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ABSTRACT

We investigate the effect of dark energy on the density profiles of dark matter haloes
with a suite of cosmological N-body simulations and use our results to test analytic
models. We consider constant equation of state models, and allow both w ≥ −1 and
w < −1. Using five simulations with w ranging from −1.5 to −0.5, and with more
than ∼ 1600 well-resolved haloes each, we show that the halo concentration model of
Bullock et al. (2001) accurately predicts the median concentrations of haloes over the
range of w, halo masses, and redshifts that we are capable of probing. We find that
the Bullock et al. (2001) model works best when halo masses and concentrations are
defined relative to an outer radius set by a cosmology-dependent virial overdensity. For
a fixed power spectrum normalization and fixed-mass haloes, larger values of w lead to
higher concentrations and higher halo central densities, both because collapse occurs
earlier and because haloes have higher virial densities. While precise predictions of halo
densities are quite sensitive to various uncertainties, we make broad comparisons to
galaxy rotation curve data. At fixed power spectrum normalization (fixed σ8), w > −1
quintessence models seem to exacerbate the central density problem relative to the
standard w = −1 model. For example, models with w ≃ −0.5 seem disfavored by the
data, which can be matched only by allowing extremely low normalizations, σ8

<
∼
0.6.

Meanwhile w < −1 models help to reduce the apparent discrepancy. We confirm that
the Jenkins et al. (2001) halo mass function provides an excellent approximation to
the abundance of haloes in our simulations and extend its region of validity to include
models with w < −1.

Key words: cosmology: theory – dark matter – large-scale structure of universe –
methods: N-body simulations

1 INTRODUCTION

In the prevailing model of galaxy formation, galaxies assem-
ble and evolve in the potential wells established by gravita-
tionally bound haloes of cold and collisionless dark matter
(CDM). Except for some possible difficulties on small scales,
the CDM model is remarkably successful in explaining a
large number of observations. However, this success requires
an additional “dark energy” component, that drives an ac-
celerated cosmic expansion, to be added to the universal
energy budget. While the presence of dark energy is firmly
established observationally, measuring its equation of state

⋆ Hubble Fellow

as well as developing a theoretical understanding of the na-
ture of the dark energy are two of the biggest outstanding
problems in cosmology today. Dark energy not only affects
the large-scale evolution of the Universe, but also the col-
lapse histories and density structures of dark matter haloes.
Understanding the precise nature of these effects is impor-
tant for studies that aim to quantify the nature of dark en-
ergy using strong (e.g., Sarbu, Rusin, & Ma 2001; Huterer
& Ma 2004; Kuhlen, Keeton, & Madau 2004) and weak
(e.g. Hu & Jain 2003; Bartelmann et al. 2002) gravitational
lensing. Changing the dark energy model should similarly
change expectations for galaxy rotation curves, and could
affect one of the main small-scale problems facing CDM –
the central density problem (e.g., Zentner & Bullock 2002;
McGaugh, Barker, & de Blok 2003, and references therein).
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2 Kuhlen et al.

In the present paper, we use a suite of N-body simulations to
study how halo density profiles change as a function of dark
energy equation of state, discuss our results in the context of
analytic models, and discuss the observational implications
of dark energy on galaxy scales.

The existence of some form of dark energy is supported
by a preponderance of data. Taken together, observations of
the magnitude-redshift relation of type Ia supernovae (SNIa;
Perlmutter et al. 1999; Riess et al. 2001; Knop et al. 2003;
Barris et al. 2003), the power spectrum of cosmic microwave
background (CMB) anisotropy (Spergel et al. 2003; Tegmark
et al. 2003a), the power spectrum of galaxy clustering (Do-
delson et al. 2003; Tegmark et al. 2003b), and the luminosity
function and baryon fraction of clusters (Allen et al. 2003)
provide nearly unimpeachable evidence for the existence of
dark energy. The most common supposition is that the dark
energy takes the form of a cosmological constant or vac-
uum energy. In this case, the energy density ρ, and pressure
p, are related through p = −ρ. An attractive alternative
candidate for the dark energy is the potential energy of a
slowly-varying scalar field φ, or “quintessence” (e.g., Ratra
& Peebles 1988; Caldwell, Davé, & Steinhardt 1998).

A convenient parametrization of the dark energy is
through an equation of state w ≡ pφ/ρφ relating its en-
ergy density and pressure. In general, the equation of state
parameter w is time-varying, but it is useful to model
quintessence with a constant equation of state parame-
ter because current observational data sets have limited
power to distinguish between a time-varying and constant
equation of state (e.g., Kujat et al. 2002). Useful limits
on the equation of state for the dark energy, assuming
that it remains constant in time, come from SNIa studies,
−1.67 < w < −0.62 (2σ; Knop et al. 2003), and can be
refined by combining SNIa data with CMB anisotropy and
galaxy clustering statistics yielding −1.33 < w < −0.79 at
2σ (Tegmark et al. 2003b). For our simulations, we adopt
an empirical view and study five models with constant w,
that span a comparably large range of parameter space:
w = −1.5,−1.25,−1.0,−0.75,−0.5.

Our theoretical understanding of halo profiles has im-
proved recently largely through numerical simulations, per-
formed in the context of CDM plus cosmological con-
stant (ΛCDM) or standard CDM (SCDM, i.e. ΩM = 1,
ΩQ = 0) cosmologies (Navarro, Frenk, & White, 1995, 1996,
1997, hereafter NFW; Kravtsov, Klypin, & Khokhlov 1997;
Ghigna et al. 1998; Jing 2000; Bullock et al. 2001; Eke,
Navarro, & Steinmetz 2001; Wechsler et al. 2002, hereafter
W02; Zhao et al. 2003; Hayashi et al. 2003; Navarro et al.
2003; for a review, see Primack 2003). It is generally un-
derstood that the final density profiles of haloes are linked
closely to their formation histories. Halo central densities
are set during an early, rapid-accretion phase, and tend to
be proportional to the density of haloes in the Universe at
the time of this rapid collapse (W02; Zhao et al. 2003; Tasit-
siomi et al. 2003). Larger values of w lead to earlier collapse
times and also to more rapid collapse of overdensities, thus
we expect haloes with higher relative central densities and
higher virial densities (see our discussions in § 2 and § 3).
In §§ 4-6 we quantify these effects and test the expected
scalings. We verify that the analytic technique of Bullock et
al. (2001, B01) for predicting halo concentrations works well

when applied directly to constant w cosmologies, implying
that it is fairly generally applicable.

A related issue is the effect of dark energy on the halo
mass function. Although it is not directly observable, the-
oretical insight into the expected halo mass function is at-
tainable through current N-body simulations. The effects
of dark energy on halo mass functions have been investi-
gated by Bartelmann, Perota, & Baccigalupi (2003), Linder
& Jenkins (2003), Klypin et al. (2003), Macciò et al. (2003),
and  Lokas, Bode, & Hoffman (2003) and the accurate pre-
diction of halo mass functions as well as accretion histories
and density structures over a large range of redshifts is nec-
essary in order to take full advantage of the ability of up-
coming cluster surveys, such as the Sunyaev-Zeldovich Array
(http://astro.uchicago.edu/sza/), to constrain the dark en-
ergy equation of state (see Carlstrom, Holder, & Reese 2001
for a review). There appears to be general agreement that
halo mass functions can be approximated accurately by the
“universal” mass function of Jenkins et al. (2001, hereafter
J01) even in models with dark energy. In § 5.1, we confirm
the results of previous studies of quintessence cosmologies
with w > −1, and extend this agreement to models with
w < −1.

Klypin et al. (2003) and Dolag et al. (2003) have
performed previous numerical studies of CDM haloes in
quintessence cosmologies. Where our study overlaps with
these, our results are generally in agreement. This study ex-
tends, complements, and improves upon previous studies in
several ways. We have investigated the effects of normal-
izing the power spectrum using clusters vs. CMB, which
yield quite different results. We have assembled large cata-
logues of haloes, with masses and concentrations for more
than 1600 haloes with more than 100 particles each in each
simulation. With this large number of haloes we are able to
measure the distribution of concentrations at fixed mass and
test the predictions of the B01 model for both the mean re-
lation between concentration and mass and the halo-to-halo
scatter. We also extend the range of quintessence parameter
space probed by simulations by exploring two models with
w < −1.

