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1 Introduction

Adaptive Mesh Refinement (AMR), an h-refinement method for solution-
adaptive computations, is used in an ever increasing number of plasma physical
and astrophysical simulations. The AMR algorithm and, specifically, all com-
plications associated with ensuring global conservation properties when deal-
ing with hyperbolic conservative systems, have been addressed in the work
by Berger and Colella (7). In that pioneering paper, the authors stress that
“ ..t seems possible to implement a general code where the number of di-
mensions is input”. We make use of such a general code in all simulations
presented here, where both the dimensionality and the particular system of
conservation laws is selected in a pre-processing stage. The resulting versa-
tility in the applications allows us to assess quantitatively how much can
be gained from employing AMR in 1D, 2D, or 3D hydro- and magnetohy-
drodynamic (MHD) simulations, for a variety of spatial discretizations. Our
coding effort benefits from the expertise gained through many general purpose
and problem-tailored AMR software packages, which have been in active use
and continued development for more than a decade. E.g., AMRCLAW (29) by
LeVeque and coworkers combines AMR with a selection of time-dependent hy-
perbolic systems of partial differential equations, including both conservative
and nonconservative systems. Berger and LeVeque (&) recently demonstrated
the use of multi-dimensional wave propagation algorithms (3(; 28) in 2D adap-
tive computations on Cartesian and logically rectangular, curvilinear grids. A
related development effort by Walder and Folini (49; 50) is AMRCART, a
software package which intends to encompass 3D adaptive MHD scenarios.
Dimension-independent library approaches for AMR simulations include the
publicly available PARAMESH toolkit by MacNeice et al. (31), as well as C++
class framework approaches such as the AmrLib extension to the BoxLib li-
brary (I0). The code used here is the most recent extension to the Versatile
Advection Code (see http://www.phys.uu.nl/~toth), briefly discussed in
section 2.1.

Our AMR implementation differs somewhat from the original algorithm in ((4)
and these differences will be mentioned in section 2.2. For several multidimen-
sional calculations, we report on computational efficiency and solution accu-
racy. We beneficially combine a fully upwind scheme on the highest AMR
level with a Total Variation Diminishing Lax-Friedrichs discretization on all
other levels. For 2D hydrodynamic and magnetohydrodynamic problems, we
thereby typically gain a factor of 10 in execution time as compared to the
equivalent high resolution static grid result. Our example simulations cover
1D Riemann problems (Section 3.1), a 2D advection problem (Section 3.2.1),
and both shock-dominated and more turbulently evolving hydro- and mag-
netohydrodynamic multidimensional cases. Tables 3-4 collect our findings as
presented in Section 3.


http://www.phys.uu.nl/

As our ultimate aim is to perform grid-adaptive, realistic 3D MHD simula-
tions to investigate general plasma physical and astrophysical scenarios, we
pay particular attention to strategies for controlling the solenoidal character
of the magnetic field. In section 2.3, related efforts in AMR MHD simulations
are discussed in relation to their specific treatment of this constraint. Recently,
Balsara (2) and independently Téth and Roe (47) introduced a divergence-free
reconstruction and prolongation strategy for multi-dimensional AMR MHD
simulations which involves staggered magnetic field components. In this pa-
per, we evaluate three alternative, simple approaches with cell-centered B
components where V - B = 0 is maintained to truncation error by the addi-
tion of suitable source terms. Quantitative comparisons between AMR MHD
calculations and high resolution static grid runs in section 3.2 demonstrate
their effectiveness.

2 Algorithm

2.1 Versatile Advection Code, equations and solvers

The Versatile Advection Code (VAC), initiated by Téth (44), is specifically
designed for simulating dynamics governed by a system of (near-) conserva-
tion laws. It’s versatility resides in the choices offered in the geometry of the
grid, the dimensionality, the physical application (including Euler and MHD
equation modules), the spatial (46) and temporal discretization (453;24), and
the computer platform (23).

VAC uses various second order shock-capturing numerical algorithms: the Flux
Corrected Transport (FCT) scheme ([L1), the Lax-Wendroff type Total Varia-
tion Diminishing (TVD) (19) and the TVD-MUSCL (48) schemes (TVDMU)
with Roe-type approximate Riemann solvers (38; 39), and the TVD Lax-
Friedrichs (TVDLF) method (52). For the TVD type schemes different slope
limiters are available, including the most robust minmod, and the sharper
monotonized central (MC, also referred to as Woodward) limiter. For exact
specifications of the algorithms, see (46) and references therein.

In multi-dimensional MHD simulations one needs to control the numerical
value of V - B. VAC provides several algorithms, such as the eight-wave
scheme (36), the projection scheme ([12), and several types of constrained
transport and central difference type discretizations, which were recently de-
scribed and evaluated for static grid simulations by T6th (42). In section 2.3,
we discuss three strategies which easily carry over to an adaptive grid. Until
now, VAC had no automated means for dynamic grid adaptation. Our new
AMRVAC software package combines the versatility of VAC with the advan-



tages of adaptive mesh refinement. In this first implementation, only Cartesian
grids and explicit time stepping is allowed.

We demonstrate the flexibility of AMRVAC by using three equation modules
in 1, 2 and 3 dimensions with different conservative high resolution spatial dis-
cretization schemes. In the example simulations from Section 3, the equation
modules are subsets of the system of magnetohydrodynamics, given by

%+v-(vm:sp (1)
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These are expressed in the conservative variables density p, momentum density
pv , total energy density e, and magnetic field B, with all additional sources
and sinks collected in the source terms S,, S,,, S. and Sg. In these equations,
the total kinetic and magnetic pressure is written as

1 1 1
ot = (0= 1) (e = 5ov? = 5B) + B2 (5)

for an ideal gas with adiabatic index ~. We stress that for all simulations
done, we time advance the relevant subset in the selected dimensionality only,
which is chosen prior to compilation of the code. This is possible because the
entire AMR algorithm is implemented in the LASY-syntax (43), making it
effectively dimension-independent. Similar to VAC, the AMRVAC package is
configured to dimensionality using the VAC preprocessor (a Perl script), prior
to compilation.

The time step is calculated to comply with the Courant-Friedrichs-Levy (CFL)
stability criterion. If not stated otherwise, the Courant number is 0.9. The con-
servative high resolution spatial discretization schemes used are FCT, TVDLF,
TVD, and TVDMU. These shock-capturing schemes differ in the numerical
representation of the fluxes F; in the set of equations written as

Here, the conservative variables are collected in U(x,t), and 7 and j run over
1, 2 or 3 components of the spatial coordinate x. If not stated otherwise,
multidimensional scenarios add fluxes from the different orthogonal directions



simultaneously, in contrast to a dimensionally split (41) approach. The source
terms S can also be unsplit, i.e. added at the same time as the fluxes, or split,
i.e. added before and after the update with fluxes.

2.2 Adaptive Mesh Refinement

Detailed descriptions of the AMR algorithm can be found in Berger and
Colella (@), Bell et al. (4), Friedel et al. (L7), Steiner et al. (40), and many oth-
ers. We summarize the essential steps and its user controlled features. Thereby;,
we pay specific attention to details which differ from the original Berger and
Colella (1) approach.

2.2.1 Time stepping and conservation

In essence, AMR represents an automated procedure to generate or destruct
— both controlled by the ensuing dynamics — hierarchically nested grids with
subsequently finer mesh spacings Az; (index i = 1,..., D for a D-dimensional
problem). Up to a predefined maximal grid level [,,,.x, consecutive levels [ are
characterized by even refinement ratios 7, with | € [2, [;ax], such that

= i = (7)

To make the global conservation property computationally tractable, we stick
to Cartesian grids and the ‘proper nesting’ criterion ({7): (i) level [ > 1 grid
boundaries coincide with grid lines of I — 1 meshes; and (ii) we insist on the
telescoping hierarchy of [ — 2, I — 1 and level [ grids, except at (non-periodic)
physical boundaries.

