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Phase Transitions in Nucleonic Matter and Neutron-Star Cooling
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A new scenario for neutron-star cooling is proposed, based on the correspondence between pion
condensation, occurring in neutron matter due to critical spin-isospin fluctuations, and the metal-
insulator phase transition in a two-dimensional electron gas. Beyond the threshold density for pion
condensation, where neutron-star matter loses its spatial homogeneity, the neutron single-particle
spectrum acquires an insulating gap that quenches neutron contributions to neutrino-production
reactions and to the star’s specific heat. In the liquid phase at densities below the transition point,
spin-isospin fluctuations are found to play dual roles. On the one hand, they lead to a multi-sheeted
neutron Fermi surface that extends to low momenta, thereby activating the normally forbidden
direct-Urca cooling mechanism; on the other, they amplify the nodeless P -wave neutron superfluid
gap while suppressing S-wave pairing. In this picture, lighter stars without a pion-condensed core
experience slow cooling, while enhanced cooling occurs in heavier stars through direct-Urca emission
from a narrow shell of the interior.

PACS numbers: 26.60.+c 05.30.Fk 74.20.Fg 74.20.Mn 97.60.Jd

Observations designed to detect and measure thermal
radiation from neutron stars with ages between 102 and
105 years can provide valuable information on the inter-
nal temperatures T of these stars at the stage when cool-
ing proceeds via neutrino emission from their neutrino-
transparent cores [1]. Such information may be used to
constrain theories of hadronic matter at high density.
The relevant neutrino reactions are (i) the so-called direct
Urca (DU) process, in which beta decay and inverse beta
decay operate in tandem on thermally activated nucle-
ons and electrons, (ii) the modified Urca (MU) process,
involving a nucleon spectator in the Urca reactions, (iii)
neutrino bremsstrahlung from nucleon-nucleon collisions,
and (iv) neutrino emission due to Cooper pairing in the
superfluid phase [2, 3]. Of these, only the DU mechanism
can produce rapid cooling, as the data seems to require
for some stars. However, its operation is normally forbid-
den by the large mismatch of neutron and proton Fermi
momenta, which can be compensated by spectators in
the MU process generally associated with slow cooling.
The importance of the Cooper-pairing mechanism (iv) is
highly sensitive to the proton and neutron gaps, whose
values in turn depend crucially on the internal composi-
tion and structure of the star.

A new perspective on neutron-star interiors is sug-
gested by laboratory studies of (i) the metal-insulator
transition in two-dimensional (2D) silicon samples of low
disorder [4], and (ii) the liquid-solid phase transition in
2D 3He [5]. Quite far from the transition point, the elec-
tron and 3He systems involved may be described as nor-
mal Fermi liquids obeying Landau theory. Beyond the
transition, these systems become inhomogeneous, with
an insulating gap in the single-particle (sp) spectrum.

Similar behavior of the sp spectra has been observed in
the “normal” states of high-Tc superconductors [6]. Cold
neutron matter also behaves as a normal (or superfluid)
Fermi liquid at relatively low densities. With increas-
ing depth in the star and coincident increase in baryon
density ρ, spin-isospin fluctuations grow in importance.
At a critical density ρc, a condensate of spin-isospin ex-
citations, specified by critical wave number qc ∼ pFn,
forms in the channel with π0 quantum numbers [7, 8].
State-of-the-art microscopic calculations [9] predict that
π0 condensation (PC) sets in at a density comparable to
the equilibrium density ρ0 = 0.16 fm−3 of symmetrical
nuclear matter, while earlier phenomenological estimates
put ρc in the range 0.3 – 0.4 fm−3 [7, 8] . Comparing these
values to the central density ρ(0) ≃ (0.5 − 1.0) fm−3 [9]
of a typical neutron star, we infer that at low T , a signif-
icant part of the stellar bulk exists in the inhomogeneous
PC phase, rather than as a Fermi liquid.

Accordingly, in contrast to the pionic cooling scenario
reviewed in Ref. [10], we propose that in the domain oc-
cupied by the PC, the neutron spectrum acquires an in-
sulating gap exceeding in value any expected superfluid
gaps in neutron matter. It follows that in this region of
the star all cooling processes requiring the participation
of neutrons are strongly inhibited. The neutron contribu-
tion to the specific heat C(T ) is suppressed as well, since
its leading term ∼ T 3 now derives from the phonon spec-
trum rather than from the gapped sp excitations. The
properties of the embedded proton subsystem are not
affected so dramatically. Analogously to the electronic
subsystem in solids, the protons form a “conductivity
band” with a sp spectrum of unaltered shape, specified
by an effective mass, and the behavior of their contribu-

