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Missing Lorenz-boosted Circles-in-the-sky

Janna Levin
Barnard College of Columbia University, Department of Physics and Astronomy, 3009 Broadway, NY, NY 10027

A topologically finite universe, smaller than the observable horizon, will have circles-in-the-sky:
pairs of circles around which the temperature fluctuations in the cosmic microwave background
are correlated. The circles occur along the intersection of copies of the spherical surface of last
scattering. For any observer moving with respect to the microwave background, the circles will
be deformed into ovals. The ovals will also be displaced relative to the direction they appear in a
comoving frame. The displacement is the larger of the two effects. In a Lorenz boosted frame, the
angular displacement of a point on the surface of last scattering relative to the comoving frame is
proportional to the velocity. For the Earth’s motion, the effect is on the order of 0.14o at the very
worst. If we live in a small universe and are looking for an identical copy of a spot in the sky, it may
be displaced by as much as 0.14o from where we expect. This can affect all pattern based searches
for the topology of the universe. In particular, high-resolution searches for circle pairs could be off
by this much.

The earth is nearly comoving with the expansion of the
universe but not quite. The entire galaxy moves with re-
spect to the cosmic microwave background (CMB) at a
speed β = v/c = 1.23×10−3 relative to the speed of light.
The motion of the earth creates a large dipole-fluctuation
in the CMB temperature since the universe looks hotter
in the direction of our motion than in the opposite di-
rection. The dipole is subtracted from data sets such
as those from COBE [1] and WMAP [2] to remove non-
cosmological contributions to the maps. Subtracting the
dipole alone does not correct the map for any distortions
in the shape or location of features in the sky. Ordi-
narily this doesn’t matter in the least since the universe
is assumed to be homogeneous and isotropic. Analysts
are interested in angular averages over the sky, not the
precise location of a given hot or cold spot.

In a finite universe, homogeneity and isotropy can-
not be assumed globally since topological identifica-
tions nearly always break these symmetries (see reviews
[3, 4, 5, 6]). A search of the CMB data for evidence of a
finite universe relies on detailed information on the shape
and location of features in the sky. These pattern-based
searches [7, 8, 9] all ignore the motion of the earth with
respect to the CMB. As shown below, there is a small ef-
fect, yet none-the-less relevant to pattern-based searches,
due to the earth’s motion.

In a topologically compact space, there are a preferred
set of observers for whom the volume of space is smallest
[10, 11]. In the preferred frame, space is topologically
identified but there is no mixing of the time component
in the identification rules. This frame naturally coincides
with the comoving frame and the preferred observers are
at rest with respect to the expansion of the universe [11].
For the sake of argument, consider one such hypothetical
observer, C, completely at rest with respect to the CMB
and living in a flat spacetime. Working in his comoving
frame, last scattering occurred at a time η0 − η∗ in the
past where η0 is the age of the universe today and η∗ is
the time of last scattering. For the sake of argument we
will take last scattering to happen at an instant. Since
our experiments measuring the microwave background

are effectively instantaneous relative to the age of the
universe, all of the light collected traveled exactly the
same distance in all directions thereby defining a spher-
ical surface of radius η0 − η∗ = r. All the CMB light C
observes originated on this surface of last scattering.

FIG. 1: The surface of last scattering intersects with itself in
a finite universe smaller than the diameter of the surface. The
self-intersection can most easily be visualized in a tiling pic-
ture, such as the above where a two-dimensional slice through
space is shown. The intersection of the two spheres occurs
along the dotted-line circle. When an observer at rest with
respect to the expansion looks to the right, he sees temper-
ature fluctuations along the dotted-line. When he looks to
the left he sees identical temperature fluctuations along the
dotted-line. Therefore he measures a correlated pair of circles,
one to the right, the other to the left.

A finite universe looks like an infinite universe tiled
with an infinite number of copies of the fundamental
space. In each tile is an identical copy of the earth and
each image of the earth is encapsulated by an image of
the surface of last scattering. Some of these copies of
the surface of last scattering will be near enough to each
other in the tiling to overlap. The overlap occurs along
a circle so that observer C will see identical variations in
the temperature fluctuations occurring along circle pairs
[7] as illustrated in figures 1 and 2. These circles-in-the-
sky, as they were coined when found in Ref. [7], are par-
ticularly important observationally since they occur in
any topologically compact space and in principle can be
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detected without any prior assumption about the shape
and size of space, as long as the universe is smaller than
the surface of last scattering.
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FIG. 2: Another view of the correlated circle pair of figure
1. C sees one circle in front of him and one behind him. In
general, circle pairs may be out of phase and not face-to-face.