Consequently, two — related — issues for an AMR simulation are (1) how one
time-advances on such a sequence of nested and thus overlapping grids, while
(2) keeping the solutions consistent and conservative through a suitable ‘up-
date’ process. The approach taken is illustrated in Figure 1, showing a hypo-
thetical sequence of three time steps in a case where [, = 4. The schema
is traversed from left to right, bottom to top, and with horizontal ‘update’
arrows preceeding vertical time ‘advance’ steps. Each time a level [ > 1 has
caught up in time with the underlying [ — 1 grids, all level [ — 1 cells that are
covered by the finer grids are replaced by conservative averages. With nota-
tion defined in Figure 2 for a 2D example where r; = 2, this is achieved by
simple averaging since e.g. the density in the underlying coarse cell must be
Pij AT 1 AT = 30 3 Prn AT Aey S0 that pi; = Y X pmn /17 Also,
those [ — 1 cells immediately adjacent to a level [ grid boundary are modified



to comply with the interface fluxes used on the finer level. This step is crucial
for restoring the global conservation property across the AMR grid hierarchy.
Following the notation used in Figure 2, this involves a change in the temporal
update for the density in coarse cell indexed by 27 on level [ — 1 bordered on
the right hand side by level [ cells. While originally

i) _ m)_ At (ntd) b)) At (n+d) (D)
Py =Py T A (FH%]- Ly F F ,

needs to be

nal
the time centered numerical flux across the right cell edge FZ.(JFI]?)
2

replaced by

(n+3) L[ () (n+1) (n+3) (n+3)
F;'+%j = E Fm—%n + Fm—%n—i—l + Fm—%n + Fm—%n—i—l :

This flux fix restores the conservation. For more complete discussions of these
update and flux fixing steps, we refer to (7).

In our AMR implementation, each level solves the same set of equations but
can exploit a different discretization scheme per level. This in contrast with the
more general Adaptive Mesh and Algorithm Refinement (AMAR) approach
introduced by Garcia et al. (18), who coupled a continuum description with a
particle method on the finest level of the AMR hierarchy. AMAR is possible
because the only communication between different level solutions is through
(i) the update process and (ii) the filling of ‘ghost’ cells as used for imposing
boundary conditions.

The time advancing is further complicated by the automated regridding op-
eration, as indicated by the grey circles in Figure 1. This regrid action is
controlled by a simple criterion: when at least k time steps are taken on a
certain level, this level is evaluated for refinement (k = 2 in the figure). This
affects all higher level grids which may either suddenly appear (in Figure 1 af-
ter the first and halfway in the second time step), disappear (after the second
time step), or simply get rearranged or be left unchanged (halfway in the third
time step). Of course, all level 1 grids remain unaltered, while the maximal
allowed level [, is never evaluated for further refinement.

2.2.2  Refinement criteria and regridding

Conceptually, regridding consists of two steps: in a first step, cells on level
[ which need to be refined are identified - ‘flagged’ - through physically and
numerically controlled criteria. The second step ensures that a properly nested
new grid level [ + 1 is formed which encompasses most, preferably all, of the



flagged cells. As pointed out above, the entire grid tree above a certain fixed
base level I,,s. may change in that process. With the current finest level in
existence being lg,e, one descends in levels from [ = min(lgpe, lmax — 1) down
tol = lbase~

In the first step — the flagging procedure — a great variety of refinement cri-
teria can be adopted. Powell et al. (37) use local measures of compressibility,
rotationality, and current density in their 3D MHD simulations and a region
is refined when chosen treshold values are exceeded. Ziegler (53) uses simi-
larly motivated, though more abstract, ‘gradient value based’ criteria where
the slopes of functionals of the fluid variables, like the sound speed ¢,, control
refinement. In cases where an (approximate) Riemann solver based method
is exploited, one may flag cells in a ‘wave-affected region’. The extent of this
region can be computed from the wave strengths and speeds as calculated
in the Riemann solver. Such criterion was succesfully exploited for unsteady
Euler flows in (14).

Our refinement criterion to ‘flag’ cells is a variant of the error estimation pro-
cedure from Berger and Colella ({7), which is generally applicable to any system
of equations and integration method used. The idea is to rely on Richardson
extrapolation, by comparing a solution for a level [ obtained by coarsening
and integrating with one which is integrated first, and subsequently coars-
ened. Bell et al. (4) improved on this basic idea by additionally exploiting the
uncoarsened solution vector as well, to avoid missing features that get lost
in the averaging. Moreover, they allowed for a certain amount of user-forced
refinement or derefinement. In our implementation, the integration method
in the error estimation can be selected as any one-step, dimensionally un-
split method, in combination with source terms. The criterion to flag cells can
also exploit uncoarsened, high-resolution data, since we keep two full solution
vectors U?‘l and U} on each level | < [, separated in time by the corre-
sponding At]"!. For a fair variety of test problems (including the examples
described below and those in Nool and Keppens (33), Keppens et al. (26;127)),
we found it sufficient to employ a first order version of the TVDLF method
in the error estimation procedure, while integrating with a level-dependent
mixture of TVD, TVDLF, or TVDMU on the full AMR hierarchy. The most
crucial matter is to select the right combination of physics variables and mu-
tual weighting factors to flag for. This is done as soon as a critical tolerance
level €, is exceeded. In the examples from section 3, we always list the chosen
variables and tolerances.

Given any procedure to identify cells which need refining, the AMR scheme
must ultimately arrange them into properly nested ‘rectangular’ grids. Note
that ‘rectangle’ is to be interpreted according to dimensionality. The basic
steps to create this grid hierarchy were laid out in Berger and Colella (7). In the
original algorithm, each flagged cell was surrounded with a buffer zone of width



npug cells in each direction. The collection of flagged cells was subsequently
made compatible with the nesting criterion. Some of the subtleties involved
with ensuring this proper nesting are illustrated in Figure 3. Eventually, the
collection of properly nested level [ cells from which to form the level [ 4 1
grids need to be processed into ‘rectangles’. This latter step was based on a
succession of bisections of the encompassing ‘rectangle’, followed by a merge
step. Bisections were repeated till all grids had their ratio of flagged to total
points within the rectangle greater than a predetermined efficiency E € [0, 1].
The merging was meant to balance the possible creation of many small grids.
In its original form, this clustering algorithm created acceptable, but non-
optimal new candidate grids which would often overlap and could end up
with efficiencies below E, due to the merging process. Berger and Rigoutsos (9)
designed a more sophisticated algorithm to overcome these problems, where
the grid partitioning was done along edges where transitions from flagged to
unflagged regions occured. The edges were detected using pattern recognition
techniques exploiting signature arrays. This clustering algorithm has been used
on realistic 3D problems by Bell et al. (4), Balsara (2), and various others.
We chose to modify the original merge step from ({7) to avoid the creation of
overlapping grids at the same nesting level. At the same time, we introduced
an enforced minimal efficiency E.;, € [0,1] on all resulting new grids. It
could be of interest to study how our modifications of the clustering algorithm
compare with the Berger and Rigoutsos (9) approach on a variety of 2D and
3D synthetic input clusters. In all simulations reported in what follows, we
took Ein = 0.5.

The resulting new grid structure is then initialized from the solutions available
on levels [y, and up. For those cells which can not be copied directly from
the same level on the original grid hierarchy, we use a conservative, minmod
limited linear interpolation from the coarser level underneath. Due to the
nesting property, this is always possible. In a notation similar to the one used
in Figure 2, this limited linear interpolation in a 2D case would read

where A,;pU) denotes the minmod limited slope in direction i involving left-
sided, right-sided, and centered slopes determined from [p;_1;, pij, pi+1;]. Note
that this is a conservative operation and second order accurate in smoothly
varying density regions.



2.3  Multi-dimensional AMR MHD: the V - B = 0 constraint

Multidimensional MHD computations that make use of AMR have only been
emerging over the last few years. Such computations must handle the addi-
tional complication of maintaining a solenoidal magnetic field. Two-dimensional
adaptive calculations for incompressible MHD flows were presented by Friedel
et al. (17). Those authors borrowed projection method techniques from incom-
pressible Navier-Stokes simulations (f). Details of these projection methods
and how to handle them on adaptive grid hierarchies have been discussed in
Almgren et al. (1))

Steiner et al. (40) performed compressible MHD calculations using Flux Cor-
rected Transport (1) in two space dimensions. They combined AMR with a
staggered representation where the magnetic field components are defined at
cell interfaces while all other conserved quantities are cell-centered. Balsara (2)
has presented and applied a divergence-free AMR MHD scheme where the
same staggering was used. The key elements in his scheme are a divergence
free prolongation strategy to transfer coarse solution information to finer grids,
and a divergence free restriction step to update coarse grids from overlying
finer levels. Similar to the flux fix-up step inherent in the Berger and Colella ({7)
method to ensure the global conservation property, a similar electric field cor-
rection step is needed at mesh level interfaces to keep the overall solutions
consistent.

