts, although
in no case is the true solution of zlens = 0.16 excluded at
the 95% confidence level. This is partially the result of the
coarseness of the redshift bins: much of the signal constrain-
ing the redshift of the cluster comes from the rapid rise in
lensing signal just beyond the lens redshift. In this case our
lowest-redshift bin spans the relatively wide redshift slice of
0 < zs < 0.3. A finer redshift slice would remove some of
this degeneracy, for example if ∆z = 0.1 the best-fit solu-
tion for the redshift of A901a falls to zlens = 0.22. However,
a balance needs to be struck between ensuring fine adequate
sampling in redshift space and having sufficient numbers of
galaxies in each redshift bin.

Note that in each case, there is a strong detection of the
clusters; the χ2 results are not consistent with zero mass.
This provides us with estimates of the detection significance
of the clusters by marginalising over redshift, and examining
how likely zero mass is in the resulting probability contours.
For A901a, we find that the probability of a zero-mass solu-
tion at zlens = 0.16 is 4.7 × 10−8; for A901b, 8× 10−6; and
for A902, 9 × 10−3. Thus all clusters are highly significant
mass concentrations.

If we fix the redshift of the clusters at z = 0.16 and fit
only the velocity dispersions, then the best-fit results are:
A901a, σv = 680+25

−90 kms
−1; A901b, σv = 600+40

−85 kms
−1;

and A902, σv = 520+55
−90 kms

−1. These values are our best es-
timates for a single cluster model and are tabulated in Table
1, along with the implied total mass within a 0.5 h−1Mpc ra-
dius. These results can be compared with those of Gray et al
(2002) who measured the tangential shear for the faint R >
22 galaxies without any redshift information. They found

the velocity dispersion of σv = 542+195
−333 kms

−1 for A901a,
σv = 659+129

−161 kms
−1 for A901b and σv = 738+244

−384 kms
−1

for A902. All of these are in consistent within the errors
with our current measurements for a similar fixed redshift
of z = 0.16.

Figure 5 shows the tangential shear, γt(θ), as a func-
tion of redshift in the direction of each cluster, and for the
‘average’ stacked cluster. The shear data points in this plot,
and their uncertainties, are from the fit of the SIS model
to the data in Figure 3 in each redshift bin, and plotted at
the centre of each bin. As a demonstration of the growth of
the signal, we choose to plot the amplitude of these fits at
the fiducial radius of θ = 200′′, although we emphasize that
the fit is to all of the data points in Figure 3. We show the
amplitude of the fit for each of the redshift bins, and for the
R > 24 sample with unknown redshifts. In each figure we
also show the best-fit shear model with parameters given by
Figure 4 (dotted line) and a model with fixed cluster red-
shift of z = 0.16 and a shear amplitude normalised to the
R > 24 galaxies at z = 1 (solid line; note that any similar
normalisation at z > 1 would yield similar results).

The amplitude of the tangential shear as a function of
redshift for A901a, shown in Figure 5 (top left), is in good
agreement with the predicted shear for a z = 0.16 cluster
with velocity dispersion given by Figure 4 (dotted line). In
particular the A901a data shows a clear rise of the tangential
shear signal from zero at the cluster redshift. There is also
good asymptotic agreement with theR > 24 galaxies. A901b
and A902 (Figure 5, top right and bottom left) both show
similar trends of increasing shear, although in the case of
A901b with a high shear signal in the zs = 0.75 bin. This
can be seen in the higher fit of the model to the data in
Figure 2 in the redshift range 0.6 < z < 0.9, and is mainly
due to a high shear at θ > 200′′.

Finally, in addition to determining the lens strength
and redshift, Figure 5 shows that the converse can also be
achieved: by comparing the shear signal in the R > 24 bin
(which contains ∼ 65% of the galaxies in our shear cata-
logue) with either those of known redshift or the tangential
shear of the best-fit model of the stacked clusters, the red-
shift of the R > 24 sources can be constrained to be zs > 0.5
at the 1-σ level. As many lensing studies suffer significant er-
rors resulting from the unknown redshift of the background
sources, this result illustrates the potential for calibrating
the redshifts of galaxies beyond the limit of both spectro-
scopic and photometric redshift surveys (see also Clowe et
al 2003). The example given here is rather weak, as all of
the major clusters are at a single redshift, z = 0.16 and the
shear signal reaches asympotic values relatively quickly. Ide-
ally one would like to perform such an analysis with clusters
at a range of redshifts, preferably at higher redshift to better
constrain the unknown population.

4.2 A two cluster model along the line of sight

In the previous section we have demonstrated the con-
straints that the shear data together with the COMBO-17
photometric redshifts can place on the mass and redshift of
a cluster, assuming that all the deflecting mass is located in
a single plane. However, the redshift survey indicates that
the galaxy distribution in the volume of observation in this
field is not dominated simply by the z = 0.16 superclus-
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Figure 5. Tangential shear as a function of redshift. Each point represents the amplitude of the tangential shear from the fit to the SIS
radial profile in each redshift slice from Fig. 3, plotted at a fiducial radius of 200 arcsec. The dashed line shows the expected redshift
dependence from the best two-parameter fit (zlens, σv) shown in Fig. 4. The solid curve shows the redshift dependence for a cluster at
fixed redshift, with zlens = 0.16, and with the amplitude normalised at z = 1 to the R > 24 point.

ter structure. In particular, we find that the photometric
redshift survey reveals a second cluster, which we will term
CB1, at higher redshift (z = 0.48) and located only ∼90 arc-
sec to the southeast of the brightest cluster galaxy in A902.
In this section we shall exploit this fortuitous alignment of
two clusters and extend our analysis to fit a more complex
mass model along the line of sight. This provides us with
the opportunity to attempt to detect two co-projected clus-
ters via their gravitational shear (c.f. Bacon & Taylor 2003,
Hu & Keeton 2003), and measure their redshifts and veloc-
ity dispersions. In Section 5 we will show that this model
is consistent with the Wiener filtered gravitational potential
map which we will obtain which also shows a cluster-sized
mass concentration at this redshift.