In principle, a discovery of circles-in-the-sky would be
an unambiguous and definitive observation of topology.
In practice, there are impediments to making such an
observation. Lensing of photons along the line of sight
from decoupling until today can deflect fluctuations off
the circle or damage the correlation between circle pairs,
as can reionization or an integrated Sachs-Wolfe contri-
bution. Other important effects include a finite thick-
ness to the surface of last scattering as well as Doppler
effects on small scales. Matter oscillations can Doppler
shift the CMB in a directionally dependent way.(In Refs.
[9, 12], the resilience of pattern-based searches to at least
some of these obstacles is confirmed in numerical exper-
iments.) In this article we add to this list the small, but
still present, effect of a Lorenz deformation of the circles
into displaced ovals.
To derive the distortion consider an observer, O, who

moves with speed β relative to the CMB. At the time the
satellites measure the CMB, observer O coincides with
observer C.
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FIG. 3: Two points on opposite sides of a circle-in-the-sky
from figure 2. The z-direction is suppressed.

To prove that circles deform to displaced ovals, con-
sider two points P1 and P2 on opposite sides of a circle

of radius L/2 at rest with respect to C as measured in
the C frame. The two points P1 and P2 lie along the axis
of motion of observer O. We take the motion to be along
the x-axis. The geometry for C is shown in figure 3. The
emission of last scattered photons from points P1 and P2

are two events that occur simultaneously and a distance
L apart so that ∆η = η2−η1 = 0 and ∆x = x2−x1 = L.
The space interval, ∆x′ = x′

2
− x′

1
, and time interval,

∆η′ = η′
2
− η′

1
, of the events P1 and P2 as measured by

the observer O are given by the Lorenz transformation,

(

∆η′

∆x′

)

=

(

γ −γβ
−γβ γ

)(

∆η
∆x

)

, (1)

with γ = (1− β2)−1/2 so that

∆η′ = −γβL

∆x′ = γL . (2)

In words, observer O does not believe that the emission
of last scattered light occurs simultaneously but instead
observes P2 emit light before P1. O also observes the
distance between the two points to be larger than in the
rest frame by the factor γ. The elongation occurs only
along the direction of motion. The perpendicular axis is
still observed to have length L and the circle is deformed
into an ellipses with long axis γL and short axis L.
Another way to derive this result is to begin with the

Lorenz contraction. Observers in the O frame would mea-
sure the intrinsic distance between opposite points on the
circle to be Lorenz contracted to L/γ. They would come
to this conclusion by performing the following experi-
ment. Traveling in a rocket at speed β, their spaceship
coincides with P1 at time η̄′

1
as shown in figure 4. The lo-

cation at which this happens in their frame is the center
of the rocket which they take to be the origin so x̄′

1
= 0.

Some time later the ship coincides with point P2 at time
η̄′
2
. Again the location at which this happens is the cen-

ter of the rocket, namely x̄′

2
= 0. Now, they see P1 and

P2, pass by their windows traveling at speed β and so
the time elapsed η̄′

2
− η̄′

1
= L̄′/β where L̄′ is the length

they measure.

/γ PP1 2
L

FIG. 4: O measures a Lorenz contraction of the distance be-
tween P1 and P2.

In C’s frame, which is at rest with respect to the ring,
the length along the axis is simply L. C sees the rocket
pass with speed β and determines that it reached point
P2 a time L/β after it coincided with point P1. We can
equate spacetime intervals to derive the Lorenz contrac-
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tion:

− (η̄′
2
− η̄′

1
)2 + (x̄′

2
− x̄′

1
)2 = −(η̄2 − η̄1) + (x̄2 − x̄1)

2

−
L̄′2

β2
= −

L2

β2
+ L2 (3)

which yields L̄′ = L/γ. Observer O believes the ring is
contracted relative to C’s measure. However, the emis-
sion of last scattered light from the surface of last scatter-
ing constitutes a slightly different measurement. In that
case, O sees light emitted from point P2 first and only af-
ter the ring has continued to move for a time |∆η′| = γβL
(as derived in eqn. (1)) does P1 emit last scattered light.
Consequently the point P1 has moved an additional dis-
tance γβ2L on top of the intrinsic separation of L/γ giv-
ing a net separation of

γβ2L+ L/γ = γL (4)

and confirming the first derivation. O perceives the ring
to be wider along the direction of motion than it is per-
pendicular to the direction of motion.

1

P2

O

r

θ2’

2
’

’

P1
γL

r
1
’

θ

FIG. 5: The points P1 and P2 subtend angles θ′1 and θ′2 re-
spectively.

To determine the angles subtended by the points P1

and P2 as measured by O (figure 5), consider the two
events, emission of light from P2 and the receipt of that
light. In the C frame, light is emitted at η2 and received
at η0 so that η0 − η2 = r where r is the distance the
light has traveled. These two events are separated by
x0−x2 = −r sin θ = −L/2, where θ is the angular radius
of the circle in the stationary frame of C.
From the Lorenz transformation, the separation of the

two events ∆η′ = η′
0
− η′

2
in time and ∆x′

2
= x′

0
− x′

2
in

space are given by

∆η′
2

= γ(1 + β sin θ)r = r′
2

∆x′

2
= −γ(sin θ + β)r = −r′

2
sin θ′

2
(5)

where r′
2
is the distance light travels in the O frame and

θ′
2
is the angle subtended by point P2, as measured from

the vertical.
Similarly for point P1 it follows that

∆η′
1

= γ(1− β sin θ)r = r′
1

∆x′

1
= γ(sin θ − β)r = r′

1
sin θ′

1
, (6)

where θ′
1
is the magnitude of the angle P1 subtends from

the verticle as drawn in figure 5. Notice that ∆η′
1
−

∆η′
2
= η′

2
− η′

1
= −γβL and ∆x′

1
−∆x′

2
= x′

2
− x′

1
= γL

confirming the results of eqn. (1).
It follows from eqn. (5) that

sin θ′
2
=

(sin θ + β)

(1 + β sin θ)
. (7)

If we assume that θ′
2
= θ+ δ2 where δ2 is small, then the

angle can be approximated by sin θ′
2
≃ sin θ + δ2 cos θ.