The format of this paper is as follows. After a brief
review of the basics of structure formation in models with
dark energy in § 2, we go on in § 3 to describe modifications
to the B01 model for halo concentrations in quintessence
cosmologies. In § 4, we describe the set of numerical sim-
ulations that we performed. In § 5, we present the mass
functions and concentrations of CDM haloes in these simu-
lations and compare them to the results of the analytic B01
model. In § 6, we briefly discuss the central density prob-
lem of CDM in light of our results. In § 7, we present a
summary of our findings, highlight improvements and dif-
ferences to previous studies, and discuss the implications of
this work. Throughout this paper, we assume a flat universe
with present matter density relative to critical of ΩM = 0.3,
and Hubble parameter h = 0.7. The quintessence energy
density is then ΩQ = 1 − ΩM = 0.7. We refer to a model
with a cosmological constant (w = −1) as ΛCDM. We use
the terms “quintessence” and “QCDM” to refer to all mod-
els which have w 6= −1.

c© 2004 RAS, MNRAS 000, 1–16
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Dark Energy and Dark Matter Haloes 3

2 STRUCTURE FORMATION IN

QUINTESSENCE COSMOLOGIES

In this Section, we present a brief overview of the growth of
structure in quintessence cosmologies. In §2.1, we introduce
the basic results of cosmological perturbation theory with
quintessence and discuss our computations of the matter
power spectrum. We briefly discuss the normalization of the
power spectrum in §2.2. A convenient way to define the mass
and radius of a dark matter halo is through a mean over-
density ∆vir, relative to the background density (see §3.1).
The idea is to choose ∆vir so as to delineate the boundary
between virialized and in-falling material. The equivalent
linear overdensity at collapse δc, is a quantity that is used
to delineate the mass scale of objects that are forming at
a particular redshift. Often, these overdensity criteria are
chosen with reference to the evolution of a spherical tophat
overdensity. In §2.3, we discuss the spherical tophat model
in quintessence cosmologies.

We explore both conventional quintessence models with
w ≥ −1 and, adopting an empirical approach, we pursue
models with w < −1. Requiring the kinetic energy of the
quintessence to be positive imposes the condition w ≥ −1
on the quintessence equation of state. When w ≥ −1 and
constant, all computations can be performed knowing only
the value of w by assuming that the scalar field Lagrangian
has a canonical kinetic term. To explore the parameter space
w < −1 self-consistently, we must choose a particular model
for scalar field dynamics and one simple possibility is a
Lagrangian with a non-canonical kinetic term that differs
from the canonical case by a negative sign. Explicitly, we
adopt the “phantom energy” Lagrangian for the field, φ:
L = −∂µφ∂

µφ−V(φ) (Caldwell 2002; Carroll, Hoffmann, &
Trodden 2003; Cline, Jeon, & Moore 2003). Having made
this choice, we can express the derivatives of the poten-
tial completely in terms of w (Dave, Caldwell, & Steinhardt
2002).

2.1 Cosmological Perturbations

Here we consider linear perturbations to the CDM density
field, δ(~x) ≡ δρ(~x)/ρb, with ρb the mean density of dark
matter in the universe. The linear evolution of δ(~x) follows
from solving the linearized Einstein-Boltzmann equations
(e.g., Ma & Bertschinger 1995). We perform our calcula-
tions in the synchronous gauge with a modified version of
the publicly-available Einstein-Boltzmann code CMBfast by
Seljak & Zaldarriaga (1996). We assume a scale-invariant
spectrum of adiabatic primordial density fluctuations and a
baryon density ΩBh

2 = 0.02.
The linear equation for fluctuations in the quintessence

field in Fourier space is

δ̈φ + 3H ˙δφ + (k2/a2 ± V,φφ )δφ = δ̇k[(1 + wQ)ρφ]1/2, (1)

where V,φφ ≡ ∂2V/∂φ2, ρφ is the mean energy density in the
quintessence field, and the plus (minus) signs correspond to
fields with positive (negative) kinetic energy. Here the dots
represent derivatives with respect to cosmological proper
time t, and δk is the linear CDM fluctuation in Fourier space.
The power spectrum of linear density perturbations is de-
fined as P (k) ≡ 〈|δk|

2〉. The CDM transfer functions for our
scale-invariant primordial spectrum are defined from

Figure 1. The ratio of z = 0 quintessence transfer functions to
ΛCDM for different models. The transfer functions are similar for
wavenumbers k >

∼ 0.01 hMpc−1. The different equation of state
parameters are shown in the legend.

P (k, z) = AQkT
2(k, z)

D2(z)

D2(0)
, (2)

where AQ is the normalization and D(z) ≡ δ(z)/δ(0) is the
linear growth factor. On scales larger than the Compton
wavenumber, kQ ∼

√

V,φφ, δφ can grow and source the evo-
lution of δk. Contrarily, on small scales k >

∼ kQ, perturba-
tions in the quintessence field decay, so the QCDM transfer
functions have the same form as those of standard ΛCDM,
while on scales k <

∼ kQ, the transfer functions reflect the
clustering of φ (Ma, Caldwell, Bode, & Wang 1999). Fig-
ure 1 shows the ratio of the CDM transfer functions with
quintessence, TQ, to the transfer function in the correspond-
ing ΛCDM model (w = −1), TΛ, at z = 0. For k <

∼ kQ and
w ≥ −1, perturbations in the quintessence field, δρφ−3δpφ,
source the growth of δk. For w ≤ −1, the source term from
the quintessence field changes sign, resulting in a relative
decrease in δk.

2.2 Power Spectrum Normalization

One of the most important parameters determining the scale
radii of halo density profiles is the normalization of the mat-
ter power spectrum on small scales. In our N-body exper-
iments, we choose to normalize each w model with similar
values of σ8, set by cluster abundance estimates. We do so
because the abundance of clusters is a more direct probe of
the amount of power on the scales that are relevant to galaxy
formation than the CMB anisotropy measurements and in
order to isolate the differences that arise because of varia-
tions in the expansion rate in models with different values
of w.

We normalize the power spectrum to the abundance
of massive clusters using x-ray flux and temperature mea-
surements from the cores of clusters of galaxies, and the

c© 2004 RAS, MNRAS 000, 1–16



4 Kuhlen et al.

corresponding conversion to cluster mass from the mass-
temperature (M -T ) relation. With all other cosmological
parameters fixed, a comparison of the observed mass func-
tion to the predicted mass functions from N-body simula-
tions (J01) determines the normalization parameter σ8. The
quintessence field is smooth on scales much smaller than the
horizon size, thus the values of σ8 derived from z = 0 cluster
measurements are rather insensitive to w.

The largest source of error in the determination of σ8

from clusters is the uncertainty in the normalization of the
M -T relation. Simulations consistently predict an M -T re-
lation that is a factor of ∼ 2 greater than the one observed
from x-ray temperature data (e.g., Seljak 2002 and refer-
ences therein). For ΛCDM and ΩM = 0.3, our current un-
derstanding of the M -T relation places σ8 very broadly in
the range 0.65<∼ σ8 <∼ 1.1 (Pierpaoli, Scott, & White 2001;
Reiprich & Böhringer 2002; Pierpaoli et al. 2003). Using the
HIFLUGCS cluster mass function (Reiprich & Böhringer
2002), we find for ΩM = 0.3, σ8 ≃ 0.74, nearly indepen-
dently of w (Kuhlen, Keeton, & Madau 2004). We normalize
the power spectra to σ8 = 0.742, 0.740, 0.738, 0.736, 0.734 for
w = −1.5,−1.25,−1.0,−0.75,−0.50 respectively. In princi-
ple, the value of σ8 as determined from clusters is degenerate
with ΩM (e.g. Schuecker et al. 2003), indeed the global best
fit to the HILFUGUS sample is ΩM ≃ 0.12, σ8 ≃ 0.96 in a
ΛCDM cosmology; however, we adopt values of σ8 that best
fit the data given our choice of ΩM = 0.3.

While we have chosen to normalize our numerical sim-
ulations using the cluster abundance, this normalization is
fairly uncertain. In the interest of completeness, we remark
that not all of these model normalizations are consistent
with n = 1 normalization to CMB anisotropy (even modulo
uncertainties in the reionization epoch). In the simplest case,
with all other cosmological parameters held fixed, the value
of w affects the CMB-derived σ8 normalization primarily
through the late-time integrated Sachs-Wolfe (ISW) effect
(see Hu & Sugyiyama 1995). For universes with w ≥ −1,
the quintessence energy density becomes comparable to that
of CDM at earlier epochs relative to ΛCDM, resulting in
greater variation in the gravitational potentials along lines
of sight to the surface of last scattering. For lower values of
w, the ISW effect is not as prominent because quintessence
becomes dynamically important only at more and more re-
cent epochs. In Figure 2, we show the value of σ8 implied
by the CMB normalization as a function of the equation of
state parameter w. As we stated above, the decrease in σ8

is due to the increased importance of the ISW effect as w
increases.

