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Abstract

We discuss hydrostatic models of galaxy clusters in which heat diffusion

balances radiative cooling. We consider two different sources of diffusion, thermal

conduction and turbulent mixing, parameterized by dimensionless coefficients, f

and αmix, respectively. Models with thermal conduction give reasonably good fits

to the density and temperature profiles of several cooling flow clusters, but some

clusters require unphysically large values of f > 1. Models with turbulent mixing

give good fits to all clusters, with reasonable values of αmix ∼ 0.01− 0.03. Both

types of models are found to be essentially stable to thermal perturbations. The

mixing model reproduces the observed scalings of various cluster properties with

temperature, and also explains the entropy floor seen in galaxy groups.

1. Introduction

For many years, it was thought that the strong X-ray emission observed in

the cores of rich galaxy clusters results in a cooling flow in which gas settles in the

gravitational potential and drops out as cold condensations [1]. Mass inflow rates

were estimated to be ∼ 102 − 103M⊙ yr−1 in some clusters. However, recent X-

ray observations with Chandra and XMM-Newton have found very little emission

from gas cooler than about one-third of the virial temperature [2, 3], suggesting

that some heating source must prevent gas from cooling below this temperature.

Candidate heating mechanisms include (1) energy injection from a central active

galactic nucleus (AGN) [4, 5, 6, 7], and (2) diffusive transport of heat from the

outer regions of the cluster to the center via conduction [8, 9, 10, 11, 12] or

turbulent mixing [13, 14, 15].

Heating by a central AGN is an attractive idea since many cooling flow
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clusters show radio jets and lobes that are apparently interacting with the cluster

gas [16]. The power associated with the jets is often comparable to the total X-ray

luminosity of the cluster. However, there are some difficulties with this model.

Observations reveal that radio lobes are surrounded by X-ray-bright shells of

relatively cool gas [17], which is a little surprising if this gas is being heated by

the bubble. In addition, if the heating rate (per unit volume) of the gas by the

AGN varies as ρα, thermal stability requires α > 1.5 [12]; such a heating law

does not seem natural. (Stability is not an issue if AGN heating is episodic [7]).

Finally, no good correlation is seen between the AGN radio luminosity and the

X-ray cooling rate [15].

Since the cooling cores of clusters have a lower temperature than the rest

of the cluster, diffusive processes can bring heat to the center from the outside,

provided the diffusion coefficient is large enough. An ordered magnetic field would

strongly suppress cross-field diffusion of thermal electrons, and this argument

has been traditionally invoked for ignoring thermal conduction. However, if the

field lines are chaotically tangled over a wide range of length scales, the isotropic

conduction coefficient κcond can be as much as a few tens of per cent of the Spitzer

value κSp [10, 18], which may be sufficient to supply the necessary heat to the

cluster core. Turbulent mixing is another diffusive process that can transport

energy efficiently to the center [13]. The turbulence might be sustained by the

infall of small groups or subclusters, the motions of galaxies [K. Makishima, this

conference], or energy input from AGNs [19, 20]. The diffusion coefficient required

to balance radiative cooling is typically κmix ∼ 1−6 kpc2 Myr−1, which is similar

to values inferred from observations of turbulence in clusters [14, 15].

In a series of papers [12, 14, 21], we have studied equilibrium models of

galaxy clusters with thermal conduction and turbulent mixing. We summarize

here the main results of this work.

2. Model

We assume that the hot gas in a galaxy cluster is in hydrostatic equilib-

rium and that it maintains energy balance between radiative cooling and diffusive

heating,
1

ρ
∇P = −∇Φ, ∇ · F = −j, (1)

where P is the thermal pressure, ρ is the density, Φ is the gravitational potential,

F is the local diffusive heat flux, and j is the radiative energy loss rate per unit

volume. For kT >
∼ 2keV, j is dominated by free-free emission, while for lower

temperatures it is mostly due to line cooling.
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We consider two diffusive processes: thermal conduction and turbulent

mixing. In the case of the former, the heat flux is proportional to the temperature

gradient. In the case of the latter, turbulent motions cause gas elements with

different specific entropies to move around and mix with one another, causing a

heat flux proportional to the entropy gradient. Thus, we write the net heat flux

as

F = −κcond∇T − κmixρT∇s, κcond = fκSp, κmix = αmixcsHp, (2)

where T is the temperature, and s is the specific entropy. We assume that the

conductivity κcond is a fraction f of the Spitzer value κSp in an unmagnetized

plasma, and the mixing coefficient κmix is a fraction αmix of the product of the

sound speed cs and pressure scale height Hp. We take Hp ≈ (r2c + r2)1/2, where r

is the local radius and rc is the core radius [12], and set s = cv ln(Pρ−γ), where

cv is the specific heat at constant volume and γ = 5/3 is the adiabatic index.