Powell et al. (37) presented full 3D ideal MHD scenarios where solution-
adaptive refinement is combined with an eight-wave Roe-type approximate
Riemann solver method. Representative calculations of the magnetized solar
wind impacting on a planetary magnetosphere have been reported by those au-
thors. They advocated the use of an eight-wave formulation, which maintains
the V - B = 0 constraint to truncation error. The approach modifies the ap-
proximate Riemann solver to ‘propagate’ V-B errors with the plasma velocity
and adds non-conservative source terms to the MHD equations proportional
to V - B. The latter was found to work well for non-Riemann solver based
methods as well (46), and is trivial to carry over to an adaptive grid. Recently,
Janhunen (2() and Dellar (15) formulated various arguments to only add the
V - B related source term to the induction equation, which restores momen-
tum and energy conservation. Yet another approach has been forwarded by
Marder (32), which relies on diffusing the numerically generated divergence
at its maximal rate. Dedner et al. (L6) revisited this ‘parabolic’ approach and
introduced various variants for hyperbolic divergence cleaning. In summary,
three ‘source term’ approaches to handle the V - B constraint have respective



sources (S,, Sy, Se, Sp) given by

0 0 0
—(V-B)B 0 0

~(V-B)B-v | 0 | B-C4A2°V (V- B)
—(V-B)v ow —(V-B)v o CqAz*V (V- B) i

In this paper, we apply these three simple approaches described by (8) in our
cell-centered magnetic field representation. We cross-validate them on several
2D MHD problems using AMR. The coefficient Cq = 0.2 in all cases reported.
This diffusive approach could also be altered to keep the energy equation fully
conservative.

3 Results and efficiency evaluation

In this section, we present simulations covering 1D to 3D evolutions. Our
findings are discussed for each problem in what follows. Refinement is based on
the density, if not stated otherwise. Tables 3-4 collect some relevant statistics,
including execution times. All 1D and 2D problems report timings done on a
single 270 MHz MIPS R12000 CPU of an SGI Origin 200. The 3D cases have
been obtained on single or multiple processors of the SGI Origin 3800, with
500 Mhz MIPS R14000 CPUs. The efficiency of an AMR calculation is defined
as the ratio between its execution time and the time needed to run the same
problem on a static grid at the resolution of the highest level allowed [.x.
We also report on the percentage of computing time spent on AMR-specific
overhead. This overhead includes the total time spent on the combination of
regridding operations (including the error estimation procedure and the steps
needed for creating and initializing properly nested new grid hierarchies) and
update operations, i.e. the replacement of underlying coarse cell values and
the flux fixing of coarse cells neighbouring a finer grid level. This overhead
measure leaves out two factors which are arguably AMR related, namely the
time spent on storing fluxes across grid boundaries — which is negligible —
and the time spent on enforcing boundary conditions by means of ghost cells.
On AMR grid hierarchies, the latter involves spatio-temporal interpolation
procedures from underlying coarser levels for filling internal boundary regions
surrounding level [ > 1 grids.
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3.1 1D simulations

3.1.1  Hydrodynamic shock tube

Our first example considers a Riemann problem for the 1D Euler system from
Harten ([19). With a ratio of specific heats v = 1.4, the left and right states
are

(p, pvg,€)r = (0.445, 0.311, 8.928) forx <8
(p, pvg,e)r = (0.5, 0, 1.4275) forx >38

in the x € [0, 14] domain with open (zero gradient) boundaries on both sides.
Using 140 cells at level 1 and allowing for 5 levels with refinement ratios
r; = 2, we strive to efficiently achieve the accuracy of a static grid simulation
exploiting 2240 cells. In Figure 4, we show two solutions at t = 2: the top panel
shows the density as obtained with FCT. In the bottom panel, the TVDMU
scheme with MC/Woodward limiter was used on all levels. The extent of the
level [ > 2 grids at this time is indicated. We set the tolerance €, = 0.005
and regrid parameters k =4, E = 0.6.

As soon as the resulting rarefaction wave, contact discontinuity and shock
are well-separated, higher level grids are only activated around the contact
and the shock discontinuities. Locally, the solutions compare favorably with
static, high-resolution results exploiting the same method: an equal amount
of grid points resolving the contact and shock are found. We overplotted the
high resolution static grid result in the bottom panel of Figure 4. Note that
the FCT simulation does well in representing the discontinuities at the cost of
introducing spurious oscillations, while the TVDMU scheme yields oscillation-
free results. This may well be specific for the ETBFCT variant used here and
described in Téth and Odstréil (46). Similar conclusions were reached there
comparing both methods for static grid simulations and in Steiner et al. (40)
where AMR calculations used FCT.

The execution times reported in Table 3 are for simulations up to time ¢t =
2, using a fixed time step At; = 0.000625. They demonstrate an obtained
efficiency of 2.43 when using FCT, which improves to 2.95 when using TVDLF
and up to 3.76 for the TVDMU scheme. This increase in AMR efficiency is
reflected in a decrease of the AMR overhead from 25.7 % down to 19.8 %.

11



3.1.2  Magnetohydrodynamic Riemann problem

Our second test problem is the 1.5D MHD Riemann problem introduced by
Brio and Wu ({13). With fixed B, = 0.75 and v = 2, the constant states are

(p, pUs, pvy, e, By)r, = (1, 0,0,1.78125, 1) for x<0.5
(p, pUs, Py, €, By)g = (0.125, 0, 0, 0.88125, —1) for x> 0.5

in the x € [0, 1] domain with open boundaries. We use 40 base cells and com-
pare two means to achieve locally the resolution of a 1280 cell static grid. Using
the TVDMU scheme and minmod limiting on all levels, we compare in Figure 5
the density at ¢t = 0.1 from a calculation with [, = 6 and r; = 2 versus one
where lyax = 4 and [rq, 73, 74] = [4,4,2]. The tolerance was set to €, = 0.001
and regrid parameters k = 4, E = 0.8. Both solutions accurately capture the
slow compound shock, the contact discontinuity, and the slow shock. Locally,
the obtained solution essentially coincides with a high resolution static case,
again overplotted in the bottom panel. The timings in Table 3 indicate only
little differences in efficiency between the AMR simulations exploiting 4 and
those exploiting 6 levels. This is true for the TVDLF and the TVDMU scheme.
For the latter discretization, the AMR overhead drops to about 15 %.

3.2 2D simulations

3.2.1 Advection tests

Our first 2D examples consider pure advection problems. On a doubly-periodic
domain [0, 1] x [0, 1], a prescribed velocity field v = [v,, v,] = [1, 1] diagonally
advects a two-dimensional density profile. We perform two tests, one for a
discontinuity dominated profile, and one for a smoothly varying density pulse.

The discontinuous profile is a two-dimensional density field representing the
VAC-logo, see Figure 6. Within the logo, the density is set to 2, while it is 0.5
outside. We use a 50 x 50 level 1 grid, and allow for three levels with r; = 2.
The AMR control parameters are taken k = 4, E = 0.8, and €, = 0.01.

Figure 6 shows the initial ¢ = 0 grid structure, along with two snapshots at
times ¢ = 0.6 and ¢ = 2, time-advanced with TVDLF and a MC/Woodward
slope limiter. To demonstrate the maintained accuracy, cuts along the z-
direction at y = 0.5 from times ¢t = 0, 1, 2 are plotted as well. At each integer
time, one should regain the ¢ = 0 situation. The numerical diffusion imme-
diately smears the discontinuities, but the resulting density field is in exact
agreement with a static grid result using 200 x 200 cells. As shown in Table 3,
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the AMR simulation is twice as fast as a static grid run, with only 10 % of
the execution time spent on regridding operations.