Care must be taken when setting the CMB normaliza-
tion. First, we note that when we performed our N-body
experiments we fixed the parameter ΩM = 0.3 for all models
rather than allowing ΩM to vary along the ΩM-w degeneracy
in the angular diameter distance. Our most extreme models
are currently disfavored by the present observational data
(e.g., Tegmark et al. 2003; Knop et al. 2003), but as our in-
tent is to address the effect of quintessence on structure and
halo formation, we do not consider this to be a serious defi-
ciency. In principle, the WMAP (Spergel et al. 2003) result
of high optical depth to the last scattering surface τ , has
made the determination of σ8 from the CMB less robust,
as the scattering off of free electrons damps anisotropies
on scales that are sub-horizon at the epoch of reionization,

Figure 2. The power spectrum normalization σ8, implied by
CMB anisotropy as a function of w. The solid line shows the
values of σ8 that we obtain by assuming the optical depth to the
last scattering surface τ = 0. The dashed line shows the values
of σ8 implied by adopting τ = 0.17. The dotted line shows the
values of σ8 that we infer from the abundance of massive x-ray
clusters.

thereby introducing a degeneracy between τ and σ8. The
dashed line in Figure 2 shows the CMB-normalized σ8 as a
function of w implied by adopting an optical depth to the
last scattering surface of τ = 0.17, in line with the WMAP
expectations.1 We return to a discussion of the relative im-
portance of σ8 and w in §§ 6-7.

2.3 The Spherical Collapse Approximation

A common convention is to define the virial mass and radius
of a dark matter halo by demanding that the mean density
within the virial radius of the halo be a factor ∆vir times
larger than the background density, ρb. Thus the virial mass
and radius of a halo are related by

Mvir =
4π

3
∆virρbR

3
vir. (3)

In addition, the equivalent linear overdensity at collapse
δc(z) is often used to determine the mass scale that is typ-
ically collapsing at a given epoch. Both of these quantities
are usually estimated using the approximation of spherical
tophat collapse (e.g., Lacey & Cole 1993). In this section,
we summarize the previous results for spherical collapse in
quintessence cosmologies (Mainini et al. 2003; Mota & van

1 Note that a high optical depth to reionization appears to be dif-
ficult to reconcile with low values of σ8 <∼ 0.75 (e.g., Somerville,
Bullock, & Livio 2003), though the CMB-derived τ is very un-
certain and is somewhat degenerate with the tilt of the power
spectrum, so tilted models with low σ8 may still be viable. This
issue will likely be settled with future CMB data and analysis.

c© 2004 RAS, MNRAS 000, 1–16
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Figure 3. Ratio of the growth factor to the SCDM growth factor
(DSCDM(a) = a) as a function of scalefactor for different values
of w. The growth factor is normalized to unity today (D(a = 1) =
1). Linetypes are shown in the legend.

de Bruck 2004), and discuss the implications for w < −1
cosmologies.

The evolution of linear overdensities on scales much
smaller than those on which the quintessence field spatially
clusters is

δ̈ + 2H(a)δ̇ ≃
3

2
H0ΩMa−3. (4)

Solving this equation gives the growth factor for linear per-
turbations. Figure 3 shows the linear growth factor in five
different quintessence models, normalized to the growth fac-
tor in an ΩM = 1, SCDM cosmology in which D(a) ∝ a.
Models with w ≥ −1 have been well-studied, with such
models showing more relative growth at higher redshifts.
For models with w ≤ −1, figure 3 shows how the trend to-
wards more relative growth at lower redshifts continues for
w < −1.

To detemine the non-linear growth of an object which
has decoupled from the expanding universe and virialized,
we follow Wang & Steinhardt (1998) and Weinberg &
Kamionkowski (2003). We use the spherical collapse ap-
proximation to determine the non-linear overdensity of a
halo, ∆vir(z), as a function of w. In this model, an over-
density defined by ∆vir(z) collapses at the time tcoll, when
the radius of the overdense region approaches zero. How-
ever, the actual, final radius of the collapsed object is finite
and can be computed using the virial theorem. We compute
the equivalent linear overdensity at collapse by evolving the
linearized equation of motion, Eq. (4), until the time tcoll, de-
termined from the non-linear evolution of the overdensity. In
the ΛCDM cosmology, the well-known results for the linear
and non-linear overdensities at collapse are δc(z = 0) ≃ 1.67
and ∆vir ≃ 337, and vary with redshift.

Figure 4 shows our results for the equivalent linear over-
density at collapse δc(z), and the non-linear overdensity at

  
 

200

300

400

500

∆ v
ir

a)

1 10
1+z

1.66

1.67

1.68

1.69
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w=-1.00
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Figure 4. The non-linear and linear overdensities at collapse in

quintessence cosmologies. In panel (a), we exhibit the non-linear
overdensity at collapse ∆vir(z) for 5 different quintessence models
that we explore in this paper (ΩM = 0.3). The different values
of the quintessence equation of state parameter w, are shown in
the legend. The increase in ∆vir(z) for larger w results primarily
from later collapse redshifts. In panel (b), we show the equivalent
linear overdensity at collapse δc(z), as a function of redshift for
the same quintessence models.

collapse ∆vir(z), as a function of redshift in quintessence
cosmologies. The trend in δc(z) reflects the fact that over-
densities grow more slowly in higher-w models. We can un-
derstand the behavior of ∆vir(w, z) by noting that overden-
sities in models with larger w take longer to collapse at late
times. Consider, for example, two haloes, one in a w = −1
cosmology, and another in a w > −1 cosmology, both of
which are just virializing at some redshift z. Very roughly
speaking, the w > −1 halo will have had a turn-around time
at a higher redshift than the w = −1 halo, and its virial den-
sity will be higher to reflect this. Conversely w < −1 models
will have more recent turn-around times and smaller virial
overdensities. We find that an accurate fitting function, in-
cluding the regime w < −1, can be obtained from a slight

c© 2004 RAS, MNRAS 000, 1–16



6 Kuhlen et al.

modification to the formula already proposed by Weinberg
& Kamionkowski (2003) for w > −1,

∆vir(z) = 18π2
[

1 + aΘb(z)
]

, (5)

where Θ(z) ≡ Ω−1
M (z) − 1, and with a = 0.432 −

2.001(|w|0.234 − 1) and b = 0.929 − 0.222(|w|0.727 − 1).
We find this formula to be accurate to better than 2% for
0.1 ≤ ΩM ≤ 1 and −0.5 ≤ w ≤ −1.5.

3 ANALYTIC MODEL FOR HALO

CONCENTRATIONS

3.1 Main Ingredients

It is commonly agreed that the spherically-averaged density
profiles of dark matter haloes can be described fairly well
by a generalized NFW profile on scales that are resolved in
state-of-the-art N-body simulations:

ρhalo(r) =
ρs

(r/rs)α(1 − r/rs)3−α
, (6)

where α describes the slope of the inner density profile at
r < rs. The value of α that most closely represents the re-
sults of N-body simulations is still debated, with acceptable
values between −0.7 and −1.5. An additional complexity
is that recent studies indicate that haloes exhibit a range
of inner slopes (Klypin et al. 2001; Tasitsiomi et al. 2003;
Navarro et al. 2003). In the following, we adopt α = −1, cor-
responding to the standard NFW profile. In this paper, we
are concerned with the concentration parameter cvir, which
is quite insensitive to the exact value of α (see below).

The two parameters of the NFW profile are rs and ρs,
with rs the radius at which the logarithmic density slope
becomes equal to −2. The concentration of the halo is de-
fined as the ratio of its virial radius to the scale radius of
the NFW profile,

cvir =
Rvir

rs
. (7)

With these definitions, the halo virial mass is related to the
NFW parameters by

Mvir = 4πρsr
3
s

[

ln(1 + cvir) −
cvir

1 + cvir

]

, (8)

so the halo density profile is completely determined by Mvir

and cvir.
Numerical simulations have revealed a correlation be-

tween Mvir and cvir, with halo concentrations log-normally
distributed around the median relation. Several simple mod-
els have been developed to explain this correlation (NFW;
B01; Eke, Navarro, & Steinmetz 2001). Here we focus on the
B01 model and test the accuracy with which it predicts the
observed relation between halo mass and concentration in
simulations with w 6= −1.