We perform a χ2 fit for two colinear SIS profiles in a
four-dimensional space of χ2(z1, σv,1, z2, σv,2), for two clus-
ter velocity dispersions and redshifts, to the shear pattern
and photometric redshifts behind the cluster A902, using
the methods outlined above. The cluster redshifts are con-
strained so that z2 > z1. We find that the global mini-
mum in this four-parameter space is located at z1 = 0.21,

σv,1 = 350 kms−1 and z2 = 0.45, σv,2 = 650 kms−1. By way
of comparison, when we apply the same approach to A901a
and A901b the first cluster solution in each case is consistent
with the single-cluster model of the previous section, while
the second cluster solution is pushed to the highest redshift
and highest mass end of the four-parameter space.

Figures 6, 7 and 8 show marginalised projections of the
full four-parameter space for the A902/CB1 clusters. Fig-
ure 6 shows the 68%, 95% and 99.5% confidence regions for
χ2(z1, z2), after marginalising over σv,1 and σv,2 . Since we
require z2 > z1 the lower triangle is excluded. The peak
value for the lower redshift cluster is at z1 = 0.4. The higher
redshift cluster is best fit at z2 > 1.1, but with a secondary
minimum visible at z ∼ 0.5. The reason for this can be seen
in the tangential shear as a function of redshift for A902
in Figure 5. The shear amplitude low in the second bin at
z = 0.5, so that the fit pushes the low cluster to slightly
higher redshift than its true value at z = 0.16. The low
shear in the z = 1 bin also means there is a jump in shear
values in higher redshift bins, causing the fit to infer the
second cluster is most likely here.
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Figure 6. Contours of 68%, 95%, and 99.5% confidence con-
straints on the marginalised χ2(z1, z2) distribution for a two-
cluster model along line of sight through A902 centre. Here we
have marginalised over σv,1 and σv,2 with z1 < z2.

Figure 7 shows the distribution for χ2(σv,1, σv,2) af-
ter marginalizing over redshifts, (z1, z2). Here we have in-
cluded a weak prior requiring that z1 < z2 < 1 to restrict
the parameter space to more reasonable values. The results,
with 68% confidence limits, are σv,1 = 550+200

−300 kms
−1 and

σv,2 = 670+200
−550 kms

−1. If we drop this weak prior we find
that σv,1 = 650+300

−200 kms
−1, while the second cluster veloc-

ity dispersion is unconstrained within the parameter space.
Finally, we can use our knowledge of the exact positions

of A902 and CB1, in this case from the peaks in the 3-
D galaxy number density distribution, to further improve
our estimates of the two masses. We shall refer to this as a
strong prior on the cluster positions, where we perform a χ2

fit to two cluster velocity dispersions with fixed redshifts at
z1 = 0.16 and z2 = 0.48.

Fig. 8 (top) shows the results for this fit. The for-
mal minimum lies at a solution with σv1 = 350 kms−1

and σv2 = 670 kms−1. The total mass of the two-cluster
system is well-constrained, although again the individual
velocity dispersions are not. However, marginalising over
each velocity dispersion separately (Fig. 8, bottom panel)
we find the projected 1-parameter minimum χ2 values are
σv,1 = 470+100

−280 kms
−1 and σv,2 = 730+160

−340 kms
−1. These are

then our best estimates of the masses of A902 and CB1, and
are tabulated in Table 1. This demonstrates that we are able
to measure the masses of two clusters along the same line of
sight using shear and redshift data alone.

Interestingly, even with zero mass in the second clus-
ter (σv,2 = 0kms−1), putting all of the mass in the first
cluster, the most likely value for the velocity dispersion of
the first cluster is σv,1 = 570 ± 120 kms−1. This is slightly
lower than the result of Gray et al (2002) for A902 of
σv = 738+244

−384 kms
−1, although there is a good overlap with

the uncertainties. One possible reason for the change in the
single cluster velocity dispersion of A902, with fixed redshift,

Figure 7. Contours of 68%, 95%, and 99.5% confidence con-
straints on the marginalised χ2(σv,1, σv,2) distribution for a two-
cluster model along line of sight through the centre of A902. The
cluster positions have been marginalised over with the weak con-
straint that z1 < z2 < 1.

is the different weighting assigned to the galaxy shear val-
ues in these analyses. In Gray et al, where no redshifts were
available, each galaxy was given equal weighting. Here we
do have redshift information. Regardless of the number of
galaxies, which varies from redshift bin to redshift bin, each
bin here has received equal weighting. Hence more weight is
given to outliers, such as the z = 1 bin in A902, which pulls
the mass estimate down.

The lesson we can conclude from this cluster analysis
of masses and positions is the difficulty that a global, para-
metric fit may encounter when applied to real data. The
positions of clusters in redshift is especially sensitive to any
sharp variations in the amplitude of the shear. This is due
to the fact that additional clusters are only detected in such
a fit by appearance of jumps in the shear amplitude. Hence
our analysis for the positions of two projected cluster along
the line of sight in the direction of A902 is not conclusive
and so the overall analysis is improved by the addition of
redshift information for the lensing galaxies. However, the
determination of the velocity dispersions is better, so long
as we enforce a weak or strong prior on the cluster positions.
While this demonstrates that some useful constraints on the
parametric cluster masses can be extracted, even with cur-
rent shear and photometric data, the problems encountered
in this analysis suggest that a non-parametric approach to
cluster finding and characterisation may also be worth inves-
tigation. In the next section we turn to reconstructing the
full 3-D dark matter gravitational potential from our data.
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Figure 8. Top: Contours of 68%, 95% and 99.5% confidence con-
straints on the χ2(σv,1, σv,2) distribution for a two-cluster model
along line of sight of A902 centre. Here we have assumed a strong
prior by fixing the known cluster redshifts. Bottom: Probability
distributions for each cluster velocity dispersion, marginalizing
over the other cluster mass. The shaded regions indicate the 68%
confidence regions.

5 RECONSTRUCTING THE 3-D DARK
MATTER POTENTIAL

So far, we have used photometric redshifts to interpret our
shear estimates as a 3-D shear field, and found we can con-
strain the redshifts and masses of clusters, and even possibly
find evidence for a more complex line-of-sight density distri-
bution. However, as we described in Section 2, we are now in
a position to fully reconstruct the 3-D gravitational poten-
tial using a Kaiser-Squires (1993) inversion followed by the
Taylor (2001) potential reconstruction method. In this sec-
tion, we will use these methods to calculate the gravitational

potential for the A901/2 volume of space. This comoving
volume is approximately θ2r3/3 = 3× 105[h−1Mpc]3.