For the timings reported using the FCT method, we used a dimensionally
split approach. As pointed out by Bell et al. (4), directional sweeping can be
less favorable to the AMR calculations as additional boundary work is needed
(extra top and bottom layers in the x-sweep must be taken along to start
the y-sweep). The stencil of the FCT discretization for directionally unsplit
multidimensional simulations requires filling the corner ghost cells, which we
avoid with the split approach.

Since the exact solution for this advection problem is known, we illustrate
quantitatively that the AMR method reaches the same level of accuracy as
a corresponding high resolution simulation. Table 1 summarizes the relative
numerical errors obtained for a variety of AMR runs of different effective
resolution. In general, we define the relative error for a variable u with respect
to a reference solution v**f on a N x M grid as

N M
el 21 | wi — upf

e (9)
i]il Zj]\i1 | ugegf

In this equation, the u; ; values are to be obtained by extrapolating the AMR
solution to a uniform grid of size N x M corresponding to its (highest level)

effective resolution. When more than one variable is advanced, the average ¢
is taken over all primitive variables wu.

Table 1 demonstrates that (1) the AMR runs achieve the same (first order)
convergence behaviour on this discontinuity dominated problem as the static
grid results; (2) the AMR runs are essentially identical to their high resolution
static grid counterparts, with minute improvements noticable when refining
more often (lowering k) and/or lowering the tolerance €. Note that it is
advisable to take k consistent with the buffer zone width ny,g used in the
regridding process, as pointed out by Berger and LeVeque (&). As could be
expected, the AMR efficiency is better for more grid levels than the 3-level
one reported in Table 3: an efficiency of 6 is reached for the 800 x 800 AMR
run exploiting 5 refinement levels.

To demonstrate that we obtain second order accuracy on smooth solutions,
we similarly advected a Gaussian bell profile, initially set to

P(Sc,y,t = 0) = 2exp (—100 [(x — 0.5)2 + (y _ 0'5)2})

within a radius 0.2 from the center of the square domain and constant else-
where. Again, we compare the obtained numerical solution after two full ad-
vection cycles at time ¢ = 2 with the exact solution. Table 2 shows that we get
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second order convergence behaviour to the exact solution, on static and cor-
responding AMR runs. The AMR simulations refined every second timestep
(k = 2), while the tolerance was fixed at €,,; = 0.001. At this tolerance, the
5 level AMR result achieving an 800 x 800 effective resolution did not trig-
ger level 5 grids on the entire bell profile. Note that we did obtain a solution
with the specified accuracy 0.001, which shows the accuracy and efficiency
of our error estimation procedure. Hence, this explains the apparent loss in
convergence rate for this AMR run.

Taken together with the 1D test cases from above, these AMR convergence
studies of 2D advection problems demonstrate some general trends. First, the
effective resolution of the AMR grid is setting the overall accuracy of the ob-
tained solution, as desired. Note that it is controlled by the combination of
(1) the base grid resolution; (2) the number of refinement levels [,.x; and (3)
the refinement ratio’s in between consecutive levels r;. AMR runs of similar
effective resolution which differ in the exact combinations taken of these three
controlling elements should behave identical (cfr. the test problem shown in
section 3.1.2). These conclusions are valid provided that the refinement crite-
rion succesfully tracks all flow features. The latter is influenced by the choice
of €, and k. Table 1 demonstrates that only minor differences ensue when
varying these parameters within reasonable bounds. A final set of AMR pa-
rameters, consisting of the efficiencies E, E;,, and ny.g plays a role in deter-
mining the (highly varying) number and the structure of the grids on a certain
level. There seems to be little reason to alter their values dramatically from
run to run.

3.2.2  Double Mach Reflection of a Shock

A well-known shock dominated hydrodynamical test is the double Mach re-
flection of a shock on a wedge, introduced by Woodward and Colella (51). On
a domain [0, 4] x [0, 1], a planar Mach 10 shock with post- and pre-shock states
given by

(P, PUL, Py, €)post = (8, 8 X 8.25sin60°, —8 x 8.25 cos 60°, 563.5)
(p7 pvmvpvyv e)pro = (147 07 07 25)

makes an angle of 60° with the wedge, which is represented as a reflective
boundary located at x € [1/6,4] and y = 0. The adiabatic index is v = 1.4. A
self-similar pattern develops as the shock reflects off the wedge. The boundary
conditions are fixed to the post-shock state at the left edge, open at the right
edge, a partly fixed, partly reflective bottom, and a time- and space-dependent
boundary value prescription along the top.
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In the AMR simulation, we use TVDLF on a maximum of 4 levels, with an
80 x 20 base resolution and refinement ratios r; = 2. Furthermore, we took
k=6, E =0.8, and a tolerance of ¢, = 0.01 in the regrid process. Figure 7
shows the density structure at time t = 0.2. We had to use a Courant number
of 0.4 for the TVDLF discretization, since the = 1/6 bottom boundary
transition was not coincident with a cell edge at this resolution. As a result,
a TVDMU simulation developed a carbuncle-type error at the location of the
leading Mach shock intersecting with the wall. A parametric study of the
AMR efficiency in terms of both execution time and memory needs for a large
variety of effective grid resolutions is reported in Nool and Keppens (33).

Our timings indicate a significant gain in execution times — by a factor of 11 —
between the corresponding 640 x 160 static grid simulation and the adaptive
one. This high efficiency reflects the fact that the AMR process nicely succeeds
in tracing the localized fronts, so that the domain coverage by level [ > 1 grids
remains low. In particular, level 4 grids initially cover only 5 % of the entire
computational domain, with a modest increase to 15 % at the end of the
calculation at ¢ = 0.2. When raising the base resolution to 160 x 40 and again
allowing for 4 levels with otherwise identical parameter settings, we reach an
efficiency of 19.8 with still only 8% computing time spent on regridding.

3.2.3  Hydrodynamic Rayleigh-Taylor Instability

While the previous example represents a typical usage of AMR in hydro-
dynamical shock governed evolutions, we now turn to a simulation where a
transition to a fairly global, turbulent state takes place. In such cases, it is
not a priori evident that we can benefit from the use of dynamically triggered
mesh refinement.

We simulate a 2D Rayleigh-Taylor instability on a [0, 1] x [0, 1] domain, with
gravity g = —é, pointing downwards. As in Keppens and Té6th (22), we start
from a dense fluid with pgense = 1 above the interface gy, = 0.8 +0.05 sin 27z,
resting on top of a light fluid with pjgne = 0.1. Both fluids are at rest at
t = 0 and v = 5/3. The pressure field is set from a centered differenced
hydrostatic balance dp/dy = —p, ensuring that the pressure about i, equals
unity. This configuration is inherently unstable, while linear stability analysis
in incompressible hydrodynamics predicts the shortest wavelengths growing
the fastest. The staircased representation of the interface y;,, initiates such
short wavelength perturbations, while its sinusoidal variation and the periodic
side boundaries select a preferential longer wavelength variation. Top and
bottom are impenetrable to the fluids.

In (22), the fixed 100 x 100 resolution and the (small) numerical diffusion
associated with the TVDMU scheme suppressed the development of much
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of the small-scale structure. Here, we repeat that simulation using AMR to
locally achieve a resolution of 800 x 800. As we anticipate a need for higher
resolution spreading across the entire computational domain, we want to make
the cost associated with all intermediate levels | € [2, [ — 1] as low as
possible, without sacrificing accuracy on the highest level [,,,x. This can be
done by using a level-dependent discretization scheme, such as the cheap but
robust TVDLF method on all levels | < [,.. — 1, in combination with a
Riemann-solver based method, here TVDMU, on the highest level .. = 5
only. The base grid is 50 x 50 and all refine ratios are r; = 2. Other AMR
parameters are as in the Woodward and Colella simulation. The snapshot
of the logarithm of the density at time ¢t = 1.9 shown in Figure 8 clearly
demonstrates that we reached a very high effective Reynolds number regime.