Eqn. (7) then yields

δ2 ≃
β cos θ

(1 + β sin θ)
. (8)

The angle subtended by P2 is larger than in the comoving
frame by a piece proportional to β. Similarly, the angle
subtended by P1 is smaller by θ′

1
= θ − δ1,

δ1 ≃
β cos θ

(1 − β sin θ)
. (9)

The center of the circle is displaced by δ ∼ β.

FIG. 6: Observer C measures the dotted-line circle centered
on x = 0 while observer O measures the solid-line ellipse
displaced by γβr. The circle is displaced as well as distored
in shape. In the figure r is taken to be 2L for illustration and
β = 3/4.

In C’s frame, the circles of figure 2 lie in the x − z
plane and are parameterized by the 4-vector (η∗−η0, x−
x0, y − y0, z − z0) = (−r, L cosφ/2, 0, L sinφ/2). In O’s
frame, the shape of the intersection of the copies of the
surface of last scattering is parameterized by

x′ = γ

(

L cosφ

2

)

+ γβr

z′ =
L

2
sinφ (10)

and is a displaced ellipse as shown in figure 6. Notice that
the distortion to the shape is proportional to γ and so is
second order in β while the displacement is first order in
β and is therefore the bigger effect. For circles that are
not perpendicular to the direction of motion the shape
will be slightly different from a perfect ellipse.
In the boosted frame, the center of one oval is offset by

δ from the vertical and its pair is not 180o further on at
an angle of 180o + δ but instead is centered at 180o − δ.
The center of the pair is off by 2δ as illustrated in figure
7.
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FIG. 7: In figure 2 observer C sees one circle in front of him
and one behind him. Unlike C, the Lorenz boosted observer O
does not see one cirlce in front of him and one behind him.He
sees the center of both ovals displaced by δ ∼ β as drawn.
Notice the oval pairs are opposite each other and face on but
they are not on either side of the observer O.If he were to
find an oval in direction δ and were to look for its pair in
the direction 180o + δ, he would miss the pair by an angle
∼ 2δ ∼ 2β (for small δ and β).

The above calculation applies to a specific geometry.
More generally, given any point on the surface of last
scattering (η∗ − ηo, rn̂) = r(−1, n̂), the direction to that
point is Lorenz transformed to

n̂′ =
n̂+

[

(γ − 1)β̂ · n̂+ γβ
]

β̂

γ(1 + ~β · n̂)
. (11)

(The data could be corrected by applying the inverse of
this transformation to the map, that is, if we were in
uniform motion.) In particular, if n̂ is the direction to
the center of a circle, then to lowest order in β for the

case of n̂ · ~β = 0, the center wil be displaced to

n̂′ = n̂+ ~β (12)

If we were to look for an antipodal pair in the opposite
direction, −n̂, the pair would also be displaced to n̂′

pair ≃

−n̂+~β = −n̂′+2~β which is not 180o oposite as illustrated
in figure 7.

The effect is largest when n̂ · β̂ = 0 as in figure 2 and

the effect vanishes when n̂ · β̂ = 1. For β ∼ 1.23× 10−3,
the maximum angular difference in the location of a pair
from where one expects is

2β ∼ 0.14o . (13)

The deviation is just below WMAP’s angular resolution
which at best is < 0.25o in the 90 GHz channel and at
worst is ∼ 0.93o in the 22 GHz channel. The stretching
and displacement of circles-in-the-sky would also be rel-
evant for the future Planck Surveyor which aims for an
angular resolution of around several arc-minutes. Still,
if the data is smoothed before scanned, the aberration
may be below the resolution of circle searches. It will be
something to bear in mind for future analysis.

Distortions due to the motion of our planet and galaxy
could effect any statistical, pattern-based search, not just
circles-in-the-sky. There are other modifications to con-
sider as well, such as the complication that the earth
is not in uniform motion and the extension to a curved
space. This calculation is intended to draw out the gen-
eral issue.

An intriguing possibility that is highlighted here and in
earlier articles on special relativistic effects in a finite uni-
verse [10, 11], involves compactifying spacetime and not
just space. The universe is a (3+1)-dimensional space-
time and in principle we should consider the geometry of
this four-dimensional manifold. Of course, we have lit-
tle idea how to go about this as much due to difficulties
of interpretation as anything else. It is a reminder that
whatever underlying principle determines the creation of
the universe and its topology will shape our future ideas
on the nature of space and time.
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