As discussed in Bacon & Taylor (2003), the intrinsic el-
lipticities of galaxies, σγ , create the major source of noise
upon the gravitational potential reconstruction. In order to
partially overcome this uncertainty, we average the shear
estimators for many galaxies in a cell, chosen to have size
1.5′ × 1.5′ ×∆z with redshift bin width ∆z = 0.05; further
smoothing can be applied if necessary at a later stage. We
examine galaxies with 0 < z < 1; galaxies with higher red-
shifts or no redshift assigned are all included in the final
z = 1 bin. The full grid size is therefore 20× 20× 20 cells.

5.1 The 3-D lensing potential

In order to calculate the gravitational potential, we must
first determine the lensing potential from the shear field
according to equation (6). We estimate this by taking the
Fourier transform of the shear field and using the optimal
weighting of Kaiser & Squires (1992) to find the Fourier
transform of the lensing potential for each redshift slice;

φ̂(k) = 2(k̂2x − k̂2y)γ1(k) + 4k̂xk̂yγ2(k). (35)

After an inverse Fourier transform to recover φ̂(r, rθ), we
calculate the coefficients ψmn(r) from equation (11) and cor-
rect the inversion for mean, gradient and paraboloid terms,
as described in Section 2.2, yielding an estimate of ∆φ at
each slice in redshift.

We can estimate the uncertainty in a reconstruction of
∆φ from the shot-noise estimates derived by Bacon & Taylor
(2003), assuming an intrinsic ellipticity of σγ = 0.3:

〈∆φ2〉SN = 1.7×10−15

(
n2

30/[1′ ]2

)−1 (
Θ

1◦

)2
(

R3

z2∆z

)
,(36)

where n2 is the projected number density of lensed galaxies,
R is the depth of the survey, and Θ is the angular radius of
the survey. With the parameters of the COMBO-17 survey
this becomes

∆φrms ≈ 5.5× 10−7(z/0.1)−1. (37)

This is a reasonable estimate of the noise level we find in the
A901/2 field, e.g. ∆φ = 3.45×10−7 at z = 0.15. However this
underestimates the noise by a factor of 3.2 at z = 0.5, due
to the assumption of a constant space density of galaxies.

Figure 9 shows two cross-sections of the reconstructed
3-D gravitational lensing potential, ∆φ, field after line-of-
sight Gaussian smoothing with a filter scale of ∆z = 0.15.
We see in the top panel that the clusters are individually
resolved in the transverse dimensions of the ∆φ-field, shown
at z = 1 where the signal-to-noise is highest. We have over-
laid the field with a contour from the 3-D luminosity density
(see Section 5.5) at L = 8× 1010L⊙[h

−1Mpc]−3, indicating
a strong correlation between the lensing potential and lumi-
nosity density. Individual 3-D pixels containing supercluster
members have signal-to-noise of 1.5 to 2.1 between z = 0.7
and z = 1. We have already seen in Section 4 how such
pixels can be integrated to obtain precise measurements of
the mass of the clusters; here we will continue with moder-
ate signal-to-noise pixels in order to reconstruct the gravita-
tional potential. In the bottom panel, the typical ‘shark-fin’
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Figure 9. Cross-sections of the lensing potential, φ, for the
A901/2 supercluster field. Top panel: (x, y) slice through z = 1,
by which redshift the lensing potential arising from the clusters
has grown substantially; note the clear detection of the three clus-
ter signatures (luminosity peaks marked with crosses, luminosity
density contour L = 8 × 1010L⊙[h−1Mpc]−3). Bottom panel:
(y, z) slice through x = 12′; this is a slice through A901a and
A902. Note the growth of the lensing potential signal with red-
shift behind the two clusters. Solid lines show theoretical contours
of ‘shark-fin’ growth at these cluster positions).

behaviour of the lensing potential behind the A901/2 super-
cluster can be clearly seen; ∆φ grows with redshift behind
the supercluster members.

5.2 Reconstructing the 3-D gravitational potential

We can now use equation (15) to reconstruct the 3-D gravi-
tational potential, Φ. Following Bacon & Taylor (2003), we
approximate derivatives in the redshift direction by second-
order differences to reduce error propagation;

∂zφ(r) =
φ(x, y, z −∆z)− φ(x, y, z +∆z)

2∆z
, (38)

and

Figure 10. Cross-sections of the 3-D gravitational potential, Φ,
for the A901/2 supercluster field. Top panel: (x, z) slice through
y = 12′. The gravitational troughs at z ≃ 0.15 is associated with
the supercluster (luminosity peaks marked with crosses, lumi-
nosity density contour L = 3 × 1010L⊙[h−1Mpc]−3). Note also
the trough at z ≃ 0.45, corresponding to a mass concentration
CB1 detected behind A902. Middle panel: (x, y) slice through
the z = 0.15 to 0.2 slice. We see the troughs associated with
the supercluster members (luminosity density contour L = 8 ×

1010L⊙[ h−1Mpc]−3). Bottom panel: (x, y) slice through z = 0.45
to 0.5. Note the trough associated with the background cluster
CB1 (luminosity density contour L = 2× 1010L⊙[h−1Mpc]−3).
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Figure 11. Cross-sections of the 3-D galaxy number density n
for the A901/2 supercluster field. Slices and luminosity contours
correspond to those in Fig. 10. Note the overdensities due to the
supercluster at z = 0.16 and the mass concentration CB1 at z =
0.48.

