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It is well known that as a consequence of local nature of general relativity, the

global topology of space-time remains undetermined by the Einstein’s field equa-

tions. This coupled with the enormous recent increase in high resolution cosmologi-

cal observations has led to a great deal of interest in the possibility that the universe

may possess compact spatial sections with a non-trivial topology (see for example

Refs. 2 and 3). These observations have also shown that the spatial curvature is

very small (and possibly 0).8 Whatever the nature of cosmic topology may turn out

to be, the issue of its detectability is of fundamental importance.

Motivated by these observational results, a study was recently made of the

question of detectability of the cosmic topology in nearly flat universes. It was

demonstrated that as Ω0 → 1 increasing families of possible topologies become

undetectable by methods based on image (or pattern) repetitions (see Refs. 4 –

6). However, measurements of the density parameters unavoidably involve obser-

vational uncertainties, and therefore any study of the detectability of the cosmic

topology should take such uncertainties into account.

In a recent paper,1 we studied the sensitivity of the detectability of cosmic

topology to the uncertainties in the density parameters, using two complementary

methods. Here we briefly summarise some of those results.

As in standard cosmology we assume the universe is modelled by a 4-manifold

M = R × M , with a locally isotropic and homogeneous Robertson-Walker (RW)

metric, with a matter-energy content well approximated by dust (of density ρm) plus

a cosmological constant Λ, with associated fractional densities Ωm = 8πGρm / (3H2)

and ΩΛ ≡ Λ c2/ (3H2), and Ω0 = Ωm + ΩΛ. We also assume a small but non-zero

curvature, since a flat universe has no preferred length scale, and therefore the

1
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cosmological parameters impose no constraints on observable candidate manifolds.

The redshift-(comoving)-distance relation in units of curvature radius then takes

the form

χ(z) =
√
|1− Ω0|

∫ z

0

[
(1 + x)3Ωm0 +ΩΛ0 − (1 + x)2(Ω0 − 1)

]
−

1

2 dx , (1)

To study the topology of the spatial sections M of the universe, we need a

topological invariant length that could be put into correspondence with depth of

surveys. We employ the injectivity radius rinj , the radius of the smallest sphere

’inscribable’ in M , which is defined as half the length ℓM of the smallest closed

geodesics, rinj =
ℓM
2

(for details see 4). A manifoldM is then detectable in principle

in a survey of depth z if the density parameters are such that χ(z) > rinj . If

χ(z) ≤ rinj then the topology is undetectable by any pattern repetition method.

This question can be restated in terms of countour lines in the Ωm0 − ΩΛ0

parametric plane. For any given manifold M with injectivity radius r M
inj and fixed

survey depth zobs, we can define the contour curve χ(zobs,Ωm0,ΩΛ0) = r M
inj . This

curve lies in either of two regions: the positive curvature (Ω0 > 1) or the negative

curvature (Ω0 < 1) semi-planes, depending on whether the manifold is respectively

spherical or hyperbolic in nature. The contour curve further subdivides its semi-

plane in a region where the topology is undetectable (χobs < r M
inj ), and a region

where the topology is detectable in principle (χobs ≥ r M
inj ). Therefore, given this

curve, it would be possible to determine the (un)detectability of any given nonflat

manifold for a range of density parameters. The question then becomes how to

determine these countour curves.

In a recent work1, we developed two complementary linear approximations for

countour curves, one that necessarily overestimates detectability (by approximat-

ing the countour curve by its tangent line, and therefore named the tangent line

method), and one that underestimates detectability (the secant line method, which

approximates the countour curve by the line connecting its the extremes,(Ω̃m0, 0)

and (0, Ω̃Λ0) ). We shall not describe either method in detail here, but see Figure

1 for a qualitative description.

We found the numerical results from both methods to be in good agreement, for

density values compatible with current observations,8 thus demonstrating that they

provide good approximations to the contour curve. Furthermore, the equation for

the secant line can be obtained analytically in the limit z → ∞. With this equation

one can write the following inequalities, which is useful to state the conditions for

(un)detectability of cosmic topology:

cosh2 (
rM
inj

2
) Ωm0 +ΩΛ0 > 1 , for Ω0 < 1 ,

cos2 (
rM
inj

2
) Ωm0 +ΩΛ0 < 1 , for Ω0 > 1 .

(2)

This last result is of particular interest, because it allows the study of the de-

tectability of topology not only in individual manifolds, but also in whole classes of
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manifolds.1

Figure 1. A schematic representation of the secant line (SL) and tangent line (TL) methods. The
convexity of the contour curve for Ω0 > 1 can be proven analytically. The topology is shown to
be detectable in principle in region I by the TL method, and undetectable in region IV by the SL
method. Regions II and III are respectively detectable and undetectable, but are not discriminated
by either methods. But II and III are only a very small fraction of the uncertainty region U for
manifolds whose contour curves intersect the uncertainty region.

A consequence of these results is that the closed form inequalities (2) can be

seen, to a very good approximation, as establishing conditions for detectability in

principle as well, as can be shown by comparison with numerical values obtained

from both methods for z = 1100. For high redshifts we can therefore use (2) to

separate the parameter plane into undetectable and detectable sub-regions with

great accuracy. The closed form of the inequalities makes its application quite

straightforward and potentially more useful.

Finally even though we have used a ΛCDM framework, similar methods could

be developed for other cosmological models 7 with different redshift-distance rela-

tions in order to obtain conditions for undetectabilty of cosmic topology.

We thank CNPq and FAPERJ for financial support.
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