The B01 model assumes that a halo’s central density
and concentration are set by the density of the universe at a
characteristic formation epoch. This formation epoch quali-
tatively tracks the characteristic collapse epoch for the halo
subunits. It is defined as the time when the linear rms den-
sity fluctuations at a scale corresponding to a fraction F of
Mvir is equal to the linear collapse overdensity, δc:

σ(FMvir, ac) = δc(ac). (9)

Given the halo collapse epoch, the halo concentration
is set via

cvir(Mvir, a) = Kvir
a

ac(Mvir)
. (10)

A closely related study by Wechsler et al. (2002, here-
after W02) showed that the B01 “collapse epoch” seems to
correspond closely to the epoch when the mass accretion rate
of the halo d ln(Mvir)/dt, is large compared to the rate of
cosmic expansion. W02 found that if one defines the end of
this rapid collapse phase to be when d ln(Mvir)/d ln(a) ≤ 2,
it corresponds closely to the “formation epoch” in Eq. (9)
above. After this epoch of rapid mass accretion ends, the
halo mass and virial radius continue to grow via compara-
bly minor mergers and diffuse mass accretion. These rela-
tively minor mergers do not affect the inner regions of the
halo (r < rs) significantly and so Rvir grows, but rs remains
approximately constant, leading to an increase in concentra-
tion as the halo evolves (W02).

The B01 model has two parameters, F and K, that have
to be determined by calibrating them to numerical simula-
tions. B01 analysed two ΛCDM simulations with σ8 = 1.0
and different resolutions and box sizes. Using a halo finder
based on the Bound Density Maxima (BDM) algorithm
(Klypin & Holtzman 1997), they assembled a catalogue of
several thousand haloes for each simulation, and fit NFW
profiles to each of them. B01 found that their model was
able to satisfactorily reproduce the mean relation between
halo mass and concentration, and the redshift dependence
of the cvir-Mvir relation with F = 0.01 and K = 4.0.
B01 and W02 determined that the scatter in concentration
at fixed mass is well-described by a log-normal distribu-
tion with σlog c = 0.14 dex. Other numerical studies have
found a somewhat smaller scatter, with Jing (2000) report-
ing σlog c = 0.9 − 0.11 dex, and Jing & Suto (2002) finding
σlog c = 0.13 dex.

The B01 model with F = 0.01 and K = 4.0 has since
proven successful in reproducing concentrations of ΛCDM
haloes over more than six orders of magnitude in halo mass
from Mvir ≃ 107 M⊙ to Mvir ≃ 1013 M⊙ (e.g., Coĺın et al.
2003; Hayashi et al. 2003). However, as discussed in B01, the
model ceases to make physical sense for halo masses large
enough that FMvir begins to approach the typical collapse
mass at z = 0. This is because linear fluctuations stop grow-
ing at late times in ΛCDM, and with the simplified defini-
tion of collapse time discussed above, very large haloes never
collapse. Consequently, the B01 model with F = 0.01 under-
predicts halo concentrations for systems more massive than
a few ×1014 M⊙ (e.g., Hayashi et al. 2003; Dolag et al. 2003).
As a matter of pragmatism, this can be remedied with a sim-
ple change of parameters. With F = 0.001 and K = 3.0 the
model works adequately for all masses, though it becomes
somewhat less attractive because of the small value of F , for
which the collapse epoch no longer corresponds directly to
ac defined by W02.

3.2 The Analytic Model in Quintessence

Cosmologies

As shown in § 2, linear overdensities have greater relative
growth at higher redshift as w increases. We then expect,
given an overdensity on a mass scale Mvir, that this mass
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scale will collapse at higher redshift as we increase w. As
the halo concentration reflects the density of the universe at
the time of rapid collapse, we expect this change in average
formation time to translate directly into a change in average
concentration. The differences in w 6= −1 models should be
confined to changes in the rapid-collapse epoch ac for haloes
of a given mass.

From Equation (9), ac for a halo of mass Mvir is de-
termined by δc, D(a), and σ8. The changes in δc with w
(Figure 4) have a very small effect on ac. More relevant are
the changes in σ(M,a) and the linear growth rate (Fig. 3).
For a fixed value of σ8 all the w-dependence of ac(Mvir) will
be captured by D(a), with σ(M,a) reaching the δc collapse
threshold at earlier times as w increases. We therefore expect
concentrations to increase as w increases.

Note that an alternative definition of a halo’s radius,
R200, the radius at which the mean halo density is equal to
200ρcrit has frequently been used in the past. This results
in an alternative definition of concentration: c200 = R200/rs
(e.g., NFW96). Of course, given a set of cosmological pa-
rameters, the model described above (and similar models)
can be used to predict equivalent relations between c200 and
M200. For a fixed cosmology, the predicted relation between
c200 and M200 will look quite similar to the cvir-Mvir relation,
with an offset that varies slowly as a function of concentra-
tion and accounts for the differences in values of the outer
halo radius.

Because the simulations of B01 focused only on one cos-
mology, it was impossible to tell whether agreement with the
simulations and the proposed B01 model was sensitive to the
choice of defining halo concentration relative to Rvir instead
of R200. That is, one could have equally well proposed a
different model based on c200:

c200(M200, a) = K̃200
a

ac(M200)
. (11)

The simulation results of B01 could have been reproduced
using this model, simply by setting K̃200 equal to a slightly
smaller value than the original K = 4.0.

Consider now the current case, where we compare sim-
ulation results based on cosmologies with different w’s and
hence different ∆vir values. In these simulations, the ratios
of Rvir/R200 (and cvir/c200) for fixed-mass haloes will de-
pend on the value ∆vir(w). Therefore, it is impossible for a
model based on c200 with fixed K̃200 to do equally well as
the original B01 model based on cvir with fixed K for all val-
ues of w. More physically, the original B01 model described
above implicitly assumes that the haloes have virialized at
the appropriate virial density and predicts that, in addi-
tion, the halo collapse redshift acts to set the ratio of the
virial density (∝ R−3

vir ) to the central density (∝ r−3
s ). A

model based on c200 with fixed K̃200 would instead assume
that all of the changes in halo density arise solely because
of changes in ac. As we demonstrate below, the virial as-
sumption seems to capture better our simulation results. It
seems therefore, that there are two physical processes that
set halo densities: one process is related to the global pro-
cess of halo virialization and the other may be related to an
earlier, rapid-collapse epoch.

4 NUMERICAL SIMULATIONS

In this section, we describe our numerical simulations. In
§ 4.1, we detail the numerical and cosmological parameters
that were used. In § 4.3, we describe the methods we use
to locate haloes and to fit NFW profiles to their density
profiles.

4.1 Simulations and Parameters

We use GADGET version 1.1, a publicly-available and well-
tested N-body code (Springel et al. 2001). Gravity between
particles is solved using a hierarchical tree algorithm in co-
moving coordinates, and both the force calculations and the
time-stepping are performed in a fully adaptive way. Us-
ing the parallel version, we have run the code on either 96
375MHz IBM Power3 processors of NERSC’s Seaborg or on
64 1.4GHz Athlon processors of UpsAnd, a 264-processor Be-
owulf cluster at The University of California at Santa Cruz.
We made necessary alterations to the expansion rate of the
universe for GADGET to account for quintessence cosmolo-
gies with w 6= −1.

Power et al. (2003) have performed a detailed conver-
gence study of a high resolution cluster simulation using
GADGET, and although we simulate a much larger cos-
mological volume we have followed their recommendations
for a number of GADGET’s parameters. In particular we
have chosen an adaptive timestep equal to ∆ti = ηaǫ

√

ǫi/ai,
where ǫi and ai are the gravitational softening and accelera-
tion experienced by the ith particle in the simulation, and ηaǫ
is a dimensionless constant. Power et al. (2003) recommend
setting ηaǫ = 0.2; this choice of adaptive timestep minimizes
undesirable effects due to particle discreteness and hard
scatterings, while at the same time allowing for convergence
at minimal computational expense. In GADGET, gravita-
tional softening is performed using a cubic spline (Springel
et al. 2001), for which the potential becomes exactly Newto-
nian at r = 2.8 ǫ, where ǫ is the softening length. Generally
our simulations were run with a co-moving softening length
of ǫ = 2.5h−1 kpc, although we have run a few cases with ǫ
as low as 1h−1 kpc.

Our cosmological background model is fixed by ΩM =
0.3, ΩQ = 0.7, h = 0.7, and n = 1.0 for all values of w.
In normalizing σ8 on the scale of galaxy clusters, the initial
power spectra are nearly unaffected by quintessence. How-
ever, when normalizing to the scales probed by the CMB,
the initial power spectra are altered by the inclusion of
quintessence (section 2.2). As discussed below, we normal-
ize our simulations such that σ8 ≃ 0.74, thus the effect of
w 6= −1 is due almost exclusively to the expansion rate.