For simplicity, we have considered models with either pure conduction or pure

mixing.

3. Results

We integrate the basic equations described above to calculate the radial

profiles of the electron number density ne(r) and temperature T (r). For each

cluster, we assume that the observed gas temperature Tobs in the region outside the

cooling core is the virial temperature and use this to determine the gravitational

potential, assuming an NFW distribution for the dark matter [22, 23]. We also

use Tobs as a boundary condition for the gas at large radius. We vary the central

density ne(0) and temperature T (0), along with either f (for the conduction

model) or αmix (for the mixing model), to find the solution that best fits the

observed density and temperature distributions of the cluster.

We have analyzed ten clusters (A1795, A1835, A2052, A2199, A2390,

A2597, Hydra A, RX J1347.5−1145, Sersic 159-03, and 3C 295) for which high

resolution data are available. Figure 1 shows the results of the model fitting for

four of these clusters. Solid lines indicate the best-fit conduction models, while

dotted lines show the best-fit mixing models. Overall, both models explain the

observed data reasonably well.

Of the ten clusters, five (A1795, A1835, A2199, A2390, RX J1347.5−1145)

are well described by a pure conduction model with f ∼ 0.2−0.4, while the other

five (A2052, A2597, Hydra A, Sersic 159-03, and 3C 295, e.g., see Fig. 1c, d)

require unphysically large values of f > 1. The latter five clusters exhibit strong

AGN activity in their centers and extended radio emission, which might indicate

that the gas receives extra heat energy from the AGN [12].
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Fig. 1. Observed and modeled profiles of electron number density and temperature for
(a) A1795, (b) A2390, (c) A2597, and (d) Hydra A. The data are from Chandra. The
solid and dotted lines represent best-fit models based on pure thermal conduction
and pure turbulent mixing, respectively. H0 = 70km s−1 Mpc−1, ΩM = 0.3, and
ΩΛ = 0.7 have been adopted. While the conduction model requires unphysically
large values of f > 1 for A2597 and Hydra A, the mixing model gives good fits to
all four clusters with reasonable values of αmix ∼ 0.01− 0.03.



5

The turbulent mixing model fits all ten clusters quite well, with a sur-

prisingly narrow range of αmix ∼ 0.01 − 0.03 [14]. The five clusters that were

incompatible with the conduction model tend to need a larger value of αmix by

a factor of 2 than the other clusters (perhaps because the nuclear activity and

the associated jets in these clusters cause enhanced turbulent transport). The

values of αmix found from the model fitting correspond to a turbulent diffusion

coefficient of κmix ∼ 1 − 6 kpc2 Myr−1 at r ∼ 50 − 300 kpc, which is similar to

the value one infers from typical parameters for intracluster turbulence: turbulent

velocities vturb ∼ 100− 300 km s−1 and eddy sizes lB ∼ 5− 20 kpc [20, 24].

4. Thermal Stability

Since optically-thin gas at X-ray temperatures is known to be thermally

unstable, it is necessary to check the stability of the equilibrium models discussed

in §3. The absence of cold material in the centers of clusters indicates that the

thermal instability is either absent or at least very weak. Since diffusive processes

in general tend to stabilize thermal instability on small scales [25], it is interesting

to ask whether thermal conduction with f ∼ 0.2 − 0.4 or turbulent mixing with

αmix ∼ 0.01 − 0.03 can suppress the growth of large-scale unstable modes in

clusters.

We begin with a discussion of local linear modes, where we assume that

the perturbations have rapid spatial variations. It is straightforward to derive a

dispersion relation for such modes. Using equation (2) for the total heat flux, we

find

σ = σ∞ − κmix(1 + q)k2
r , (3)

where σ is the growth rate of the model, σ∞ ≡ 3(γ−1)j/(γP ) is the growth rate of

isobaric perturbations in the absence of diffusion [21, 25], kr is the radial wavenum-

ber of the mode, and the dimensionless parameter q ≡ (γ − 1)κcondT/(γκmixP )

measures the stabilizing effect of conduction relative to mixing. Putting in nu-

merical values, clusters with pure conduction should be marginally stable to local

perturbations [12]. Since q ∼ 0.1(f/0.2)(0.02/αmix)(r/20 kpc)
−1(ne/0.05 cm

−3)−1

is normally less than unity in the region r < 20 kpc where most of the cooling

occurs, we expect turbulent mixing to have a stronger stabilizing effect relative

to conduction.