http://arxiv.org/abs/astro-ph/0402514v2


2

tion Cp(T ) ∼ T to the specific heat remains unchanged.
Thus, in the new cooling scenario, the large region of
the star in which the π0 condensate holds sway becomes
irrelevant to the cooling process, except for the effects
of neutrino-generating reactions involving protons as the
only nucleonic participants, along with the proton con-
tribution to the stellar specific heat.
As the internal temperature drops, the proton subsys-

tem undergoes a superconducting phase transition, which
we assume to originate from phonon-induced attraction.
A rough estimate of the critical temperature, T p

c ≃ 20
keV, is then obtained in terms of the proton Fermi en-
ergy in the same way as for ordinary superconductors.
Having addressed the organization of neutron-star

matter at moderately high densities, let us now analyze
what is transpiring in the domain 0.5 ρ0 < ρ < ρc cor-
responding to the outer core, where the stellar material
is a neutron liquid with fluid admixtures of protons and
neutralizing leptons. We argue that in this region, spin-
isospin fluctuations have a strong impact on neutron pair-
ing, suppressing it in the S-wave channel and enhancing
it in P -waves. This situation is familiar from the physics
of superfluid 3He, where spin fluctuations play the key
role in promoting P -pairing over S-pairing [11]. To esti-
mate the neutron triplet-P gap, we adopt the BCS for-
malism and write the gap equation as

∆̂(p) = −
∫

[V(p,p′)+Vπ (p−p
′;ω = E(p′))]

∆̂(p′)

2E(p′)
dτ ′ ,

(1)
with dτ = d3p/(2π)3. In the triplet P -wave channel, the
gap function has the form ∆̂(p) = idikpkσiσ2, with coeffi-
cients dik yet to be determined. The quasiparticle energy

E(p) is given by E(p) =
[

ξ2(p) + Tr(∆̂(p)∆̂†(p))
]1/2

,

where ξ(p) is the sp spectrum of the normal Fermi
liquid relative to the chemical potential µ, and
Tr(∆̂(p)∆̂+(p)) = ∆2 +

∑

m amY2m(n). In triplet P -
pairing, the regular interaction V is nearly exhausted by
the frequency- and density-independent spin-orbit com-
ponent of the scattering amplitude. The fluctuation
contribution to the pairing interaction is written as [7]
Vπ
αβ,γδ(q, ω) = λ2

n(q)(σαγ · q)ReD(q, ω)(σβδ · q)/m2
π,

where λn is an effective charge accounting for the renor-
malization of the associated vertex part. The propa-
gator D is given by the Migdal formula −D−1(q, ω) =
q2 + m2

π + ΠNI(q, ω = 0) + ΠNN (q, ω), made up of the
ordinary part ΠNN (q, ω) = −Bq2 − iq|ω|M2/(2πm2

π) of
the pion polarization operator Π, along with the term
ΠNI(q, ω = 0) = −q2ρ/ρI(1 + q2/q2I ) arising from pion
conversion into a ∆-isobar and neutron hole. In the do-
main of critical fluctuations, we have [7]

−D−1(q→qc; ρ→ρc;ω=0) = γ2 (q
2−q2c )

2

q2I
+ ηκ2q2I , (2)

where η = (ρc − ρ)/ρc. The parameters γ and κ are de-
termined from the obvious relations (1 − B)q2c + m2

π −

q2crcζc = 0 and 1 − B − rcζ
2
c = 0, with rc = ρc/ρI

and ζc = (1 + q2c/q
2
I)

−1. Simple algebra leads to

qc = (mπqI)
1/2

(1 − B)−1/4, rc =
(

mπ/qI +
√
1−B

)2
,

γ2 = rcζ
3
c , and κ2 = rcζcq

2
c/q

2
I . Employing the parame-

ter set q2I = 5m2
π, ρI ≃ 1.8 ρ0, and B ≃ 0.7 from Ref. [7],

one arrives at qc ≃ 1.9mπ, ρc ≃ 2 ρ0, γ ≃ 0.4, and
κ ≃ 0.7. As will be seen, the contribution to the gap
value from spin-orbit forces is insignificant; with its ne-
glect Eq. (1) is finally recast as

∑

k

dikpk = −
∫

λ2
n(q)

m2
π

(

∑

k

dikq
2p′k − 2

∑

k,l

dklqiqkp
′
l

)

× ReD(q, |ξ(p′)|)
2E(p′)

dτ ′ , (3)

where q = p − p
′. In arriving at this result, we

have made use of the relations
∑

δ(σlσiσ2)αδ(σm)βδ =
(σlσiσ2σ

+
m)αβ = −(σlσiσmσ2)αβ .