All of our simulations were run with 2563 particles in
boxes with sides of length 60h−1Mpc. ΩM = 0.3 implies a
mass per particle of Mp = 1.1×109h−1 M⊙. For the analysis
of halo concentrations we used only haloes with more than
100 particles (see §5.2). This corresponds to a minimum halo
mass of Mmin

vir ≃ 1.1×1011h−1 M⊙, for which the B01 model
predicts a median concentration of 13.5 (for σ8 = 0.74). This
translates into an NFW scale radius of rmin

s ∼ 10h−1 kpc.
More massive haloes will have larger scale radii, and because
even this minimum scale radius is almost three times larger
than our softening length, we should be able to determine
accurate concentrations from the haloes in our simulations.
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Table 1. Simulation Parameters and Power Spectrum Normal-
izations.

Model w ǫ/h−1 kpc σ8,nom
a σ8,eff

a

−0.50 2.5 0.742 0.799
−0.75 2.5 0.740 0.775
−1.00 2.5 0.738 0.716
−1.00 1.0 1.000 0.972
−1.25 2.5 0.736 0.716
−1.50 2.5 0.734 0.714

All other parameters are fixed at the same value for all simu-
lations. The number of particles is Np = 2563, the box size is
Lbox = 60h−1Mpc, and the initial redshift is zi = 50. For all sim-
ulations, the remaining cosmological parameters are ΩM = 0.3,
ΩQ = 0.7, h = 0.7, and n = 1.0.
a the difference between σ8,nom and σ8,eff is explained in §4.2.

Table 1 summarizes the parameters used in our simula-
tions.

4.2 Initial Conditions

Setting initial conditions for our simulations requires fixing
the z = 0 power spectrum normalization, which we param-
eterize by σ8. As discussed above (§2.2), our current under-
standing of present day clusters of galaxies makes σ8 still un-
certain by ∼ 20−30% (σ8 ∼ 0.70−1.10 for ΩM = 0.3). Halo
concentrations in cosmological N-body simulations depend
sensitively on σ8, because the amount of small-scale power
directly affects typical halo formation times, especially for
high mass haloes. For example, at Mvir = 1014 h−1 M⊙ the
B01 model predicts median concentrations of cvir = 6.8
and cvir = 5.3 for σ8 = 0.90 and σ8 = 0.74, respectively.
We initialize our simulations with the values of σ8 deter-
mined by Kuhlen et al. (2004) from the abundance of clus-
ters in the HIFLUGCS sample of local clusters (Reiprich
& Böhringer 2002): σ8 = 0.742, 0.740, 0.738, 0.736, 0.734
for w = −1.50,−1.25,−1.00,−0.75,−0.50, respectively. We
construct initial conditions for each w with the routines of
the publicly-available PM code (Klypin & Holtzman 1997).

The process of initializing particle positions and veloci-
ties based on the linear power spectrum is subject to statisti-
cal fluctuations. The largest modes of the system (λ ≃ Lbox)
are sampled only twice per dimension and are thus sen-
sitive to deviations caused by small number statistics. As
8h−1 Mpc is close to Lbox, this can lead to noticeable differ-
ences between the “nominal” value of σ8,nom, used to con-
struct the initial conditions and an “effective” value of σ8,eff ,
determined from the actual particle positions at the initial
redshift. In order to quantify this difference, we determine
σ8,eff by direct numerical integration of the initial N-body
power spectrum:

σ2
8,eff =

1

2π2

D2(z = 0)

D2(z = 50)

∫

∞

0

k2Pnum(k)W (kR8)2dk, (12)

where Pnum(k) is the power spectrum derived from the N-
body initial conditions and W (x) is the spherical tophat
window function given by W (x) = 3/x2(sin x/x − cos x),
evaluated at kR8, with R8 = 8h−1 Mpc.

Pnum(k) only extends to kmin ≈ 0.1h−1Mpc−1, which

Figure 5. A histogram of the effective values of σ8 determined
from 1000 Monte-Carlo realizations of the initial conditions with
an input powerspectrum normalized to σ8 = 0.74. The distribu-
tion is Gaussian with a standard deviation of 0.049, or roughly
7%.

is not low enough to allow the integral in Equation 12 to
converge. We estimated the portion of the integral below
kmin by integrating the smooth analytical power spectrum,
and applied this correction to get σ8,eff . We found that for
w ≤ −1 σ8,eff ≃ 0.715, which is ∼ 3% lower than σ8,nom.
However, the variation of σ8 in a box of this size due to
cosmic variance should be roughly ∼ 5%, so this difference
is not surprising. To demonstrate this explicitly, we have
constructed 1000 realizations of the initial conditions and
computed values of σ8. We infer from these realizations that
measured values of the effective σ8 are distributed with a
standard deviation of ∼ 5%. The resulting distribution is
shown in Fig. 5. Therefore, the difference between σ8,eff and
σ8,nom for the three w ≤ −1 cases is not surprising and is
consistent with cosmic variance. We find similar deviations
of σ8,eff from σ8,nom for all of the values of w that we simu-
late.

4.3 Halo Finders

We use two different halo finding algorithms to locate
the haloes in our simulations, depending upon the quan-
tities we probe with our simulation data. In § 5.1,
we compare the mass functions of our simulated haloes
with the J01 “universal” mass function. J01 used the
Friends-Of-Friends (FoF) algorithm (Davis et al. 1985)
to identify simulated haloes. In order to make a di-
rect comparison to the J01 mass functions, we have
employed a University of Washington FoF halo finder
(http://www-hpcc.astro.washington.edu/tools/fof.html). As
in J01 we set the linking length to 0.2 times the mean inter-
particle separation for all models.

To directly compare our halo concentrations to the B01
model (§ 5.2), we use an updated version of the halo finder
that B01 and W02 employed in order to identify haloes. This
halo finder is based on the BDM algorithm (Klypin & Holtz-
man 1997) and iteratively removes particles that are not
bound to the halo in question. Upon identifying haloes, we
fit NFW profiles to each halo and determine cvir. For more
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detail, we refer the reader to Appendix B of B01 and Ap-
pendix A of W02. We include in our catalogues only haloes
with more than 100 particles, the same cut-off used by W02.

We have checked that both halo finding algorithms
agree with each other, within our expectations, by compar-
ing mass functions. The systematic differences in total mass
between haloes defined in terms of the cosmology-dependent
virial overdensity ∆vir(w) (as in the BDM finder) and those
based on the fixed FoF linking length translate into only
minor differences in mass functions. At high redshift, the
two mass functions actually converge because ∆vir(z) ap-
proaches 178 and a linking length of 0.2 times the mean
inter-particle separation roughly corresponds to a mean halo
density of ∼ 180− 200 times the background density. Below
z ∼ 2 − 2.5, the FoF and BDM mass functions agree well.
At higher redshifts the BDM-based finder becomes increas-
ingly incomplete. A consequence of the low value of σ8 in
our simulations is that halo formation occurs more recently.
Frequent merger events during the rapid mass growth phase
of halo formation disrupt any spherical symmetry in the halo
density profile. These haloes will not be well described by
the NFW formula. In our implementation of the BDM halo
finder, haloes with very bad fits to the NFW profile are re-
jected and not included in the catalogues. This is the major
source of incompleteness at z >∼ 2.5. Note that the net effect
of this incompleteness is to underestimate the number of low
concentration haloes at high redshift.

5 RESULTS

5.1 Mass Functions

Several recent numerical studies have demonstrated that the
J01 formula for halo mass functions may be considered “uni-
versal” as it accurately describes halo counts as a function
of mass in N-body simulations of various cosmologies, in-
cluding models containing dark energy with w 6= −1 and a
time-varying w (Linder & Jenkins 2003; Klypin et al. 2003;
Macciò et al. 2003;  Lokas, Bode, & Hoffman 2003). We con-
firm and further extend this conclusion by presenting halo
mass functions from our simulations at different redshifts.
In Figure 6, we show the mass functions of our FoF haloes
in each cosmology and at a variety of redshifts from z = 0 to
z = 3. It is apparent that, in all panels, the mass functions
and the redshift evolution of the mass functions for each
w model are in excellent agreement with the J01 forumula.
Thus we confirm that the J01 formula is a good approxima-
tion at all redshifts for w > −1 and we extend the range of
validity of the J01 relation to include quintessence models
with w < −1.

5.2 Concentrations

In §3.2, we described the manner in which quintessence mod-
ifies the predictions of the analytic B01 model for halo con-
centration as a function of mass. We have assembled cata-
logues consisting of more than ∼ 1600 haloes for each of our
quintessence N-body simulations. The density profiles of ev-
ery halo have been fit to an NFW profile, yielding a best-fit
cvir for each object. Some of these fits produced concentra-

tions smaller than one. We have excluded these haloes from
our subsequent analysis.