In Figure 9 (left panel) we plot the domain coverage for each grid level in
the Rayleigh-Taylor simulation as a function of time. This figure confirms the
visual impression of fine structure spreading across much of the computational
volume, such that at time ¢ = 1.9, more than 50 % of the area is at the high-
est resolution allowed. Also, the level [ = 2 grids cover the full domain at this
time, making the [ = 1 grid calculation completely obsolete. Clearly, since the
physical process cascades to smaller scales, the strategy of minimizing compu-
tational cost on lower lying levels through the use of a cheaper discretization
pays off. In Table 3, we give an estimate of the execution time needed for a
static 800 x 800 calculation from performing 20 time steps at this resolution.
As the CFL-limited time step is observed to decrease monotonically in the
AMR run, this allows to deduce both a lower and upper bound, and we report
a mean value in the table. The corresponding efficiency of the AMR calcula-
tion is about 8.3. Note also the low value of 3.9 % of adaptive grid related
overhead.

3.2.4  Orszag-Tang Vortex System

The compressible evolution of the Orszag-Tang vortex system (34; 35) is a
well-studied model problem where a shock-governed transition to an MHD
turbulent state takes place. On a doubly periodic domain of size [0, 27] x [0, 27,
velocity “convection cells” described by v = [—siny,sin x| are out of phase
with magnetic islands resulting from B = [—siny, sin 2z]. At time ¢ = 0, the
density and pressure take the uniform values p = 25/9 and p = 5/3 with
v = 5/3. We evolve this system till time ¢t = 3.14, using four levels with a
50 x 50 resolution at level 1. With r; = 2, we aim to find the ‘reference’ high
resolution 400 x 400 solution shown in Fig. 16 from (42). As in that paper,
our Figure 10 shows the temperature distribution, and the fine details agree
closely. Other parameters used in the AMR simulation are £ = 6, E = 0.7,
and €, = 0.025.
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To demonstrate the advantages of the mixed strategy where TVDMU is used
on the higher levels only, we report in Table 3 timings for 3 AMR simula-
tions with [,.x = 4: one where we use TVDMU on all levels, one where we
use it on levels | = 3 and [ = 4, mixed with TVDLF on [ = 1,2, and the
advocated choice where TVDMU is active on level | = 4 alone. The efficiency
increases from 5.85, to 6.28, to 7.38, respectively. In the right panel of Fig-
ure 9, the coverage of the domain by the four grid levels is shown for the most
efficient case. In agreement with the initially smooth evolution of the density
(uniform at ¢t = 0), higher level grids are only activated from about t = 0.5
onwards. This represents an immediate gain in the obtained efficiency. As in
the Rayleigh-Taylor simulation from above, the level | = 2 grids cover up the
entire domain after some time. At the end of the simulation, this is about to
happen for level 3 as well: a restart with a higher base level resolution should
then be performed.

This 2D MHD problem is also an excellent test for comparing the three differ-
ent strategies (referred to as ‘Powell’; ‘Janhunen’ or ‘diffusive’ and defined by
their respective sources in equation 8) for controlling V- B in AMR simula-
tions. Since the exact solution to this problem is not available analytically, our
best reference is to use the same high resolution solution used in Téth (42) for
quantitative comparisons. As described in that paper, using a dimensionally
split one-step TVD scheme with MC limiting, different approaches for con-
trolling V - B still differ slightly at resolutions of 400 x 400. Static grid MHD
simulations exploiting a projection scheme ([12) were found to yield almost al-
ways the most accurate solutions. Repeating the Orszag-Tang simulation with
4 AMR levels all exploiting the dimensionally split TVD scheme (for a fair
comparison), the obtained relative errors as defined above at time ¢ = 3.14
with respect to a reference projection scheme solution are

Spow = 0.0546 8oy = 0.0808 dgir = 0.0465. (10)

These values should be contrasted to remaining differences among two high
resolution static grid simulations: between a constrained transport solution
and a projection scheme approach, a relative error of § = 0.021 could be
measured. Again, by lowering the tolerance €, to 0.01, improvements up to
dair = 0.02768 can be obtained. These values for the relative errors are also
consistent with the values reported in Table 7 of Téth (42). Given the fact
that for a considerable amount of time (for times ¢ < 1), the AMR simulations
could suffice with lower effective resolutions, the obtained relative errors are
truly optimal.
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3.2.5 Rotor

A second ideal MHD problem frequently used for comparing static grid MHD
simulations is the rotor problem introduced by Balsara and Spicer (3). We
perform the ‘first’ rotor test as mentioned in T6th (42) where the setup is as
follows. On the domain [0, 1] x [0, 1], thermal pressure at t = 0 is p = 1, and
a uniform magnetic field has B, = 5/v/47 and B, = 0. We set v = 1.4, and
create a dense disk within r = [(z — 0.5)2 + (y — 0.5)2]"% < 7y = 0.1 with
p =10 and v, = —2(y — 0.5)/ro, v, = 2(z — 0.5)/ry. For r > r; = 0.115 the
fluid is at rest with p = 1. In between ry < r < rq, linear profiles for density
and angular speed connect both states. We run the simulation till £ = 0.15. We
strive for a 400 x 400 resolution, and use AMR exploiting 4 levels with k£ = 6,
E =0.7 and €, = 0.025. Flagging is done on density and both magnetic field
components with weighting factors 0.8, 0.1 and 0.1, respectively. A snapshot
of the thermal pressure is shown in Figure 10.

Since all important features are captured on the highest grid level at all times,
adaptive simulations with ‘source term’ treatments to keep the magnetic field
solenoidal yield effectively similar solutions as static runs. We quantify this
latter statement as follows. We perform several AMR runs with a base grid of
50 x 50 and a varying number of grid levels l,.x = 2,3, 4. In each case, we use
TVDLEF on the lowest level(s), with TVDMU and MC limiting on the highest
level. The latter scheme was used for the reference 400% solution of Figure 18
from (42). This static grid solution again used a projection scheme for V- B.
As in the previous test case, even static grid results yield mutual differences of
order § = 0.013 for a flux constrained transport versus a projection algorithm
at this high resolution. When we then calculate the relative errors for AMR
runs with effective resolutions increasing from 100? to 4002, these turn out to
be

Spow = 0.0760 G0y = 0.0794 S5 = 0.0753.

2
Lnax = 3 Opow = 0.0358 §ian = 0.0412 Jg;r = 0.0373. (11)
4 Opow = 0.0157 §jan = 0.0248 dg;r = 0.0107.

These experiments demonstrate that each source term approach achieves first
order convergence behaviour, as expected for this discontinuity dominated
problem. Furthermore, the errors at effective resolutions of 4002 are compara-
ble to remaining differences between static grid solutions. As a final note, the
advocated mixed discretization approach does not significantly sacrifice accu-
racy by the use of the more diffusive scheme on lower levels. Indeed, when we
repeat the simulation with [,., = 4 and exploit TVDMU on all levels, the
relative error for a diffusive approach becomes dq;r = 0.0096. From this and
the previous test case, it seems that the diffusive approach is preferable over
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both other source term treatments.

3.2.6 MHD Kelvin-Helmholtz Instability

Since the Orszag-Tang and the rotor system represented ideal MHD evolu-
tions, we include a resistive MHD simulation taken from Keppens et al. (25).
The initial condition has a uniform density p = 1 and pressure p = 1, a sheared
and perturbed velocity field given by

v = [0.645 tanh 20y, 0.01 sin(27z) exp(—25y?)]

and a discontinuously varying magnetic field B = +0.129¢,. The magnetic
field is thus of uniform strength, but changes sign at ¥y = 0 in the domain
0,1] x [—1,1]. With a resistivity n = 10~°, high resolution simulations on
static 400 x 800 grids demonstrated in (25) how the nonlinear evolution is
characterized by Kelvin-Helmholtz roll-up triggering tearing behavior. As the
Kelvin-Helmholtz instability warps and amplifies the initial current sheet at
y = 0, several magnetic islands develop due to local reconnection events,
which are clearly visible in the density pattern (see Fig. 9 in reference (253)).
Shown in Figure 11 is a snapshot of the density pattern at t = 4.4 as obtained
with an AMR simulation using 4 levels. Since it is vital to capture the initial
dynamics at the y = 0 interface accurately, we base the refinement criterion
on the horizontal field component B, so that all levels are activated at t = 0.
Other than that, parameters are k = 6, E = 0.8, ¢, = 0.01. Instead of the
one-step TVD method used in (25), here we use the combined TVDLF (on
levels | < 3) and TVDMU (on [ = 4) approach. The timing reported in Table 3
is for a simulation up to t = 5, at which time the transition to a turbulent state
has occured. Note the very high efficiency of 13.9 and the marginal regridding
overhead. We used the Powell source terms in these calculations.