Figure 12. Cross-sections of the 3-D luminosity density for the
A901/2 supercluster field. Slices correspond to those in Fig. 10.
Note the overdensities due to the supercluster at z = 0.16 and
the mass concentration CB1 at z = 0.48.
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∂2
zφ(r) =

φ(x, y, z −∆z) + φ(x, y, z +∆z)− 2φ(x, y, z)

(∆z)2
,(39)

where ∆z is the width of a bin in redshift.
The expected signal-to-noise for the potential field can

be estimated from the analytic results of Bacon & Taylor
(2003) who found that the shot-noise contribution was

〈Φ2〉SN = 2.5×10−16

(
n2

(30/[1′]2)

)−1(
Θ

1◦

)2( z

∆z

)4( R

∆z

)
,(40)

where ∆z = 0.05 is the size of redshift bin. For the COMBO-
17 survey we find

∆Φ(z) = 8.5 × 10−8(z/0.1)2, (41)

compared with an expected signal of Φ ∼ 10−7. Since this
implies a signal-to-noise of near unity, we must Wiener filter
to proceed further; we Wiener filter the resulting Φ-field in
the z-direction according to equation (18). This completes
the process of obtaining a measurement of the 3-D Φ-field
with reasonable signal-to-noise; we are now able to examine
our resulting maps.

5.3 Mapping the potential

Figure 10 shows three cross-sections through the final,
Wiener filtered Φ-field. We note several significant features
of this field. The top panel of Figure 10 shows a slice in
the (y, z) plane through x = 12′, of the supercluster poten-
tial. As for the lensing potential, we have overlaid this with
a contour from the 3D luminosity density (see Section 5.5)
at L = 3× 1010L⊙[h

−1Mpc]−3. The gravitational potential
well associated with supercluster A901/2, at z = 0.16, is
clearly recovered with a peak pixel S/N of 2.7. The cluster
centres of A901a and A902 are also visible clearly visible in
this slice.

Beyond the supercluster, the potential field rises as we
enter a void. But beyond that, at z ≃ 0.48, there is clearly a
second mass concentration, corresponding to the luminosity
peak of the background cluster CB1 behind A902. This has
a peak Φ pixel S/N of 3.5, and is therefore actually more
significant per pixel than the supercluster itself. This is con-
sequently the first 3-D gravitational potential reconstruction
of a cluster behind another cluster.

The position of CB1 is reasonably well constrained
from the galaxy number distribution (see Section 5.4); z =
0.48 ± 0.1. Bacon & Taylor (2003) find that the Wiener fil-
tering only biases the position of structure by ∆z ≃ 0.05
with ground-based noise levels, which is consistent with the
small offset seen in the position of the minimum of the CB1
potential well. Hence our non-parametric map-making ap-
proach has succeeded in finding and deprojecting clusters in
the shear field, substantially improving upon a parametric
fit to the raw shear data. However the absolute depth of the
potential well is not so well determined, as the Wiener filter
will bias this by a factor ∼ S/(S+N) (equation 18). Hence,
once a cluster is detected and its position is determined, a
parametric fit is required to estimate its mass. These mass
estimates are presented in Table 1, for both single and dou-
ble clusters models, with the redshifts given by the galaxy
number counts.

The middle panel of Fig. 10 shows a slice in the (x, y)-
plane at z = 0.15 to 0.2, the redshift bin including the su-

percluster, overlaid with a contour from the 3-D luminosity
density at L = 8 × 1010L⊙[ h

−1Mpc]−3. We see that the
reconstructed gravitational potential wells correspond well
to the positions of the three component clusters of A901/2.
We will assess this quantitatively in Section 6. In this slice
A901a has a peak pixel S/N of 2.7; A901b also has peak
pixel S/N of 1.6, while A902 has peak pixel S/N of 1.4.

The bottom panel of Fig. 10 shows a second slice
at z = 0.45, corresponding to the position of the sec-
ond structure, overlaid with a luminosity density contour
L = 2 × 1010L⊙[h

−1Mpc]−3. Again we see that the mini-
mum of the potential well lies close to that of the background
cluster CB1’s luminosity peak. The peak signal-to-noise of
CB1’s gravitational potential is 3.5, constituting a secure
detection with our map.

Figure 13 (upper panels) shows a 3-D image of the dark
matter potential field of the A901/2 supercluster and CB1.
The coordinates are (x, y, z) = (θx, θy, z), which introduces
some distortion. The left-hand panel shows a view of the
supercluster field seen from high-redshift, looking back in
the direction of the observer. Hence the positions of the su-
percluster centres is flipped left-to-right compared with the
middle panels of Figure 10. The axis of the 3-D plot are in
pixel units, with scaling ∆x = −1.5 arcmin, ∆y = 1.5 ar-
cmin, and ∆z = 0.05 in redshift. The main features of the
supercluster are clearly identified, with the peak of the clus-
ter luminosities at A901a at (x, y) = (12, 11) (in pixel units),
A901b at (7, 10) and A902 at (13, 5). Here A902 is below our
threshold and so does not appear. The lower feature, cen-
tered at (10, 5) is the background cluster CB1. Two other
potential wells appear at (5, 5) and (1, 4), which also have
galaxy counterparts. The right-hand panel is an oblique view
of the supercluster, with the x − y axis at the bottom and
the vertical z-axis. The main A901/2 supercluster complex
is clearly seen as a sheet mass distribution, although there is
some leakage of the potential field to slightly higher redshift
from the main A901a/b complex. This is most probably due
to the radial Wiener filtering of the field. The CB1 clus-
ter is clearly seen as a separate structure at higher redshift,
z = 0.48.

5.4 The galaxy number density distribution

We can compare our results on the 3-D dark matter po-
tential field with the visible matter distribution, traced by
the galaxy number density. To estimate this we use the full
galaxy redshift catalogue for the A901/2 field, i.e. all galax-
ies with photometric redshifts, rather than only the galaxies
used for our shear analysis. This provides a total of 15147
galaxies with photometric redshifts. The galaxy count for
each cell in the 3-D grid is then determined. Using the re-
sults of Wolf et al (2003) for the COMBO-17 survey, we
possess an estimate for each cell of the incompleteness of
the galaxy count. For z < 0.8, the counts are 90% complete.
In the analysis below, we correct our galaxy counts by the
incompleteness measure as a function of magnitude, redshift
and spectral type (c.f. Wolf et al 2003). We further introduce
an absolute magnitude threshold ofMB < −19.5 in order to
counter the effect of seeing many low-luminosity galaxies at
low redshift.