Unfortunately, the pairing problem (3) still defies full
solution. In neutron matter, only the spectrum of so-
lutions restricted to the 3P2–

3F2 channel has been ex-
plicated [12]. The solution set contains both nodeless
and nodal combinations of the different basis states. At
T ≪ Tc, a nodeless solution wins the energetic compe-
tition, and we anticipate that this feature, also inherent
in superfluid 3He, is present here as well. For nodeless
solutions, an adequate approximation to the gap in the
sp spectrum can be obtained by retaining only the ∆2

term in Tr(∆̂(p)∆̂+(p)). The matrix dik then becomes
proportional to δik and the angle integration is obviated,
giving rise to the expression q2 (p · p′) − 2(q · p)(q · p′)
in the numerator of the r.h.s. of Eq. (3). Furthermore,
the system (3) becomes decoupled, and we are left with a
single integral equation to solve. Exploiting the fact that
the propagator D(q, ω = 0) is peaked at q = qc < 2pFn,
this equation is simplified to

1 =
λ2
nq

2
cM

8πγκm2
πpF

∞
∫

0

Re
dξ

[(η+iM2ξ/2πκ2m2
πqc) (ξ

2+∆2)]
1/2

,

(4)
where λ2

n ≡ λ2
n(qc). In deriving this formula, we

have made the replacements p · p′ = (p2 + (p′)2 −
q2)/2→p2F−q2c/2, q · p = p2 − p · p′→q2c/2, and q · p′ =
p ·p′−(p′)2→−q2c/2; their validity has been confirmed in
numerical calculations. Since the parameter λn is as yet
uncertain, numerical calculations of the gap ∆(ρ) have
been performed for three different values, with the re-
sults shown in Fig. 1. We see that the P -wave neutron
gap is dramatically magnified in comparison with stan-
dard estimates of S-wave and P -wave gaps [13] that ig-
nore spin-isospin fluctuations, justifying our neglect of
the regular interaction.
Next we assess the inhibitory effect of spin-isospin

fluctuations on proton S-wave pairing. To estimate
the suppression factor, we appeal to the property
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FIG. 1: Neutron P -wave gap ∆n at the Fermi surface (in

MeV) (panel (a)) and suppression factor ∆p/∆
(0)
p for proton

S-wave gap (panel (b)), versus baryon density ρ in units of
ρc. (The proton fraction is taken as 0.06.) Values of λ2

n and
λ2
p are indicated by numbers near the corresponding curves.

〈S=0|σ1
i σ

2
k|S=0〉 = −δik and multiply both sides of

Eq. (1), rewritten for the full proton S-wave gap function

∆p, by ∆
(0)
p /2E0(p), where E0(p)=

[

ξ2(p) + (∆
(0)
p )2

]1/2

and ∆
(0)
p is the gap value found [13] when critical fluc-

tuations are neglected. Integration over the intermedi-
ate proton momentum and simple manipulations utiliz-

ing the gap equation for ∆
(0)
p lead to

∫
(

1

E0(ξ)
− 1

E(ξ)

)

dξ =

∫ ∫

I(ξ, ξ1)

E0(ξ)E(ξ1)
dξdξ1 , (5)

where

I(ξ, ξ1) =
λ2
pM

16π2m2
πpF

p+p1
∫

|p−p1|

q3 D(q; |ξ1|)dq (6)

with p ≡ p(ξ) determined from the formula for the sp
spectrum ξ(p). Results of numerical calculations of the
ratio ∆/∆(0) based on Eq. (5) are also presented in Fig. 1.
Proton S-pairing in the liquid phase is suppressed over a
wide density range.
The above results suggest that neutron P -pairing in

the liquid domain of the core is enhanced so strongly
by spin-isospin fluctuations that the neutrino emissiv-
ity due to neutron Cooper pairing, which behaves as [3]
QnCp ∼ (∆/T )6 exp(−2∆/T ), is completely suppressed
by the exponential factor. At the same time, recent mi-
croscopic calculations [14] indicate that the 1S0 proton

gap in neutron-star matter depends crucially on the den-
sity ρ, falling off rapidly when ρ exceeds ρ0. In view
of the suppression factor from spin-isospin fluctuations
found here and plotted in Fig. 1, we conclude that pro-
ton pairing is irrelevant to the neutrino-cooling stage.

We now turn to the role of the direct Urca process.
Despite their limitations, the available experimental data
on the surface temperatures Ts of neutron stars give evi-
dence for the existence of slow and rapid cooling tracks.
It is generally presumed that DU reactions are somehow
involved in the rapid cooling process. Yet if one adopts
the best available equations of state of neutron matter
[9] derived from first principles, this highly efficient cool-
ing mechanism is precluded in all but the most massive
neutron stars, because of the large difference between
neutron and proton Fermi momenta. However, a novel
route to the DU process in dense matter is opened by a
rearrangement of the neutron quasiparticle distribution
n(p) at a critical density ρr < ρc. The rearrangement is
precipitated by critical spin-isospin fluctuations seething
in the neutron liquid near its inner boundary with the
PC domain [15].