The resulting cvir(Mvir) relations are plotted in Fig-
ure 7. We find that our simulations produce haloes with
slightly lower concentrations than expected from previous
simulation results (e.g., B01, Coĺın et al. 2003) and the an-
alytic model proposed by B01 with F = 0.01 and K = 4.0.
However, we find that this difference can be described well
by a constant offset. For example, keeping F = 0.01 and
lowering the proportionality constant K to K = 3.5 [see
Eq. 10] in the B01 model matches our data quite well for
all of the w models we explore. We discuss this overall off-
set further in § 5.3. The cvir-Mvir relation flattens out be-
low Mvir ≈ 6 × 1011h−1 M⊙. We attribute this to the lower
number of particles in these haloes, making them more sus-
ceptible to relaxation effects which tend to cause the cen-
tral regions of haloes to be more diffuse and lead to lower
concentrations. It is thus unlikely that this flattening rep-
resents any physical effect (compare to the results of Coĺın
et al. 2003), and we have neglected the lowest mass bin in
determining the best-fit value of K.

As mentioned above (§3.2), considering several cosmo-
logical models with different virial overdensities ∆vir allows
us to distinguish between analytic prescriptions based on
definitions of halo concentration in terms of R200, in which
the proportionality constant K̃200 is independent of cosmol-
ogy (Eq. 11), and those based on the virial radius Rvir,
in which Kvir is cosmology-independent (Eq. 10). To test
this, we re-analysed the five z = 0 N-body outputs us-
ing the BDM halo finder, but setting ∆vir = ρvir/ρb =
ρvir/ρcrit Ω−1

M = 200 Ω−1
M ≃ 667, effectively yielding a

relation between c200 and M200. Matching these relations
to the model described by Eq. 11 we determined best-
fitting values of K̃200 = (3.76, 3.44, 3.32, 3.16, 3.16) for w =
(−0.50,−0.75,−1.00,−1.25,−1.50), respecively. This range
in K̃200 is not consistent with one cosmology-independent
value of K̃200. The results of this analysis suggest that mod-
els similar to the B01 model, in which the halo concentration
is defined in terms of Rvir and ∆vir, are more readily general-
izable to alternative cosmologies as cvir is related to a/ac via
a cosmology-independent constant of proportionality, Kvir.
Put another way, defining the radius of a halo, and thus its
concentration, using a fixed overdensity criterion necessi-
tates using a cosmology-dependent proportionality constant
in Eq. (10) while the cosmology-dependent virial overden-
sity definition seems to account for these differences, so that
Kvir is independent of cosmology.

As in previous studies (B01; Jing 2000; Jing & Suto
2002), we also find that haloes of a given mass have a broad
distribution of concentrations. To determine the inherent
scatter in the cvir-Mvir relation it is important to account
for the artificial scatter introduced by uncertainties in the
fit to an NFW profile and by the Poisson noise in each bin.
Following the B01 analysis, we corrected for the former by
determining 500 one-sided Gaussian deviates for each halo
with a standard deviation equal to the error in the cvir fit
returned by the halo finder. The deviates are positive (nega-
tive) if cvir is less (greater) than the median in that bin. We
then determined the 16th and 84th percentiles in log(cvir)
and subtract off the Poisson noise from each in quadrature.
The resulting estimates of the intrinsic scatter are shown as
the dashed lines in Figure 7. The scatter is consistent with
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Figure 6. A comparison between the J01 analytic mass function (solid lines) and the mass functions derived from our five N-body
simulations (shapes with error bars, see the legend in the lower right portion of the Figure). The haloes in our simulations were located
using a FoF algorithm with a linking length equal to 0.2 times the mean particle separation as in J01. In each panel we plot mass
functions at various redshifts, from top to bottom: z = 0.0, 0.5, 1.0, 2.0, and 3.0. The error bars represent the Poisson noise due to the
finite number of haloes in each mass bin.

being independent of w and Mvir, and we find that tak-
ing the B01 proportionality constant to be Klow = 2.28 and
Khigh = 4.52 fits the lower and upper lines well. These values
correspond to σlog c,low = 0.18 dex and σlog c,high = 0.11 dex.
Although these are similar in magnitude to the scatter re-
ported in previous studies, our distributions are skewed away
from log-normal toward lower concentrations. We note that
the skewness may likely be caused by the lower resolution of
our simulations, which tends to result in lower concentration
haloes.

For a fixed mass the B01 model predicts that concentra-
tion should decrease with redshift as 1/(1 + z). The haloes
in our simulation also satisfy this relation, as shown by Fig-
ure 8, in which we plot the redshift dependence of concentra-
tion for haloes of mass Mvir = 7 × 1011h−1 M⊙. This figure
shows that the concentrations follow the cvir ∝ (1 + z)−1

relation that is embodied in the B01 analytic model. At
redshifts greater than ∼ 2.5, our catalogues of haloes in
this mass bin with fitted NFW profiles become incomplete.
This incompleteness preferentially affects low concentrations
haloes, causing the cvir(z) relation to flatten at high redshift.
We do not believe this to be a physical effect, and trust our
data points to z ∼ 2.5.

5.3 The Concentration Discrepancy

We have attempted to understand the origin of the discrep-
ancy between cvir(Mvir) derived from our simulations and
those reported by B01 and summarized by the B01 model.
We have re-analysed the same z = 0 simulation data that
was analysed previously by B01, and we were able to repro-
duce their cvir-Mvir relation and scatter. We conclude that
the discrepancy that we observe is not due to any change in
analysis procedures.

Of course, the main difference between the study of B01
and our work is the choice of simulation codes. Whereas
we use the publicly-available, uniform-resolution code GAD-
GET, B01 used the adaptive-refinement code ART. Un-
doubtedly the effective resolution at the centres of haloes
was higher in the B01 simulation than in ours. In order
to shed further light on this matter, we have run one ad-
ditional GADGET simulation designed to test the impor-
tance of the effective force resolution. Compared to the five
simulations discussed previously, this one has higher force
resolution (ǫ = 1.0h−1 kpc) and σ8 = 1.0. The resulting
cvir(Mvir) relation is shown in Figure 9.

Here, we again find that the GADGET concentrations
are systematically lower than the ones found by B01 with
ART by ∼ 14%. Instead of K = 4.0 we find K = 3.44
matches the GADGET halo concentrations. This is con-
sistent with the value found for the five lower resolution
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Figure 7. The concentration parameter cvir, as a function of mass Mvir, for the five quintessence N-body simulations. The original
(F = 0.01, K = 4.0) and our best-fitting (F = 0.01, K = 3.5) B01 models are over-plotted as thin dotted and solid lines, respectively.
Error bars represent the Poisson noise due to the finite number of haloes per bin. The dashed lines are our estimates of the intrinsic
scatter in the relation, obtained by removing the scatter due to errors in the fits of the NFW profiles, as well as Poisson noise. The

lowest mass bin was excluded in our analysis and is shown here for completeness only. The total number of haloes in the remaining bins
is shown in the upper right corner of each panel. The lower right panel shows the best-fitting B01 model for all five values of w.

quintessence simulations described above. The difference in
K between our simulations and the B01 simulation may be
due to an inherent difference between the GADGET and
ART N-body codes. Whether this is due to the higher max-
imum force resolution afforded by the adaptive refinement of
ART, or another difference between the two codes remains
unclear.

Several recent analyses based on w = −1 simulations
with higher resolution than our own (Hayashi et al. 2003;
Coĺın et al. 2003; Tasitsiomi et al. 2003) also favor the B01
model with K = 4.0. In light of these results we suggest that
our GADGET simulations systematically under-predict halo
concentrations by ∼ 10 − 15%. However, when this offset is
normalized out, the variation of cvir(Mvir) with w scales as
predicted, and we conclude that the B01 model is successful
in this regard. Emboldened by this success, we use the model
to explore the implications of various normalization choices
and to compare expected halo densities with those inferred
from galaxy rotation curves. In what follows, we assume K =
4.0 for the model normalization and we advocate this choice
for the reasons outlined above. (However, setting K = 3.5
would not qualitatively change the conclusions that follow.)