Figure 11 shows the Gaussian-smoothed (∆θ =
1.5′,∆z = 0.05) galaxy number density in the same volume

c© 2003 RAS, MNRAS 000, 1–21



Mapping the 3-D dark matter potential 15

Figure 13. Three-dimensional iso-surface plots of the dark matter potential and galaxy number density fields. The coordinates of the
map are (x, y, z) = (θx, θy, z), which distorts the map geometry (note axis are in pixel units, where ∆x = ∆y = 1.5 arcmins and
∆z = 0.05 in redshift). Upper panels: (LHS) The dark matter potential field, seen from high-redshift looking back to z = 0 and (RHS)
at an oblique angle. The supercluster A901/2 is seen as a sheet in the potential field in the lower part of the RHS map. The new cluster
CB1 is clearly seen as an isolated structure in the potential field behind A902 at z = 0.48. A902 is at a lower threshold and not plotted.
Lower panels: (LHS) The galaxy number density field for the A901/2 field, in the same projection as the above dark matter image, and
(RHS) in oblique projection. The main overdensities due to the supercluster are seen as a sheet at low redshift, while the CB1 cluster is
clearly seen at z = 0.48.
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of space as our gravitational potential. The top panel again
shows a slice in (y, z), and again we see the galaxy excess
due to the A901/2 supercluster at z = 0.16. There is also
a peak in the number counts at z = 0.48 at the position of
the background cluster CB1. The middle panel of a slice at
z = 0.15 shows up the three cluster cores, while the bottom
panel slice at z = 0.45 shows CB1 as the most significant
galaxy number density at that redshift. Thus we see that
one approach to studying significant mass concentrations is
to detect clusters using number counts, and compare with
gravitational potential maps. Conversely, Φ maps may lead
to further scrutiny of number density maps to find visible
counterparts to potential wells.

Figure 13 (lower panels) again shows a 3-D image, in
(x, y, z) = (θx, θy, z) coordinates, of the iso-number density
surface of the A901/2 supercluster and CB1. The left-hand
panel shows the same viewing angle as the above dark mat-
ter potential, and so the cluster positions are again flipped
left-to-right compared with the middle panel of Figure 11.
The main clusters, A901a, A901b and A902 are all clearly
visible at this threshold, and there is some evidence for an-
other new cluster again at (x, y) = (3, 3) in pixel units. The
new cluster CB1 is seen in projection in front of A902 at
(13, 4). The right-hand panel shows the same image rotated
to an oblique projection, with the x-y plane at the bot-
tom, with the vertical z-axis. Again the A901/2 supercluster
galaxy number density forms a distinct sheet at low redshift,
while the CB1 cluster is again clearly visible at a higher
redshift behind A902. Note that the redshift of CB1 seen
in number density is slightly higher than that of the dark
matter potential well. This slight shift if again probably due
to Wiener filtering of the dark matter potential field.

5.5 The galaxy luminosity-density distribution

Finally, we also compare the dark matter potential with
the 3-D luminosity density. In order to do this, we use
the absolute magnitudes, Mabs, estimated by Wolf et al
(2002) for all galaxies with redshifts. The luminosity, L =
10−0.4(Mabs−M⊙)L⊙ where M⊙ is the solar magnitude, is
calculated for each galaxy. Using the same grid as before
(3′ × 3′ × [∆z = 0.05] cells), the luminosity is summed
for each cell. Again we apply the completeness correction
of Wolf et al (2003) as a function of magnitude, redshift
and spectral type, plus an absolute magnitude cutoff of
MB < −19.5.

Fig. 12 shows cross-sections through the 3-D luminosity
density corresponding to the same slices as in Fig. 10, with
Gaussian smoothing of 1.5′,∆z = 0.05 applied. Again the
top panel shows significant peaks in the luminosity for the
supercluster at z = 0.16 and CB1 at z = 0.48. The mid-
dle panel shows the three peaks of the A901/2 supercluster
clearly. As seen above, there appears to be good agreement
between the mass and light; we will quantify this in Section
6. The luminosity we measure within a comoving aperture
of 0.5 h−1Mpc for each member cluster is presented in Table
1. We also estimate the mass-to-light ratio for each of these
clusters.

The bottom panel in Fig. 12 shows a slice in x and y
at z = 0.45, the redshift bin including CB1. Here we find
the expected luminosity peak. Again we present the mea-

sured luminosity, and mass-to-light ratio of CB1 within a
comoving aperture of 0.5 h−1Mpc in Table 1.

5.6 Comparison with a 2-D lensing analysis

We summarize the results of our 3-D lensing analysis
in Table 1, which shows the redshift, velocity dispersion,
mass, luminosity and the cluster mass-to-light ratio within
0.5 h−1Mpc of each cluster centre, for A901a, A901b, A902
and CB1. The redshifts are taken from the galaxy number
density, while the velocity dispersions, and hence masses, are
estimated from the parametric fits to a single-cluster model
in Section 4.1 for A901a and A901b, and the two-cluster fit
of Section 4.2 for A902 and CB1. Note that in this latter
case, the cluster masses are not independently determined.
These may be compared, to some extent, with the 2-D shear
analysis of Gray et al (2002).

The addition of redshift information has altered the
measured masses of all three clusters relative to the 2-D
analysis of Gray et al (2002); A901a mass has increased by
a factor 2.8 in a 3’ aperture, while A901b has decreased its
mass by 40%. But of most interest is the behaviour of A902:
in Gray et al (2002) the projected mass within an aperture of
radius 0.5 h−1Mpc from the centre of A902 is 16.7×1013M⊙
(see again Figure 11, Gray et al 2002). In our 3-D analysis,
and after deprojection with CB1, we find that A902 drops
to a mass of M = 5.1+2.4

−4.3 × 1013M⊙.
While it is tempting to assume that this drop is due

to the deprojection of A902 with CB1 (and the fact that
this can be done is clearly an advantage of the 3-D lensing
approach), in this case the main cause is due to the different
weighting of shear data. In the 2-D case shear was weighted
per galaxy, while in the 3-D case it is weighted per redshift
bin. This means the data is susceptible to bias by outliers.
In the case of A902, there is a clear low outling shear bin at
z = 1 which, though containing relatively few galaxies, pulls
the cluster mass down by a factor of two compared to the
shear at higher redshift. This effect can also be seen in the
single cluster model, but could be combated with a larger
dataset (e.g. with number densities expected from space-
based observations) and different weighting of redshift bins.
We conclude that although with 3-D lensing we are able to
measure a large mass for CB1, a cluster of that mass at
z = 0.5 is not a significant contaminant to the 2-D shear
signal of a foreground structure at z = 0.16. This can be
seen from the fact that the measured mass of A902 drops
only slightly in Table 1 as we move from a one-cluster to
two-cluster analysis.

