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Chaotic behavior of micro quasar GRS 1915+105
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Abstract.
Black hole binaries are variable in timescales of rang from months to milli-seconds. The origin of this variability is still

not clear, it could be due to the variation of external parameters, like mass accretion rate, instabilities in the inner regions of
the accretion flow etc. Important constraints on these possibilities can be obtained from the study of the non-linear behavior
of fluctuations. We present a modified non-linear time seriesanalysis technique which optimizes the use of the availabledata
and computes the correlation dimension in a non-subjectivemanner. We apply this technique to the X-ray light-curve of the
black hole system, GRS 1915+105, to show conclusively that at least for four of its twelve temporal classes, the underlying
mechanism is a low order chaotic one.

1. INTRODUCTION

One of the most interesting black hole candidates ob-
served so far is GRS 1915+105. Like other black
hole sources, it shows the X-ray variability in a wide
range of timescale varies from months to milli-seconds,
which certainly indicates that the system is highly non-
linear (that is even true for other black holes). How-
ever, the most exciting thing behind this micro quasar
GRS 1915+105 is that, according to the temporal vari-
ability it can be classified into twelve different temporal
classes with respect to the morphology of light-curves
for different observation IDs (OIDs) [1]. But, from this
temporal classification one is unable to understand about
a basic feature of non-linearity, whether this black hole
is a random or chaotic system, that is our present goal to
understand. Following an established technique of non-
linear dynamical physics applied earlier to other related
astrophysical problems [2, 3, 4], here we plan to estab-
lish that the micro quasar GRS 1915+105 as well as the
black system is chaotic in nature. This analysis of tempo-
ral behavior of a system plays an important role to under-
stand the geometry of the source, which thus eventually
be used to test its relativistic nature and the correspond-
ing accretion process.

Before going into detail of our analysis, let us intro-
duce some basic definitions of various terminology used
in this article.

Chaos: If any two consecutive trajectories of a system,
while divergent each other, are related by some law,
the system is called chaotic (eventhough instanta-
neously it looks like random but overall it is deter-
ministic). Brownian motion is an immediate prac-

tical example of it. In case of the accretion disk
physics, one can check this by investigating various
orbits around a compact object.

Random: If any two consecutive trajectories of a system
are not related by any physics, the system is called
random. Poisson noise is an example.

Degrees of Freedom: From the concept of classical me-
chanics, theFree Degrees of Freedom of an M di-
mensional system isM. If the number of constraints
into the system isn, the Net Degrees of Freedom
of the same system can be defined as,D = M − n.
Philosophically, same thing is true even in the case
of non-linear dynamics, however, the estimatedD
need not be integer (unlike any classical mechanical
system). In non-linear dynamics,D is the measure
of chaos, calledchaotic dimension of the system.
If there is no constraint into the system at any di-
mension,M; D = M, both the degrees of freedom
are same, and therefore the system is random. Nat-
urally, for a constraintless random systemD varies
linearly with M while for a chaotic systemD satu-
rates to a value above the particularM. For an ideal
chaotic system,D saturates whenM ≥ 2, thus some-
times denoted asD2.

The chaotic nature of accretion phenomena in
magneto-hydrodynamic simulations has been found by
Winters et al. [5] already. Therefore we are motivated to
check this chaotic nature from the observational point of
view, analyzing black holes data. If the fluctuations in an
accretion disk is random or stochastic, the corresponding
X-ray variations are expected due to the variation of
external parameters, e.g. accretion rate, and/or there is a
possibility of random flares and vice versa. In contrary,
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the presence of chaotic nature, which is deterministic,
may be due to the inner disk instability and/or coherent
flares and vice versa.

To determine the chaotic nature of GRS 1915+105, in
the next section, we outline the methodology and in §3
discuss results for different OIDs. Finally in §4, we make
our conclusions.

2. METHOD

Once we have the light-curve data, let us denote the count
rate at the timet j be s(t j). Let us also identify adelay,
τ, that indicates the time interval beyond which any two
count rates are not related. This is the time at which the
auto-correlation function of the system goes to zero or
reaches to its first minima (if it does not go to zero). If the
auto-correlation function neither goes to zero nor attains
a minimum, the mentioneddelay time has to be figured
out in a different way explained in §3. Therefore, using
this delay one can construct a vector at timet j in an M
dimensional space as

~x j =~x(t j) = {s(t j),s(t j +τ),s(t j +2τ), ......up toMth s}.
(1)

In this way all the possibleM dimensional vectors have
to be constructed forj = 1,2,3, ...,N, and one can get
an N × M matrix equation. Then one has to map all
the vectors in anM dimensional phase-portrait, and to
compute the average number of data points within a
distanceR from a particular data point1. For example,
in case ofM = 2, one has to find out that mentioned
average number of points in thes( j + τ)− s( j) space.
This is called the correlation sum, defined as