We have confirmed these predictions by explicitly analyzing the global

stability of the equilibrium models. By applying Lagrangian perturbations and

solving the perturbed equations as a boundary value problem, we searched for

all unstable/overstable modes and calculated their growth times tgrow. In the

presence of conduction, we find that all global modes become stable except for
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the fundamental, nodeless mode. The lone unstable mode has a very long growth

time, e.g., A1795 with f = 0.2 has tgrow ∼ 4.1 Gyr, while Hydra A with f = 3.5

has tgrow ∼ 9.3 Gyr [21]. Turbulent mixing suppresses the instability even more

significantly; A1795 with αmix = 0.011 has tgrow much longer than the Hubble

time, and Hydra A with αmix = 0.021 is completely stable [14]. These results

suggest that thermal instability is not a serious issue for clusters that achieve

thermal balance through diffusive heat transport.

5. Scaling Laws

The theory of cosmic structure formation indicates that the mass M of

a halo should scale with the virial temperature T as M ∝ T 3/2, and that the

X-ray luminosity and the entropy should scale as LX ∝ T 2 and S ≡ Tn−2/3
e ∝

T . However, cluster observations show different scaling laws: M ∝ T 1.7∼1.9,

LX ∝ T 2.5∼3, S ∝ T 0.6∼0.7, for rich clusters with kT >
∼ 2 keV [26, 27, 28]; and

LX ∝ T 4∼5, S ∝ T−0.7∼0.2, for small clusters or galaxy groups with kT <
∼ 1 keV

[28, 29]. That is, not only are the observed power-law indices different from

the self-similar predictions, there is also a clear break in cluster properties at a

characteristic temperature kT ∼ 1−2 keV. The fact that smaller clusters or groups

have relatively constant entropy has been recognized as an “entropy floor.” The

prevailing explanations for the rather high entropy at low temperatures include

pre-heating of intracluster gas [30, 31], removal of cold low-entropy gas via galaxy

formation in clusters [32], and supernova feedback [11]. Although some of these

suggestions are fairly successful in reproducing the entropy floor and the observed

scalings, none of them includes thermal conduction or turbulent mixing. If these

processes are at all important in clusters, they should have a large effect on the

scaling laws.

It is straightforward to derive scaling relationships that the equilibrium

cluster models of §3 should obey. For rich clusters with kT >
∼ 2 keV, where ther-

mal bremsstrahlung (j ∝ n2
eT

1/2) dominates, heating by conduction leads to

LX ∝ T 4 and S ∝ T 0.3, while heating by turbulent mixing predicts LX ∝ T 3

and S ∝ T 0.6. On the other hand, for small clusters or groups (kT <
∼ 1 keV),

where cooling is dominated by line transitions (j ∝ n2
eT

−0.7∼−1), LX ∝ T 4

and S ∝ T−0.2∼0 for the thermal conduction model, and LX ∝ T 4.2∼4.5 and

S ∝ T−0.3∼−0.1 for the turbulent mixing model [14]. We see that the scaling re-

lations predicted by the mixing model are in remarkably good agreement with

the observations. The dramatic change of cluster properties at kT ∼ (1 − 2)

keV arises because of the change in the cooling mechanism above and below this

temperature. Also, the entropy floor observed in groups is reproduced naturally.
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6. Conclusion

The thermal conduction and turbulent mixing models have certain attrac-

tive properties which ultimately are due to the fact that both models involve

diffusive transport. Diffusion not only allows heat to move into the cluster cen-

ter from the outside, it also irons out perturbations and thereby helps to control

thermal instability. What is interesting is that the amount of diffusion required

to fit the observations is comparable to that predicted by theoretical arguments.

Two caveats need to be mentioned. First, the presence of cold fronts in

many clusters [33, 34] indicates that large temperature and entropy jumps are

able to survive in some regions of the hot gas. Diffusion is clearly suppressed

across these surfaces. It is possible that cold fronts are special regions where the

magnetic field is combed out parallel to the front, thereby suppressing cross-field

conduction temporarily [34, 12].

Second, all we have shown is that a cluster with the observed density and

temperature profile would be in hydrostatic and thermal equilibrium and would

be fairly stable. However, we have not explained how the cluster reaches the

observed state starting from generic initial conditions. Time-dependent simula-

tions show that a cluster with thermal conduction would either slowly evolve to

an isothermal state if its initial density is less than a critical density, or develop

a catastophic cooling flow otherwise [9]. Does the current observed state result

from an initial rapid mass dropout (which decreases the density) and subsequent

slow evolution with diffusive heating of an once overdense cluster [21]? Are other

heating mechanisms, e.g., AGNs, necessary to explain the present state of clus-

ters? Answers to these questions are of fundamental importance to understanding

clusters and more generally galaxy formation.
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