Luminosities for the clusters have increased substan-
tially (by a factor ≃ 3) from the analysis of Gray et al (2002);
this is because the previous study looked at early-type galax-
ies only, and had no means of applying a correction for un-
detected luminosity.

After these changes, and despite the removal of pro-
jection effects, there is still no simple relationship between
mass and light in the A901/2 system, suggesting that it is
not in a dynamically settled state. However, the variation
in mass-to-light in A901/2 is now only by a factor of 2 from
cluster to cluster, rather than the factor of 5 in the previous
study.

In this section we have presented 3-D maps of the gravi-
tational dark matter potential, the smoothed galaxy number
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model Cluster z σv M(< 0.5h−1Mpc) L(< 0.5h−1Mpc) M/L
( kms−1) (×1013M⊙) (×1011L⊙) (×M⊙/L⊙)

one cluster A901a 0.16 680+25
−90 10.8+0.8

−2.7 24.7 43.7

A901b 0.16 600+40
−85 8.4+1.2

−2.2 13.5 62.2

A902 0.16 520+55
−90 6.3+1.4

−2.0 19.5 32.3

two clusters A902 0.16 470+100
−280 5.1+2.4

−4.3 19.5 26.2

CB1 0.48 730+160
−340 12.0+6.0

−8.9 13.0 92.3

Table 1. Parameters of the four clusters in the COMBO-17 A901/2 supercluster field. We have assumed h = 0.72 in these estimates.
The cluster velocity dispersions and mass estimates are from the parameteric fits of Section 4.1 for a single cluster model, and Section
4.2 for a double cluster model, with the cluster redshifts fixed at the positions given by the galaxy number counts.

counts and the luminosity density. In order to quantify these
distributions further we now calculate the statistical corre-
lations between these quantities, and compare then with the
predictions from the halo model.

6 MASS-GALAXY CORRELATIONS

Now that we have estimated the 3-D gravitational poten-
tial in the A901/2 field we are in a position to examine the
auto- and cross-correlations functions of the 3-D gravita-
tional potential, the galaxy number density and the galaxy
luminosities. In this Section we describe the procedure used
to calculate these correlation functions and briefly interpret
our results. We compare our results with the halo model
developed in Section 2.5.

We calculate the auto- and cross-correlations using
equation (19) where the average is taken over all cell pairs
in each slice in redshift bins which are separated by r⊥.
Having calculated the auto- and cross-correlation functions
for each redshift slice, we take the mean of these correlation
functions to measure the overall correlation functions in 3-D
(the physical distance between slices is too large for substan-
tial correlations). As a simple estimate of the uncertainty,
we use σslice/

√
Nz , where σslice is the standard deviation of

the slice correlation functions and Nz is the number of slices.
This acts as a better measure of the uncertainty than the
standard deviation of correlations for all pairs, as pairs in a
given slice have highly correlated values for the correlation
function.

6.1 The gravitational potential auto-correlation

The gravitational auto-correlation function, CΦΦ(r), is
shown in Figure 14. This shows that the variance at zero
separation is 〈Φ2〉 ≈ 2× 10−15, implying that Φ ∼ 5× 10−8,
averaged over cells of size 1.5′ × 1.5′ ×∆z = 0.05. It should
be born in mind that the Wiener filtering in the redshift
direction will affect the amplitude of the reconstructed po-
tential field (Hu & Keeton, 2003; Bacon & Taylor, 2003).
Here we have chosen a Wiener filter which reproduces the
masses inferred from the parametric fits found in Section 4.

The measured potential correlation drops rapidly within
r ∼ 2h−1Mpc, then becomes slightly negative before going
to zero at r ≈ 6h−1Mpc. As the mean of the potential field is
zero in each redshift slice, there is a constraint which forces
the integral of the correlation function to be zero over the

field. Hence a positive correlation at small scale must be
compensated by a negative correlation at larger separation.

As discussed in Section 2.5, the halo-model provides an
estimate of the theoretical potential correlations, ensemble
averaged over the whole mass range of collapsed objects. The
lighter solid line in Figure 14 shows the expected potential-
potential correlation function for all halo masses in a survey
of the size and depth of the A901/2 field, and with the same
pixelisation, and the same integral constraint as our recon-
structed data.

The amplitude at zero separation agrees with the data
in the A901/2 field, although this has been modified by
the Wiener filter to match the cluster velocity dispersions.
However the predicted correlations are higher at larger sep-
aration than the data. The halo model correlation func-
tion then passes through zero at a separation of around
r = 5.5 h−1Mpc due to the integral constraint.

In such a finite survey, the high-mass end of the mass
function is not well sampled, as very high-mass peaks appear
only rarely in such a small survey. To account for this, we
have also evaluated the theoretical correlations over a trun-
cated mass range, up to the mass cut-off of the survey. In
the case of the A901/2 field we truncate the mass range at
M = 1013 M⊙, corresponding to the mass of the main clus-
ters. The dark solid line is the halo-model expectation value
of the potential correlation function with this mass trunca-
tion. With the mass range truncated the amplitude of the
potential correlations drops to around 〈Φ2〉 ≈ 4×10−16, be-
fore slowly dropping to zero due to the integral constraint.