CM(R) = lim
N→∞

1
N(N −1)

N

∑
i

N

∑
j 6=i

H(R−|~xi−~x j|), (2)

whereH(R−|~xi−~x j|) is a Heaviside step function. Then
one has to find outCM(R) for different Rs. Finally, the
whole process has to repeat for the various choices ofM
(say 1→ 15). Subsequently, the variation oflog[CM(R)]
as a function oflog[R] whenM is a parameter, has to be
seen concentrating on the (approximate) linear region of
curves. Finally the average slope of approximate linear
region of the curve for differentM to be computed as the
correlation dimension of the system, defined as

D2 =
d[logCM(R)]

d[log(R)]
. (3)

Now from the variation ofD2 as a function ofM, one
can understand whether the system is chaotic or random

1 The average number of data points in anM-cube of arm lengthR or
M-sphere of radiusR in the phase-portrait.

as mentioned in §1, and the chaotic dimension can be
identified from the saturated value ofD2 in the curve.
The details of all these will be presented elsewhere [6].

An important point to be noted here that for a very
smallR (≤ Rmin), CM(R) would be of the order of unity
and the result would be Poisson noise dominated. On the
other hand, for a largeR (≥ Rmax), CM(R) would satu-
rate to the total number of data points. Therefore for a
particularM, there is a range ofR which gives the phys-
ical result where theCM(R)−R curve is linear. Also the
maximumM (largestM-cube/sphere) is chosen in such
a manner that it has to be within the embedding space
so that filled by points and there should not be any edge
effect due to the limitation of point’s number. Due to all
these mentioned reasons, ifM is above of a particular
valueMc (M > Mc) there is a chance thatRmin = Rmax,
and then no significant results can be obtained.

Now we like to apply all the above mentioned tech-
nique to the data of GRS 1915+105 to understand
whether it behaves as chaos or random. In the next sec-
tion, we discuss this.

3. RESULTS

We take the RXTE data of OIDs corresponding to each
of the temporal classes of GRS 1915+105. It is found
that different OIDs for a particular class give same results
upto an error bar. Therefore, we choose one OID for each
temporal class to present our results, given in Table 1.
For each class we extract a few continuous data streams
∼ 3000 sec long. The time resolution of light-curves is
chosen as 0.1 sec, which gives∼ 30000 data points for
each of them with∼ 1000 counts per bin. Light-curves
for a finer time resolution are Poisson noise dominated,
while with a larger binning give a very little number
of data points for the present purpose. In our cases,
the auto-correlation function neither goes to zero nor
attains a minimum, therefore thatτ is chosen in our
calculations above which theD2 − M curves saturate.
Here this saturatedτ is typically ∼ 20− 50, and we
choose it asτ = 50 for all the cases.

In Fig. 1, we show results for seven temporal classes
of GRS 1915+105 data following the method outlined in
§2. According to the description of chaos, random, and
degrees of freedom in Introduction, the solid diagonal
line in each of the boxes in the figure indicates theideal
random curve, D2 = M line, when there is no constraint
into the system. Figure 1 shows the results ofβ , κ ,
λ and µ cases those indicate a clear deviation of this
ideal random curve which depict a signature of chaos of
dimension∼ 3.3−4.5. In contrary, the curve ofχ case
perfectly overlaps withD2 = M line which indicates an
ideal random signature. Also the temporal classesγ and



FIGURE 1. Results for GRS 1915+105 data in seven tem-
poral classes. The curves forκ, µ, β and λ classes indicate
chaotic signature, while that forχ shows random or stochas-
tic nature of the system. The cases forα andρ indicatesome
deviation from random signature.

φ show a similar random signature. The cases ofα and
ρ show a deviation of the ideal random, but that is not
as much as of chaos cases. Therefore we call this kind of
situations as semi-random (or semi-stochastic). Similar
semi-random behaviors come out from the analysis ofθ ,
ν andδ temporal classes.

At this point, we could divide the results as well as
GRS 1915+105 system into three different classes or
stages: low-dimensional chaos (deterministic), random
or stochastic (indeterministic) and semi-random, as far
as the non-linear dynamical analysis is concern. How-
ever, we like to perform atest before making any strong
statement. We know that the Lorenz system is a model
of low dimensional chaos where the chaotic dimension,
D2 = 2.04. That means for the data of Lorenz system,
D2−M curve starts to saturate whenM = 2 with the sat-
urationD2 is 2.04. On the other hand theD2−M curve
for the Poisson noise appears as a straight line of unit
gradient passing through the origin (i.e.D2 = M). Let
us take the Lorenz data set and introduce Poisson noise
into it in such a manner that the average count and rms
variation become same as that ofβ case. Then using
this modifiednoise induced Lorenz data, if we perform
D2−M analysis again, now the surprising fact comes out
thatD2 no longer saturates to 2.04, instead becomes in-
creased to∼ 4. If a higher order rescaling (as mentioned
above) to Lorenz data is performed, such that the average
count and rms variation are same as that ofγ case, theD2
becomes more and more increased, approached toward
the D2 = M line though not exactly overlapped on it.
All these scenarios have been pictorially represented in

FIGURE 2. The effect of Poisson noise to the Lorenz data.
The curve with circles indicates the result for actual Lorenz
data. The curves with squares and triangles come out when the
Lorenz data is rescaled by Poisson noise toβ andγ like classes
(with the same average count and rms variation).