6 HALO CONCENTRATIONS AND CENTRAL

DENSITIES WITH w 6= −1

In Figure 10, we illustrate the degeneracy between w and
σ8 in setting halo concentrations. Shown are the predictions
of the B01 model (F = 0.01, K = 4.0) for cvir(z = 0) with
a fixed normalization σ8 = 0.74 for several values of w. As
discussed in § 3.2, for a fixed normalization, concentrations
increase as w increases because haloes collapse earlier. The
right panel of the figure shows the corresponding predictions
for cvir with σ8 determined by normalizing to the CMB with
τ = 0 (see § 2.3). Note that for the CMB normalization, the
trend with w is in the opposite direction, with increasing
w implying lower concentrations. As illustrated in Figure 2,
higher w requires a lower normalization: σ8 ≃ 0.6, 0.9, and
1.0 for w = −0.5, −1, and −1.5, respectively. The change in
normalization based on the CMB dominates changes in the
growth function that give rise to the behavior of cvir(w) at
fixed normalization.

As discussed previously, the cvir parameter is useful, but
it is not a direct measure of physical density. We would like,
therefore to convert our predicted cvir relations into quan-
tities that have a more direct physical interpretation, and
are more amenable to comparison with observations. Alam,
Bullock, & Weinberg (2002) proposed the central density pa-

rameter as a means to quantify the physical density in the
central regions of a galaxy:
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Figure 8. The median concentrations of haloes in bins of mass Mvir = 7× 1011h−1 M⊙ ± 0.05 dex as a function of redshift. Error bars
represent the Poisson noise due to the finite number of haloes per bin. cvir falls in proportion to 1/(1 + z) (solid lines), in agreement
with the B01 model. The flattening at z >∼ 2.5 is probably not physical, and may be caused by incompleteness in the halo catalogues at
high redshift which preferentially excludes low concentration haloes.

Figure 9. cvir(Mvir) for our high resolution (ǫ = 1.0h−1 kpc)
σ8 = 1.0 GADGET simulation designed to approximate the
adaptive-refinement ART simulation used in B01. The original
B01 relation is overplotted as a dotted line. The dotted line seg-
ment and the dashed lines are as in Fig. 7.

∆V/2 ≡
1

2

(

Vmax

H0rV/2

)2

. (13)

∆V/2 is the mean overdensity within rV/2, the radius at
which the galaxy rotation curve reaches half its maximum,
Vmax.

The ∆V/2 parameter is advantageous for several rea-
sons. First, it facilitates comparisons between theory and
observation. Any predicted cvir vs. Mvir relation can be eas-
ily converted into a ∆V/2 vs. Vmax relation. Similarly, given
an observed galaxy rotation curve, ∆V/2 can be determined
without reference to any particular analytic density profile.
It also has the useful characteristic that even if an observed
rotation curve is rising at the last measured point, substitut-
ing the highest (outer) most point on the rotation curve for
Vmax in the formula above results in an upper limit on the
true value of ∆V/2. Specifically, if Vmax is underestimated
by a factor fv, and the density profile varies with radius as
ρ(r) ∝ r−α, this leads to an overestimate of ∆V/2 by a fac-

tor of f
−2α/(2−α)
v . Thus this is an overestimate so long as

the density profile falls off with radius or is constant. Fur-
thermore, if α > 2/3, the fractional overestimate of ∆V/2 is
larger than the fractional underestimate of Vmax.

We compare the B01 model predictions in terms of these
quantities in Figure 11 for three representative quintessence
cosmologies to the observational data of low-surface bright-
ness and dwarf galaxies compiled by Zentner & Bullock
(2002; the same set of observed galaxies are discussed in
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Figure 10. Predictions for halo concentration as a function of Mvir. Dotted, solid, and dash-dot lines in each panel refer to w = −0.5,−1,
and −1.5, respectively. The left panel is for the fixed σ8 used in the simulations presented in this paper. The right panel shows how the
halo concentration changes when we normalize based on the CMB: σ8 ≃ 0.6 , 0.9, and 1.0 for w = −0.5,−1, and −1.5, respectively.

Hayashi et al. 2003, who reach similar conclusions) from the
observational work of Swaters (1999), de Blok, McGaugh, &
Rubin (2001), and de Blok and Bosma (2002). The error bar
in the right panel shows the theoretical 1σ scatter in ∆V/2

expected at fixed Vmax due to the scatter in cvir.

While it is difficult to quantify the agreement of each
quintessence cosmology with observational data, the cos-
mological model that is most commonly referred to as the
standard, concordance cosmological model with w = −1
σ8 = 0.9 (solid line, right panel) seems to be in conflict with
the extant observational data. For w = −1, lowering the
normalization of the power spectrum to the value σ8 ≈ 0.74
(solid line, left panel) can greatly alleviate this discrepancy
(Alam, Bullock, & Weinberg 2002; Zentner & Bullock 2002;
McGaugh et al. 2003). However, a w = −0.5 model with the
same σ8 ≈ 0.74 normalization (dotted line, left panel) does
not do as well because earlier structure formation produces
higher galactic central densities.

Notice that the trends with ∆V/2 for fixed Vmax do not
scale as might be expected from the cvir trends at fixed mass
shown in Figure 10. This is because ∆V/2 is a physical mea-
sure of density and it increases not only with cvir but also
with ∆vir (i.e. haloes are defined with respect to different
overdensities). This effect is most apparent when comparing
the right panels of Figures 10 and 11. Though the concen-
trations of haloes with w = −0.5 and σ8 = 0.6 (dotted-line,
right panel, Figure 10) are much lower than those in the
standard w = −1.0, σ8 = 0.9 case (solid line, right panel),
the actual densities of those haloes are roughly the same in
the right panel of Figure 11. This is because w = −0.5 mod-
els have higher virial densities (see Figure 4). Even though
haloes in the low-normalization w = −0.5 model tend to
have the same (rapid-collapse) formation epoch as those in
the higher-normalization w = −1 model, the higher virial
densities in the former model make the haloes denser over-
all.

By inspecting Figure 11, we can immediately determine
that models with w < −1 and moderately low σ8 (σ8 ∼ 0.7−

0.8) can bring theoretical predictions to rough agreement
with rotation curve data from low surface brightness and
dwarf galaxies. Though it is clear that sufficiently decreasing
σ8 can bring any model into accord with the median of the
data, a w = −0.5 model would require σ8 < 0.6. Such a low
normalization would be nearly impossible to reconcile with
z = 0 cluster abundance data. Thus from the standpoint of
quintessence, models with w < −1 seem mildly favored by
galaxy density data. Conversely, models with w as high as
∼ −0.5 are strongly disfavored by galactic rotation curves
coupled with only a weak prior on the normalization of the
power spectrum.

Note that none of the models can easily account for the
very low data points. Nevertheless, the scatter in the data is
not extremely large compared to the scatter expected from
the halo-to-halo variations observed in N-body simulations.
For example, at Vmax = 80 km/s, the 1σ scatter in N-body
simulations is σ(log(∆V/2)) ≃ 0.37 while the 1σ scatter in
all 67 data points is σ(log(∆V/2)) ≃ 0.41. This suggests
that lowering the median of the theoretically predicted cen-
tral densities, perhaps by a reduction in σ8 or invoking a
tilted or running power spectrum that reduces power on
galaxy scales, or as we discuss here, by invoking w < −1
quintessence, may be sufficient to bring the predictions into
good agreement with the data. Yet, we must bear in mind
that our calculations are approximate. The most obvious
omission is that all of our calculations are based on N-body
simulations that contain no baryons. The effects of baryonic
contraction are likely to be small in LSB galaxies (e.g., de
Blok & McGaugh 1997) and would tend to drive rotation
curves to higher values or ∆V/2 and Vmax in the simplest
models (Blumenthal et al. 1986). This serves only to increase
the apparent discrepancy. Additionally, rotation curve mea-
surements may yet be subject to poorly-understood system-
atic effects in the reduction of the observational data (Swa-
ters et al. 2003). Currently, it is difficult to draw a firm
conclusion.
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Figure 11. The central density parameter as a function of the maximum halo circular velocity. Dotted, solid, and dash-dot lines in each
panel refer to w = −0.5,−1, and −1.5, respectively. The left panel is for a fixed σ8 = 0.74 and the right panel is normalize to match the
CMB: σ8 ≃ 0.6 , 0.9, and 1.0 for w = −0.5,−1, and −1.5, respectively. The error bar in the right panel shows the expected theoretical
1 − σ scatter in ∆V/2 due to the scatter in cvir. The points are for observed LSB and dwarf galaxies (see text for references).

7 SUMMARY AND CONCLUSIONS

Although the nature of dark energy is unknown, its effects on
structure formation can be studied using numerical N-body
simulations. We have performed a series of these simulations
for a range of dark energy equation of state parameters.
Confirming previous findings by Linder & Jenkins (2003),
Klypin et al. (2003), Macciò et al. (2003), and  Lokas et al.
(2003) we show that the J01 formula provides a good fit to
halo mass functions even in the presence of non-ΛCDM dark
energy. We show that this is true for models with w < −1
as well.