The shape of the halo-model potential correlations still
does not fit the data from the A901/2 field well. As the grav-
itational potential is a long range force, we should expect it
to survive to larger distances, until the integral constraint
cuts in. However here we see that the measured 3-D poten-
tial drops rapidly to zero. There are two possible causes for
this. The first is that the correlation function is dominated
by the main clusters in the field, but that the mass in these
clusters is highly concentrated in the cluster cores. However
it is more likely that, while the correlation function is domi-
nated by the main clusters, the reason for the shape decline
is due to the finite field of view and the requirement that the
mean of the field is zero at each redshift slice. This will cause
us to lose longer-range correlations in the potential field. Al-
though the halo model does take this integral constraint into
account, it does so averaged over many realisations of the
potential field, and so does not well match single clusters.
In addition the potential reconstruction removes any long-
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Figure 14. The auto-correlation function of the gravitational
potential, Φ. Data points are from a correlation analysis of the
A901/2 COMBO-17 field. The dark solid line is the prediction of
the halo model, with a mass cut-off. The light solid line is the
same prediction with no mass cut-off.

range potential gradient and quadratic modes in each red-
shift slice. However, if we averaged over a number of larger
fields, we would expect the results to converge on the halo-
model.

6.2 The galaxy number density auto-correlation

Figure 15 shows the auto-correlation function of the galaxy
number density, Cnn(r). In this case we have calculated
the correlations between absolute number densities, n(r),
rather than fractional overdensities, to avoid sensitivity to
the mean of the field, and so there is no integral constraint.
Note that we have truncated the COMBO-17 catalogue at
mB < −19.5, to ensure we are selecting the same type of
galaxies as in our model.

At r = 0 there is a positive correlation, with Cnn ≈
0.04 [h−1Mpc]−3 due to the galaxies within each cluster.
This falls to zero as we move to separations wider than the
clusters.

The halo model does a better job of fitting the data, as
the number density of galaxies is a local property, although
the scatter in the data is large. The lighter line in Figure
15 shows the number correlations for all halo masses, while
the darker line shows the correlations for masses < 1013M⊙.
Both are in agreement with the trend of the data.

Interestingly the correlations in the galaxy number den-
sity seem to have a longer scale-length than that of the po-
tential. As discussed above there are two possible explana-
tions for this. One is that the potential correlations are far
shorter than implied by the galaxy number densities. If this
is the case, the dark matter generating the potential must
be very compact. However, it is more likely that this is again
due to the subtraction of the mean potential in the field, ap-
plied to each redshift slice, and the removal of any gradient
or parabolic part of the potential field. These are most likely
causing us to miss part of the larger-scale potential field.

Figure 15. The auto-correlation of the number density n from
the A901/2 field in the COMBO-17 data-set. Lines are the pre-
dictions of the halo model. The lighter line is for all halo masses,
the darker line is for haloes with mass < 1013M⊙.

Figure 16. The auto-correlation function of galaxy luminosity
density, L, from the A901/2 field in COMBO-17. As in the pre-
vious figures, the lines are predictions for the halo model.

6.3 The galaxy luminosity auto-correlation
function

Figure 16 shows the galaxy luminosity density pro-
jected auto-correlation function, CLL(r). The COMBO-17
data points are positively correlated with CLL ≈ 8 ×
1019L2

⊙[h
−1Mpc]−6 at zero separation, implying that the lu-

minosity density is L ≈ 1010L⊙[h
−1Mpc]−3 for galaxies in

the A901/2 field with mB < −19.5.
The amplitude at small separations is again dominated

by the clusters, although the scatter is again large. Further
out, the signal remains positive, until around r = 3 h−1Mpc,
when it dies away to zero. As with the galaxy number counts,
there is no integral constraint on the luminosity densities.
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Figure 17. Cross-correlation of the gravitational potential Φ and
number density n, CΦn(r). The solid lines are, as in previous
figures, predictions from the halo model.

We have also calculated, for the first time, the pre-
diction of luminosity densities from the halo model. Here
again we see good overall agreement between the model and
data. At small separation the model peaks at approximately
the right amplitude, and then drops off with increasing dis-
tances. Interestingly, the halo model accounts for the drop-
off at large separation very well.

6.4 The gravitational potential and the galaxy
number density

Our estimate of the cross-correlation of the gravitational
potential and the galaxy number density is shown in Figure
17. At r = 0 the signal is dominated by the correlations
between the excess number of galaxies found at the bot-
tom of the gravitational potential well, and shows a slight
anti-correlation. On larger scales the cross-correlation starts
to oscillate due to the dominance of the supercluster. This
oscillation arises as we move out of the cluster centre and
the gravitational potential increases to a maximum; we find
a positive correlation at r = 2.5 h−1Mpc between the po-
tential maximum and the galaxies in the potential wells.
Moving further away, we move into the gravitational poten-
tial of a nearby cluster, and reach a second anti-correlation
at r = 4.5 h−1Mpc, the typical inter-cluster distance in the
supercluster. On scales larger than r > 5 h−1Mpc we move
out of the supercluster itself.

The predictions of the halo model correlations for all
masses (light line) and for a mass cut-off (dark line) are also
shown in Figure 17. This has little effect on the predicted
correlation and the amplitude of the anti-correlation at small
r again agrees with our measurement. The halo model does
not contain the oscillations due to the dominance of the
main clusters, indicating again that our sample is too small
to converge to general predictions. The main discrepancy is
the positive correlation at r ≈ 3h−1Mpc. As the predicted
galaxy number density correlations were in fair agreement
with the COMBO-17 data we can conclude that the differ-

Figure 18. Cross-correlation of the gravitational potential, Φ,
and luminosity density, L, CΦL(r). The solid lines are, as in pre-
vious plots, predictions from the halo model.

ence between data and theory lies with the correlations of
the potential field (see Figure 14), which are not so well
matched. However, as noted above, this is mainly due to the
small field size compared with the structures we are map-
ping; the imposed zero mean of the gravitational potential
at the supercluster slice has offset the Φ−n correlation, and
this will be alleviated by using a larger field.

6.5 The gravitational potential and the galaxy
luminosity

The Φ-L correlation function, CΦL(r), is calculated for each
redshift slice in a similar fashion to the Φ-n correlation func-
tion. Again, the mean and variance of the correlation func-
tion found for different redshift slices is used to calculate the
value and error on the overall correlation function. We show
the CΦL correlation function in Figure 18.

We find only marginal evidence for an anti-correlation
between potential and luminosity at small scales. However
we might expect a high luminosity where there is a deep
gravitational potential well, as suggested by the halo model.
As with the potential-number density correlations, the cross-
correlation of potential and luminosity density again rises
to a positive value at around r ≈ 3h−1Mpc. Again we can
identify the discrepancy as being with the potential field, as
we found fair agreement between the halo model predictions
for luminosity-density correlations and the data. Once more,
this will be alleviated by a larger field size.