To elucidate this phenomenon, we employ the Landau
relation for the sp spectrum ǫ(p) in the specific form

∂ǫ(p)

∂p
=

∂ǫ0(p)

∂p
− 1

2

∫

Vπ(p− p1, ω = 0)
∂n(p1)

∂p1
dτ1 ,

(7)
where ǫ0(p) = p2/2M∗

0 is the regular part of the neutron
spectrum with M∗

0 ≃ 0.7M , the customary value of the
neutron effective mass in the absence of spin-isospin fluc-
tuations. Upon straightforward momentum integration,
relation (7) yields a closed RPA-like equation

ǫ(p) = ǫ0(p)−
1

2m2
π

∫

p+p1
∫

|p−p1|

λ2
n(q)

q3

p
D(q, 0)n(p1)

p1dp1 dq

(2π)2
,

(8)
well suited to investigation of the rearrangement of the
Landau state as the density climbs to the critical value ρc.
Results of numerical calculations based on Eq. (8), de-
picted in Fig. 2, indicate that the neutron Fermi surface
becomes doubly connected at ηr = (ρc − ρr)/ρc ≃ 0.065.

With the redistribution of quasiparticles in momentum
space, an inner neutron Fermi surface emerges at a low
momentum pi, enabling momentum/energy conservation
in the DU reactions and unleashing rapid cooling. When
the neutron liquid becomes superfluid under decreasing
temperature, a triplet pairing gap ∆i forms on the in-
ner Fermi surface and applies the brakes to DU emission.
Even so, we find that this novel opportunity for DU cool-
ing [15] is not destroyed. To gauge the neutron gap value
∆i at the inner Fermi surface, we again employ Eq. (1).
Numerical computation yields

∆i ≃ ∆(pF ) pi/pF . (9)
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FIG. 2: Neutron quasiparticle spectrum ξ(p) in units of

ǫ0c = p2c/2M = (3π2ρc)
1/3/2M , plotted for different densi-

ties. Numbers near the curves give the corresponding values
of η = (ρc − ρ)/ρc. Inset shows the quasiparticle spectrum
ξ(p) evaluated for η = 0.062, together with the associated
quasiparticle momentum distribution n(p).

The DU process may operate with full force only if the
gap value ∆n is markedly less than 100 keV. According to
Eq. (9), this constraint is met at the inner Fermi surface
if pi(ρ) ≤ 0.02pF . The numerical calculation underlying
Fig. 2 indicates that this inequality does hold in a thin
shell of stellar material where ρ− ρr ∼ 5× 10−4ρc.
Now consider, in outline, how our model explains ex-

perimental cooling data. We assume that neutron stars
such as RX J0822−4300 and PSR B1055−52 have rel-
atively low masses, such that pion condensation is not
triggered in their cores. We then attribute the high val-
ues of their surface temperatures to the absence of cool-
ing mechanisms other than neutrino bremsstrahlung from
pp collisions, emission processes involving neutrons being
switched off by substantial neutron P -pairing.
In explanation of the enhanced cooling rates of the

Vela, Geminga, and 3C58 pulsars, we suggest that their
central densities exceed some 0.5 fm−3, and hence that a
pion condensate occupies a significant portion of their
interiors. Rearrangement of the neutron quasiparticle
distribution in a small region adjacent to the boundary
between liquid and solid phases lifts the ban on the DU
process. However, the DU cooling rate, proportional to
the volume where this mechanism operates vigorously,
is suppressed due to the restriction of the process to a
narrow shell. Consequently, the corresponding Ts values
need not lie far below those of the first group of neutron
stars. One feature of our model that warrants further
examination is the fast transition from slow to enhanced
cooling under increasing stellar mass.
Restriction of DU reactions to a narrow shell does not

apply for the most massive neutron stars, in which the

internal pressure becomes high enough to melt the pion-
condensate lattice. In the dense liquid core, the DU re-
actions are allowed to proceed apace even if the standard
microscopic equation of state [9] is employed. As yet,
no observational evidence exists for such an unrestrained
DU cooling mechanism.

In this letter, we have proposed a new picture of the
interior of neutron stars based on the similarity between
pion condensation and the metal-insulator phase transi-
tion in the 2D strongly-correlated Fermi systems. We
have demonstrated that the incorporation of spin-isospin
fluctuations has dramatic effects on the neutron and pro-
ton gaps in the liquid part of the stellar interior and in-
duces a rearrangement of the neutron Fermi surface that
triggers the direct-Urca reaction. The associated cooling
scenario provides for slow and accelerated cooling tracks
that do not conflict with observational data.
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