The density structure of dark matter haloes is also af-
fected by dark energy. We have shown how the predictions
of the B01 model are modified when dark energy with con-
stant w is accounted for. As structure tends to form earlier
in models with less negative w, halo concentrations tend to
be somewhat higher in these models. These findings are in
agreement with the results of Klypin et al. (2003) and qual-
itatively agree with Dolag et al. (2003), although we probe
a different range of masses than the latter. The larger num-
ber of haloes with NFW profile fits and concentrations in our
study allows us to quantitatively test the B01 model. We find
that the original (F = 0.01, K = 4.0) over-predicts the con-
centrations of haloes in our simulations by about ∼ 12−15%.
However, the shape of the mass-concentration relation that
we find is the same as in B01, and we find that a slightly
modified set of the B01 parameters (F = 0.01, K = 3.5)
matches our haloes well. This offset may likely be caused
by the lower force resolution of our GADGET simulations
compared to the adaptive-refinement code ART used in B01.
For the haloes in our simulations the adopted B01 model
accurately reproduces the median concentration-mass re-
lation over a range of masses from Mvir ∼ 6 × 1011 to
Mvir ∼ 4 × 1013h−1 M⊙. We confirm that for a fixed mass
halo concentration decrease with redshift as 1/(1 + z), at
least out to z ∼ 2.5.

Interestingly, we find that halo concentrations are more

easily understood when the halo virial radius is defined in
terms of a cosmology-dependent virial overdensity rather
than by one that uses a fixed overdensity of ρ/ρcrit = 200.
The result supports one of the (previously-untested) as-
sumptions of the original B01 model. Specifically, we argue
that halo densities in different cosmological models are in-
fluenced both by changes in the overall virialization process
of haloes as well as by changes in epoch when the halo cores
collapse. As noted in §6, it is important to include both
of these physical processes when comparing predictions for
galaxy densities to real data, as in Figure 11.

Having confirmed that the B01 model correctly de-
scribes the scaling of halo concentrations as a function of
mass and redshift even in cosmologies with w 6= −1, we
have investigated the effects of dark energy on a compari-
son between model predictions and observations of central
halo densities. Zentner and Bullock (2002) found that the
observed distribution of ∆V/2 as a function of Vmax is in-
consistent with the predictions of the B01 model for ΛCDM
and σ8 = 0.9. The model predicts haloes that are simply
too concentrated (see also Primack 2003). A lower value of
σ8 = 0.75, as used in our simulations, can alleviate this dis-
crepancy, but such models may face other difficulties regard-
ing early reionization (Somerville, Bullock, & Livio 2003)
and possibly with reproducing the properties of halo sub-
structure (Zentner & Bullock 2003). Including the effects
of dark energy, we find that for models with w > −1 the
problem is exacerbated because haloes collapse earlier and
because they have higher virial overdensities. Note that for
the extreme case of w = −0.5, even a normalization as
low as σ8 = 0.6 seems disfavored by the data. Thus one
interesting conclusion is that the rotation curves of galax-
ies coupled only with a weak prior on the normalization of
the power spectrum of density fluctuations seem to disfa-
vor quintessence models with w significantly larger than −1
without measuring the expansion history of the Universe, as
is done in SNIa analyses. Models with w < −1 do better,
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and can tolerate higher values of σ8 ∼ 0.8, but not high as
high as σ8 ∼ 1, as is suggested the CMB normalization. 2

As we have pointed out throughout this paper, there
have been a number of previous studies of the effects of dark
energy (w 6= −1) on dark matter halo abundances and con-
centrations. Here we summarize how this work distinguishes
itself from these past efforts. We have shown for the first
time how results for ∆vir and the linear transfer function are
modified for dark energy with w < −1. In addition we have
expanded on previous studies (Schuecker et al. 2003) of δc
in phantom cosmologies. We have pointed out that there are
significant differences in the amplitude and w-dependence of
σ8 between normalizations based on the CMB and galaxy
cluster abundances. For the first time we have been able
to draw a distinction between a definition of concentration
based on a cosmology-dependent Rvir and constant R200,
and found that our simulations prefer the former. Unlike
previous studies of the effects of dark energy on halo con-
centrations (Klypin et al. 2003; Dolag et al. 2003), which
analysed a small number of pre-selected haloes, we have per-
formed an analysis of ∼ 1600 haloes in each simulation. This
allowed us to directly test the B01 model for c(M, z) with
statistical significance. Furthermore these previous studies
focused on group- and cluster-sized haloes, whereas we have
extended this study down to galaxy mass haloes. Lastly, we
have shown for the first time how different values of w and
power spectrum normalizations affect the theoretical predic-
tions of ∆V/2 vs. Vmax. A comparison to observations shows
that models with w as low as -0.50 are strongly disfavored
for any value of σ8, standard ΛCDM models require σ8 <∼ 0.8,
and models with w < −1 can accomodate higher values of
σ8.

As future observations further constrain the nature of
dark energy, it will become necessary to extend these types
of studies to more realistic models of dark energy. Future
simulations with higher mass and force resolution, includ-
ing the effects of baryons, and incorporating more realistic
dark energy models will further advance our understanding
of the interplay between cosmology and dark matter halo
structure.

We thank P. Madau for interesting and helpful discus-
sions. MK is supported by NSF grant AST-0205738. LES
is supported by the Department of Energy grant DE-FG02-
91ER40690. ARZ is supported by The Center for Cosmo-
logical Physics at The University of Chicago under NSF
PHY 0114422. JSB is supported by NASA through Hubble
Fellowship grant HF-01146.01-A from the Space Telescope
Science Institute, which is operated by the Association of
Universities for Research in Astronomy, Incorporated, un-
der NASA contract NAS5-26555. JRP is supported by NSF
grant AST-0205944. ARZ thanks The Center for Cosmology
and Particle Physics at New York University for their hospi-
tality during several visits while this work was in progress.
We thank V. Springel for use of the publicly-available code
GADGET and we than U. Seljak and M. Zaldarriaga for use
of the publicly-available code CMBFAST.

2 Note that using K = 3.5 instead of K = 4.0 would not change
any of the conclusions regarding galaxy rotation curves and the
central density problem.
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Reiprich T. H., Böhringer H., 2002, ApJ, 567, 716
Riess A. G., et al. , 2001, ApJ, 560, 49
Sarbu N., Rusin D., Ma C.-P., 2001, ApJ, 561, L147
Schuecker P., Caldwell R. R., Böhringer H., Collins C. A., Guzzo
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Swaters R. A., Madore B. F., van den Bosch F. C., Balcells M.,

2003, ApJ, 583, 732

Tegmark M. et al., 2003a, Phys. Rev. D, in print (pre-print:
astro-ph/0310723)

Tegmark M. et al., 2003b, ApJ, submitted
(preprint:astro-ph/0310725)

Tasitsiomi A., Kravtsov A. V., Gottloeber S., Klypin A. A., 2003,
ApJ, submitted (preprint:astro-ph/0311062)

Wang L., Steinhardt P. J., 1998, ApJ, 508, 483
Wechsler R. H., Bullock J. S., Primack J. R., Kravtsov A. V.,

Dekel A., 2002, ApJ, 568, 52 (W02)
Weinberg N. N., Kamionkowski M., 2003, MNRAS, 341, 251
Zentner A. R., Bullock J. S., 2002, Phys. Rev. D, 66, 043003
Zentner A. R., Bullock J. S., 2003, ApJ, 598, 49
Zhao D. H., Jing Y. P., Mo H. J., Börner G., 2003, ApJ, 597, L9

c© 2004 RAS, MNRAS 000, 1–16

http://arxiv.org/abs/astro-ph/0309671
http://arxiv.org/abs/astro-ph/0311231
http://arxiv.org/abs/astro-ph/0312459
http://arxiv.org/abs/astro-ph/0310723
http://arxiv.org/abs/astro-ph/0310725
http://arxiv.org/abs/astro-ph/0311062

	Introduction
	Structure formation in Quintessence Cosmologies
	Cosmological Perturbations
	Power Spectrum Normalization
	The Spherical Collapse Approximation

	Analytic Model for Halo Concentrations
	Main Ingredients
	The Analytic Model in Quintessence Cosmologies

	Numerical Simulations
	Simulations and Parameters
	Initial Conditions
	Halo Finders

	Results
	Mass Functions
	Concentrations
	The Concentration Discrepancy

	Halo concentrations and central densities with w=-1
	Summary and Conclusions
	REFERENCES