7 CONCLUSIONS

In this paper we have for the first time measured the 3-D
gravitational potential of a volume of space from gravita-
tional lensing. This has been possible by accurately mea-
suring the gravitational shear on the A901/2 supercluster
field of the COMBO-17 survey, combining these shear mea-
surements with photometric redshifts, and applying the re-
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construction techniques of Kaiser & Squires (1993), Tay-
lor (2001) and Bacon & Taylor (2003). We have described
the COMBO-17 survey, including our measurements of weak
shear (Gray et al 2002) and the photometric redshift accu-
racy of the survey, ∆z = 0.05 for 0 < z < 0.8.

As a first step towards full 3-D analysis of the A901/2
field, we have measured the tangential shear around the su-
percluster members as a function of redshift. By fitting a
singular isothermal sphere shear model to the shear pattern
behind each of these clusters (c.f. Wittman et al 2001, 2002)
we estimated the clusters’ velocity dispersion and redshifts
from weak lensing alone. We found best-fit two-parameter
velocity dispersions and redshifts of σv = 840+100

−105 kms
−1

and z = 0.30+0.10
−0.16 for A901a, σv = 840+170

−115 kms
−1, zlens =

0.37+0.14
−0.11 for A901b and σv = 760+220

−200, zlens = 0.38+0.23
−0.20

for A902. These measurements are consistent with photo-
metrically determined redshifts of the clusters, z = 0.16. If
we fix the redshifts of the cluster to the photometric red-
shift of z = 0.16, we find σv = 680+25

−90 kms
−1 for A901a;

σv = 600+40
−85 kms

−1 for A901b; and σv = 520+55
−90 kms

−1 for
A902. We have also compared with velocity dispersions of
the clusters found from a 2-D lensing analysis (Gray et al
2002) and found good agreement. Any differences are easily
understood as due to the different weighting of shear data.

Examination of the 3-D number density of galaxies re-
vealed the existence of a cluster, CB1, at z = 0.48 behind
the A902 cluster. This prompted us to investigate a two-
cluster shear analysis for A902 which provided results con-
sistent with the presence of this second cluster. Our ini-
tial two-cluster analysis failed to improve on the redshift
estimates of the two clusters, due to the difficulty a global
parametric fit to the data has in dealing with outlying shear
values. However, by fixing the positions of the clusters, ei-
ther with a weak prior by restricting the redshifts of the
clusters to lie below z = 1, or with a strong prior of fix-
ing the redshifts to the known cluster positions, the total
mass of the two clusters was well determined, and each clus-
ter velocity dispersion could be marginalised over to give
σv,1 = 470+100

−280 kms
−1 for A902 and σv,2 = 730+160

−340 kms
−1

for CB1.

We have calculated the 3-D lensing potential, ∆φ, for
this volume of space using the methods of Kaiser & Squires
(1993) generalised to a 3-D grid. We have then used this lens-
ing potential to reconstruct the 3-D gravitational potential,
following the reconstruction method of Taylor (2001) and
Bacon & Taylor (2003). To improve the signal-to-noise in the
reconstructed potential field we Wiener filtered the poten-
tial field in the redshift direction, preserving the properties
of the reconstructed field in the transverse direction.

The recovered gravitational potential was found to in-
clude the largest troughs at the positions of the superclus-
ter members, with a peak signal-to-noise ratio at the central
pixel of S/N ≈ 3. Hence we have demonstrated that 3-D
dark matter potential mapping is achievable with currently
available shear and photometric redshift data, such as the
COMBO-17 survey.

In addition to the A901/2 supercluster potential, a fur-
ther significant (3σ per pixel) trough was found at z = 0.48
behind A902, corresponding to the background cluster CB1
seen in the 3-D number density and luminosity. This demon-
strates that potential mapping will be a useful tool in the
detection of clusters from lensing data, including clusters

behind clusters. Indeed this suggests an algorithm for the
construction of a mass-selected cluster catalogue, which is
free of projection effects. One first constructs a 3-D poten-
tial field from the shear and photometric data and searches
for the largest potential wells. The positions of these clus-
ters can be accurately determined from this galaxy number
density field, while the cluster masses can be estimated from
parametric fits.

Finally, we have developed the halo model to predict
the auto- and cross-correlation functions of the 3-D potential
field, the galaxy number density field and, for the first time,
the galaxy luminosity-density field, taking into account the
geometry of the survey and pixelisation. We compared these
predictions with the measured auto- and cross-correlations
between the gravitational potential and the galaxy number
density, and between the gravitational potential and the 3-
D luminosity distribution in the COMBO-17 A901/2 field.
We found that peaks in the baryonic matter concentration
were strongly correlated to troughs in the gravitational po-
tential, as one would expect due to baryons preferentially
being found at dark matter concentrations. We also found
reasonable agreement between the amplitudes of the mea-
sured and predicted correlations – although the statistics of
the A901/2 field are dominated by the four clusters. This in-
troduces oscillations in the measured correlation functions
as we move in and out of clusters. In particular, the corre-
lation length of the potential field is shorter than we might
have expected from the clustering of the galaxies. This is
most likely due to the removal of the mean, gradients and
parabolic terms in each redshift slice of the potential field,
including the supercluster slice. This effect will be allevi-
ated with larger area surveys (see Bacon & Taylor, 2003, for
a further discussion of this effect).

In conclusion, the success of this study in measuring the
3-D gravitational potential bodes well for future 3-D lens-
ing studies. We have seen that 3-D potential mapping will
be useful for constructing mass-selected galaxy cluster cat-
alogues with minimal projection effects. By extending and
comparing with the halo model, we have also shown that the
analysis of haloes within this framework can be extended to
groups and clusters. With advent of better shear and pho-
tometric redshift data, from e.g. the SNAP survey (Massey
et al 2003), the prospects look encouraging for 3-D mass
mapping large volumes of the universe, to construct mass-
selected cluster catalogues, to generate statistical probes of
dark matter haloes over a wide range of scales, as a probe
of cosmological parameters, and finally to compare the 3-D
dark matter distribution with the properties of galaxies.
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