3.3 3D Simulations

3.3.1 3D Adwvection

We made an efficiency assessment of a 3D advection problem by diagonally
advecting a sphere of radius 0.2 in the unit cube where the density was set to
2, while it was 0.5 external to the sphere. With triple periodic boundaries, the
velocity v = (1,1,1) brings the sphere back to the center at ¢ = 1. Similar
to the 2D advection problem evaluated in Table 1, accuracy and convergence
properties are equivalent to corresponding high resolution simulations. As re-
ported in Table 4, a case where AMR exploits 3 levels, with a 403 base grid and
refine ratios 2 and 4, demonstrates an efficiency of 19.9. The AMR overhead
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has dropped to a rather negligible 4.14 %. This problem was run on a single
CPU of the SGI Origin 3800.

3.3.2 3D MHD problems

As a first 3D MHD simulation, we recovered the evolution of a magnetized
Rayleigh-Taylor instability as in Keppens and Téth (22). 3D AMR MHD
simulations recovering previous high resolution Kelvin-Helmholtz unstable jet
evolutions are documented in Nool and Keppens (33). In those simulations,
the diffusive source terms for controlling V - B were exploited. The problem
setup for the Rayleigh-Taylor study straightforwardly augments the 2D HD
simulation in section 3.2.3 with a uniform horizontal magnetic field B = 0.1¢,
and a 3D displacement of the interface separating the heavy from the light fluid
according to ¥,y = 0.8 + 0.05sin 27x sin 27z. The magnetic field suppresses
the formation of much of the fine scale structure. Here, the magnetic field
constraint is handled by the Powell source method.

Using AMR settings with & = 6, E = 0.7, ¢, = 0.05, the timings for two
AMR simulations with ., = 2 and [,., = 3 recovering a 80 x 160 x 80
static grid case are reported in Table 4. In both simulations, TVDMU is used
on the highest level only, and a roughly fivefold efficiency is reached. Since
the base grid is only 20 x 40 x 20, the problem setup immediately triggers
level 2 grids on 20 % and 3 grids on 10 % of the total domain. These values
increase to 50 and 20 %, respectively, at the end of the calculation. Using
the average coverage values of 15 % and 35 %, and taking account of the
relative refinement ratios, we can thus expect that the CPU time is at best
reduced to 15 4 35/16 + 100/256 = 17.57 %, giving an optimal efficiency
of 5.7, to be contrasted with the fivefold efficiency actually obtained. Since
the runtime is dominated by the two highest levels, the obtained efficiency is
truly optimal. The time spent on the regridding process is fully negligible: less
than 2 % overhead was observed for this problem. Since one would typically
use a higher base grid resolution, much better efficiencies can be expected to
hold in practical 3D MHD simulations. Indeed, Ziegler (53) demonstrated an
efficiency of 45 on a purely kinematic 3D magnetic ‘reconnection’ problem
(where only the induction equation (4) was solved) starting from a base grid
of 100 x 120 x 60 while allowing for 3 grid levels.

To demonstrate improved efficiencies at higher base grid resolutions, we set
up a 3D MHD implosion problem on the cube [—0.5,0.5]> with base grid
resolution 603. We again only allow 3 grid levels, with r, = 2, so that an
effective resolution of 2402 is realized. At time t = 0, the problem setup has

a uniform magnetic field B = /3/5¢, pervading a static medium where the

pressure is 0.6 external to the sphere 22 + y? + 22 = 0.2 and 0.06 inside this
sphere. The density is p = 1 except for a small off-center sphere within the
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low pressure zone: where (x + 0.1)% 4+ y? + 2% < 0.04? the density is increased
tenfold. We run this simulation using triple periodic boundaries up to time
t = 0.4, corresponding to 125 level 1 discrete time steps At;. The solution
at this time is shown in Figure 12, showing several quantities in cross-cuts
at r =0,y =0, and z = 0. We used TVDLF on all levels and the diffusive
source term treatment for the solenoidal constraint. Other AMR parameters
were k = 2, E = 0.8, ¢, = 0.01. This simulation was run on 16 processors
of the SGI Origin 3800 and exploited OpenMP parallelization as explained in
reference (27).

During the entire run, the level 3 grids covered on average 7.3 % of the entire
domain, reaching a maximum of 10.2 %, while the level [ = 2 covered an
average of 17.8 %, and a maximal coverage of 26.6 %. This already implies
that this AMR run can at best achieve efficiencies in the range 8 — 11. For
a fair comparison, we measured the wall clock time needed for performing
one timestep at a fixed 2403 resolution, while again exploiting 16 processors
and using AMRVAC as a domain decompositioner. This high resolution static
grid run needed then 78.9 seconds per time step. The average wall clock time
needed for setting one At; in the AMR calculation is 37.8 seconds. Taking
into account the factor 4 in refinement from level 1 to level 3, the obtained
efficiency is 8.3, exactly in its optimal range and indeed improved from the
fivefold efficiency in the low base grid Rayleigh-Taylor problem. It is also
worthwhile mentioning that the memory requirements for the 3-level AMR
versus the static grid run are reduced by a factor of 6. Similarly, the space
needed for storing one snapshot (in binary format where the three coordinates
plus 8 unknowns per cell are saved in double precision) is a factor of 9 smaller
in the AMR calculation. This also improves the time needed for IO operations:
saving one snapshot from the AMR run on average took about 8 seconds, while
that took roughly 51 seconds in the high resolution run. Hence, the overall
advantages of performing grid-adaptive 3D MHD simulations are found in
optimally reduced CPU times, drastically reduced memory requirements, and
significantly smaller data volumes for eventual visualization purposes.

4 Overview and outlook

A dimension-independent implementation of the AMR algorithm, in combina-
tion with the modular structure of the Versatile Advection Code, has allowed
us to assess the gain in computing time for a variety of 1D, 2D and 3D hydro-
dynamic and MHD problems. The overhead associated with the automated
regridding process is fully negligible for realistic 2D and 3D problems. A ten-
fold efficiency is typical for the 2D cases shown, while the 3D timings indicated
that very high efficiencies are indeed achievable: all 3D test problems demon-
strated that the optimal efficiency reachable was in fact obtained. This will be
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exploited in future AMR studies of correspondingly high resolution 3D MHD
simulations of different, interacting fundamental plasma instabilities and stel-
lar wind studies. It will be computationally beneficial to use Riemann solver
based methods like TVDMU on the highest level only, in combination with
the robust, more diffusive, but sufficiently accurate TVDLF discretization on
lower levels.

The AMR algorithm introduces a fair amount of control parameters, which
do affect run strategies and the obtainable efficiency. As a general rule, two
important parameter sets can be distinguished: (1) those controlling the ef-
fective resolution (level [ = 1 grid resolution, maximal allowed levels /;,,x, and
consecutive refinement ratios r;); and (2) those determining the refinement
criterion (the choice of variable(s) to refine on, the number k of time steps
taken before regridding, and the tolerance in the criterion €,). The physics
problem at hand usually suggests suitable variables to use in the latter. Re-
fining every second timestep k = 2 is a safe strategy, while the range for €
in all problems studied above was €, € [0.001,0.05], where the largest val-
ues were used in the higher dimensional problems. As expected, the effective
resolution plays a decisive role in the eventual efficiency. In cases where HD
or MHD instabilities are simulated, their length scales will put constraints on
the base grid resolution to use: it must be sufficiently high to allow for mode
development. The localized nature of the problem will then help to determine
what is a sufficient number of AMR levels [,.,: this may require some trial
and error while analyzing the first few time steps to find an optimal value.
Generally, raising the number of levels will beneficially influence the efficiency.

For multi-dimensional MHD simulations exploiting AMR, three ‘source term’
approaches listed in equation (8) for controlling V - B to truncation error
were investigated. Quantitative comparisons with reference high resolution
simulations showed that all three work effectively for cell-centered B repre-
sentations. For the tests included here, the diffusive approach was found to
yield the smallest relative errors. As previously demonstrated by Téth (42)
for static grid MHD simulations, we conclude that enforcing the solenoidal
character of the magnetic field to machine precision in a particularly favoured
discretization is not an absolute necessity for obtaining accurate multi-D MHD
simulations exploiting AMR. The simple source term treatments offer a viable
alternative to staggered field representations with considerable complications
associated with constrained transport implementations on AMR grid hierar-
chies (2). Projection scheme approaches would work accurately and reliably for
AMR MHD simulations as well, but can be expected to be more complicated
algorithmically and computationally costly.