Fig. 2. From these discussions, it is very clear that pres-
ence of any kinds of noise converts any low dimensional
chaotic system to that of high dimensional and/or random
or semi-random. It does not matter whether the system
has any chaotic signature or not, noise always suppress it
and the system practically appears as higher dimensional
or random. Therefore the computed chaotic dimension
∼ 4 (comes out from Fig. 1) is an over estimation. If the
noise would have been possible to remove from the sys-
tem, those could appear as a low dimensional chaos like
Lorenz system. Similarly, the random and semi-random
appearance of, say,χ andα classes respectively, are only
due to the dominance of noise into the system. If the
system would have been noise free (or less noisy) those
classes could also be appeared as chaos or/and low di-
mensional chaos. This dominance of noise into the sys-
tem in the random cases will be more clear if we look
on to the Table 1, which clearly shows the Poisson noise
to rms ratio is higher for the random cases compared to
that for the cases of chaos. The table also lists the various
OIDs corresponding to the temporal classes, the average
count, rms variation, Poisson noise and finally what the
analysis tells about it, whether the system is chaos: C,
random/stochastic: S or semi-random/stochastic: SS.

4. CONCLUSIONS

We analyze the non-linear behavior of the micro quasar
GRS 1915+105 in terms of the signature of chaos and
random. It immediately comes out that at least four out of



TABLE 1. Columns:- 1. RXTE OID, 2. Temporal class of the system according to
[1], 3. Average count in the light-curve,< S >, 4. Root mean square variation in the
light-curve,rms, 5. Expected Poisson noise variation,< PN >≡

√
< S >, 6. Ratio of

the expected Poisson noise to root mean square variation, 7.Stage of the system as
understood fromD2−M curves (C: chaotic; SS: semi-stochastic; S: stochastic)

OID Class < S > rms < PN > < PN >/rms Stage

10408-01-10-00 β 1917 1016 43.8 0.04 C
20402-01-37-01 λ 1493 1015 38.6 0.04 C
20402-01-33-00 κ 1311 800 36.2 0.04 C
10408-01-08-00 µ 3026 999 55 0.06 C

20402-01-45-02 θ 1740 678 41.7 0.06 SS
10408-01-40-00 ν 1360 462 36.9 0.08 SS
20402-01-03-00 ρ 1258 440 35.5 0.08 SS
20187-02-01-00 α 582 244 24.1 0.10 SS
10408-01-17-00 δ 1397 377 37.4 0.10 SS

20402-01-56-00 γ 1848 185 43.0 0.23 S
10408-01-22-00 χ 981 118 31.3 0.27 S
10408-01-12-00 φ 1073 118 32.7 0.28 S

its twelve temporal classes are chaotic in nature. There-
fore, there is no doubt that GRS 1915+105 behaves as
chaos at least in some stages. The three out of those re-
maining eight classes depict as random while five others
show a deviation from random, called as semi-random.
By a simple test, i.e. introducing noise into the low di-
mensional chaotic system, and from the ratio of Pois-
son noise to rms variation in the data of various classes,
it comes out that the random and semi-random cases
are noise dominated. Therefore, we can hypothesize that
GRS 1915+105 is chaotic in nature. This chaotic sig-
nature is suppressed only in some of its stages due to
the noise dominance and it appears like random or semi-
random, but actually it is not that.

In early, the results of Cyg X-1 data seemed to be
random or very high dimension chaos [2]. On the other
hand the temporal behavior of Cyg X-1 is very similar
to that of theχ class of GRS 1915+105, which is noise
dominated depicted as random according to our analysis.
Therefore, we understand that due to the dominance of
noise into the system, Cyg X-1 could not show its chaotic
nature, what it could be actually. In an alternative way,
we can say that there may be a stochastic component
to the variability which dominates for certain temporal
states.

Finally, we can conclude that any black hole system
may be chaotic in nature. Depending on the order of
noise present into the system, it appears either as actual
chaos or random. Any random or semi-random nature
may not be its fundamental signature. If the noise would
have been possible to remove from the system, always
it could show an actual chaotic signature. Overall, the
identification of chaotic nature of black hole systems has

opened a new window to understand their temporal be-
havior deeply. In order to have a more concrete knowl-
edge and to upgrade the confidence level, the next step
should be to study the corresponding Lyapunov exponent
(which is another basic measure of a non-linear system
to distinguish the chaos from random) and the associated
Kolmogorov entropy.
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