22



Acknowledgements

VAC is one of the main products of the ‘Parallel Computational Magneto-
Fluid Dynamics’ project, funded by the NWO priority program on Massive
Parallel Computing. This work is part of the research program of the associa-
tion agreement of Euratom and ‘Stichting voor Fundamenteel Onderzoek der
Materie’ (FOM) with financial support from NWO and Euratom. MN benefit-
ted from financial support from the ‘Stichting Nationale Computerfaciliteiten’
(NCF, Grant NRG 98.10), also acknowledged for providing computing facil-
ities. GT has been partly supported by the Hungarian Science Foundation
(OTKA, grant No. T037548).

References

[1] A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell and M.L. Welcome, A
conservative Adaptive Projection Method for the Variable Density Incom-
pressible Navier-Stokes Equations, J. Comput. Phys. 142 (1998) 1.

[2] D.S. Balsara, Divergence-Free Adaptive Mesh Refinement for Magnetohy-
drodynamics, J. Comput. Phys. 174 (2001) 614.

[3] D.S. Balsara and D.S. Spicer, A staggered mesh algorithm using high order
Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrody-
namic simulations, J. Comput. Phys. 149 (1999) 270.

[4] J. Bell, M. Berger, J. Saltzman and M. Welcome, Three-dimensional adap-
tive mesh refinement for hyperbolic conservation laws, SIAM J. Sci. Comp.
15 (1994) 127.

[5] J.B. Bell, P. Colella and H.M. Glaz, A second-order projection method for
the incompressible Navier-Stokes equations, J. Comput. Phys. 85 (1989)
257.

[6] M.J. Berger, Data structures for adaptive grid generation, SIAM J. Sci.
Stat. Comput. T (1986) 904.

[7) M.J. Berger and P. Colella, Local adaptive mesh refinement for shock
hydrodynamics, J. Comput. Phys. 82 (1989) 64.

[8] M.J. Berger and R.J. LeVeque, Adaptive mesh refinement using wave-
propagation algorithms for hyperbolic systems, SIAM J. Numer. Anal. 35
(1998) 2298.

9] M.J. Berger and I. Rigoutsos, An Algorithm for Point Clustering and
Grid Generation, IFEE Transactions on Systems, Man and Cybernetics
21, (1991) 1278.

[10] Berkeley Lab AMR homepage at http://seesar.1bl.gov/.

[11] J. P. Boris and D. L. Book, Flux-corrected transport. I. SHASTA, A fluid
transport algorithm that works, J. Comput. Phys. 11 (1973) 38.

[12] J.U. Brackbill and D.C. Barnes, The effect of nonzero V - B on the

23


http://seesar.lbl.gov/

numerical solution of the magnetohydrodyanmic equations, J. Comput.
Phys. 35 (1980) 426.

[13] M. Brio and C.C. Wu, An upwind differencing scheme for the equations
of ideal magnetohydrodynamics, J. Comput. Phys. 75 (1988) 400.

[14] Y.-L. Chiang, B. van Leer and K.G. Powell, Simulation of unsteady invis-
cid flow on an adaptively refined Cartesian grid, AIAA 92-0443 (1992).

[15] P.J. Dellar, A note on magnetic monopoles and the one-dimensional MHD
Riemann problem, J. Comput. Phys. 172 (2001) 392.

[16] A. Dedner, F. Kemm, D. Kroner, C.-D. Munz, T. Schnitzer and M. We-
senberg, Hyperbolic divergence cleaning for the MHD equations, J. Com-
put. Phys. 175 (2002) 645.

[17] H. Friedel, R. Grauer and C. Marliani, Adaptive mesh refinement for
singular current sheets in incompressible magnetohydrodynamic flows, J.
Comput. Phys. 134 (1997) 190.

[18] A.L. Garcia, J.B. Bell, W.Y. Crutchfield and B.J. Alder, Adaptive mesh
and algortihm refinement using direct simulation Monte Carlo, J. Comput.
Phys. 154 (1999) 134.

[19] A. Harten, High resolution schemes for hyperbolic conservation laws, .J.
Comput. Phys. 49 (1983) 357.

[20] P. Janhunen, A positive conservative method for magnetohydrodynamics
based on HLL and Roe methods, J. Comput. Phys. 160 (2000) 649.

[21] R. Keppens, M. Nool, P.A. Zegeling and J.P. Goedbloed, Dynamic grid
adaptation for computational magnetohydrodynamics, Lecture Notes in
Computer Science 1823 (2000) 61.

[22] R. Keppens and G. Téth, Simulating magnetized plasma with the Ver-
satile Advection Code, Lecture Notes in Computer Science 1573 (1999)
680.

[23] R. Keppens and G. Té6th, Using high performance fortran for magneto-
hydrodynamic simulations, Parallel Computing 26 (2000) 705.

[24] R. Keppens, G. Téth, M.A. Botchev and A. van der Ploeg, Implicit and
semi-implicit schemes: algorithms, Int. J. Numer. Meth. Fluids 30 (1999)
335.

[25] R. Keppens, G. Téth, R.H.J. Westermann and J.P. Goedbloed, Growth
and saturation of the Kelvin-Helmholtz instability with parallel and an-
tiparallel magnetic fields, J. Plasma Phys. 61 (1999) 1.

[26] R. Keppens, M. Nool and J.P. Goedbloed, Zooming in on 3D magnetized
plasmas with grid-adaptive simulations, in: Parallel Computational Fluid
Dynamics — Practice and Theory, P. Wilders et al. (eds.), Elsevier Science
B.V. (2002) 215.

[27] R. Keppens and G. Téth, OpenMP parallelism for multi-dimensional grid-
adaptive magnetohydrodynamic simulations, Lect. Notes Comp. Science
2329 (2002) 940.

[28] J.O. Langseth and R.J. LeVeque, A wave propagation method for three-
dimensional hyperbolic conservation laws, J. Comput. Phys. 165 (2000)
126.

24



[29] R.J. LeVeque, http://www.amath.washington.edu/~claw/, CLAW-
PACK 4.0 website.

[30] R.J. LeVeque, Wave propagation algorithms for multidimensional hyper-
bolic systems, J. Comput. Phys. 131 (1997) 327.

[31] P. MacNeice, K.M. Olson, C. Mobarry, R. de Fainchtein and C. Packer,
PARAMESH: A parallel adaptive mesh refinement community toolkit,
Comput. Phys. Commun. 126 (2000) 330.

[32] B. Marder, A method for incorporating Gauss’ law into electromagnetic
PIC codes, J. Comput. Phys. 68 (1987) 48.

[33] M. Nool and R. Keppens, AMRVAC: a multidimensional grid-adaptive
magnetofluid dynamics code, Comp. Meth. Applied Math. 2 (2002) 92.
[34] A. Orszag and C.M. Tang, Small-scale structure of two-dimensional mag-

netohydrodynamic turbulence, J. Fluid Mech. 90 (1979) 129.

[35] J.M. Picone and R.B. Dahlburg, Evolution of the Orszag-Tang vortex
system in a compressible medium. II - Supersonic flow, Phys. Fluids B 3
(1991) 29.

[36] K.G. Powell, An approximate Riemann solver for magnetohydrodynam-
ics (that works in more than one dimension), ICASE Report No 94-24,
Langley, VA (1994).

[37] K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi and D.L. De Zeeuw,
A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J.
Comput. Phys. 154 (1999) 284.

[38] P. L. Roe, Approximate Riemann solvers, parameter vectors, and differ-
ence schemes, J. Comput. Phys. 43 (1981) 357.

[39] P. L. Roe and D. S. Balsara, Notes on the eigensystem of magnetohydro-
dynamics, STAM J. Appl. Math. 56 (1996) 57.

[40] O. Steiner, M. Knélker and M. Schiissler, Dynamic interaction of convec-
tion with magnetic flux sheets: first results of a new MHD code, in Solar
Surface Magnetism, edited by R.J. Rutten and C.J. Schrijver (Kluwer,
Dordrecht, 1993).

[41] G. Strang, On the construction and comparison of difference schemes,
SIAM J. Numer. Anal. 5 (1968) 506.

[42] G. Téth, The V - B = 0 constraint in shock-capturing magnetohydrody-
namic codes, J. Comput. Phys. 161 (2000) 605.

[43] G. Téth, The LASY preprocessor and its application to general multi-
dimensional codes, J. Comput. Phys. 138 (1997) 981.

[44] G. Téth, A general code for modeling MHD flows on parallel computers:
Versatile Advection Code, Astrophys. Lett. € Comm. 34 (1996) 245.

See http://www.phys.uu.nl/~toth.

[45] G. To6th, R. Keppens and M.A. Botchev, Implicit and semi-implicit
schemes in the Versatile Advection Code: numerical tests, Astron. As-
trophys. 332 (1998) 1159.

[46] G. Téth and D. Odstréil, Comparison of some Flux Corrected Transport
and Total Variation Diminishing numerical schemes for hydrodynamic and
magnetohydrodynamic problems, J. Comput. Phys. 128 (1996) 82.

25


http://www.amath.washington.edu/
http://www.phys.uu.nl/

[47] G. Téth and P. L. Roe, Divergence- and Curl-Preserving Prolongation
and Restriction Formulas, J. Comput. Phys. 180 (2002) 736.

[48] B. van Leer, Towards the ultimate conservative difference scheme. V. A
Second order sequel to Godunov’s method, J. Comput. Phys. 32 (1979)
101.

[49] R. Walder and D. Folini, A-MAZE: A code package to compute 3D mag-
netic flows, 3D NLTE radiative transfer, and synthetic spectra, in Thermal
and lonization aspects of flows from hot stars: observations and theory,
ASP Conference Series 204 (2000) 281.

[50] R. Walder, D. Folini and S. Motamen, Colliding winds in WR binaries:
further developments within a complicated story, in Proc. IAU symposium
No. 193, eds. K.A. van der Hucht, G. Koenigsberger and P.R.J. Eenens
(1999) 298.

[51] P.R. Woodward and P. Colella, The numerical simulation of two-
dimensional fluid flow with strong shocks, J. Comput. Phys. 54 (1984)
115.

[52] H. C. Yee, A class of high-resolution explicit and implicit shock-capturing
methods, NASA TM-101088 (1989).

[53] U. Ziegler, A three-dimensional Cartesian adaptive mesh code for com-
pressible magnetohydrodynamics, Comput. Phys. Commun. 116 (1999)
65.

26



Table 1
Convergence study for the 2D advection of the VAC logo. The resolution indicates
the effective resolution for AMR runs, refining every k (sub-)time steps.

resolution Imax k €tol Jstatic Jexact
1002 1 - - 0 0.12866
2 4 0.01 0.000179 0.12867
2 2 0.01 0.000215 0.12867
2 2 0.005 0.000132 0.12866
2002 1 - - 0 0.07646
3 4 0.01 0.000301 0.07656
3 2 0.01 0.000172 0.07648
3 2 0.005 0.000102 0.07648
4002 1 - - 0 0.04612
4 4 0.01 0.001018 0.04676
4 2 0.01 0.000222 0.04618
4 2 0.005 0.000129 0.04617
8002 1 - - 0 0.02781
5 2 0.01 0.000506 0.02811
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Table 2

Convergence study for the 2D advection of the Gaussian bell profile. The resolution
indicates the effective resolution for AMR runs (lpax > 1), refining every k = 2
(sub-)time steps, at a tolerance €y, = 0.001.

resolution Imax Jexact
1002 1 0.0238102
2 0.0238104
2002 1 0.0058374
3 0.0058379
4002 1 0.001548
4 0.001571
8002 1 0.000422
5 0.001271
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Table 3

Overview of all 1D and 2D Simulations and Timings (in seconds).

problem method Imax  timing eff. ' AMR%

1D HD FCT 1 18.35 - =

Harten ) 7.55 243 25.7

2240 x [0, 2] TVDLF 1 24.12 - -

5) 8.17  2.95 22.5

TVDMU 1 35.39 - -

5 941  3.76 19.8

1.56D MHD TVDLF 1 4.36 - -
Brio-Wu 4 344 1.27 17.45

1280 x [0,0.1] 6 3.28 1.33 17.79
TVDMU 1 7.38 - -

4 4.02 1.84 14.30

6 3.83 1.93 15.65

2D Advection FCT 1 47.91 - -

VA C-logo 3 33.70  1.42 7.9

200 x 200 x [0, 2] TVDLF 1 107.36 - -

3 49.32 2.18 10.1

2D HD Shock refiection TVDLF 1 4827.04 - -
640 x 160 x [0,0.2] 4 428.72  11.26 7.13
1280 x 320 x [0,0.2] 1 332837 - -
4 1679.3 19.82 8.08

2D HD Rayleigh- Taylor TVDMU 1 303715 - -
800 x 800 x [0,1.9] TVDLF-MU (4-1) 5 36504  8.32 3.91
2D MHD TVDMU 1 8624.62 - -
Orszag-Tang TVDMU 4 1474.58  5.85 3.43

400 x 400 x [0, 3.1] TVDLF-MU (2-2) 4  1372.82 6.28 3.49
TVDLF-MU (3-1) 4 116791  7.38 3.94

2D MHD Kelvin-Helmholtz TVDMU 1 173572 - -
400 x 800 x [0, 5] TVDLF-MU (3-1) 4 12477 13.91 2.36

29



Table 4

Overview of 3D Simulations and Timings (in seconds). Note that the 3D Implo-
sion problem mentions wall clock times for OpenMP parallelized code running on 16
processors of the SGI Origin 3800.

problem method lmax timing eff.

3D Advection TVDLF 1 172197 -
320% x [0,1] 3 8653 19.90

3D MHD TVDMU 1 218650 -
Rayleigh-Taylor TVDLF-MU (1-1) 2 46659 4.69
80 x 160 x 80 x [0, 1] TVDLF-MU (2-1) 3 40726 5.37
3D MHD Implosion TVDLF 1 39437 -
240° x [0,0.4] 3 4733 8.3

Fig. 1. A hypothetical sequence of three time steps in an AMR simulation allowing
for 4 nested refinement levels. Vertical arrows indicate a temporal advance, horizon-
tal arrows correspond to update operations ensuring conservation and consistency,
while the automated regridding operation is called at the position of the grey circles.
Regridding is invoked when at least k = 2 time steps are taken.

Fig. 2. Illustration of the update and flux fix step. An underlying coarse (level [ —1)
cell value is merely replaced by a conservative average. A coarse cell bordering a
finer level [ grid needs its numerical flux across the edge =, 1 replaced by the more

accurate fluxes used on the level [.

Fig. 3. The regridding operation illustrated in 2D. Top left: 5 cells are flagged for
refinement on 2 adjacent level [ grids. The edge of the computational domain is
indicated by thick solid lines. Each flagged cell is surrounded by a 2-cell buffer zone.
Top right: Buffer cells not located on level [ grids are discarded. A previously formed,
enlarged level [ + 2 grid (small rectangle) is to be projected for proper nesting in
the level [ + 1 grids being formed. Bottom left: discard cells which would violate the
proper nesting criterion. Note the flagged cell which is lost! Bottom right: A possible
grid structure for level [ + 1, whereby two extra level [ cells (hashed squares) are
taken along. Note that the level [ + 1 grids may overlap multiple level [ grids.

Fig. 4. The density structure at time ¢ = 2 for the 1D hydrodynamic Harten shock
tube. Using AMR with 5 grid levels, we confront a solution obtained with FCT (top
panel) with a TVDMU result (bottom panel). The extent of the level [ > 1 grids is
indicated by the solid bars. A high resolution static grid result is overplotted as a

solid line in the bottom panel.

Fig. 5. The density variation at ¢ = 0.1 in the Brio-Wu shocktube problem. A
solution using 6 refinement levels (top panel) is compared with one where 4 levels
and correspondingly higher refinement ratios were used (bottom panel). The extent
of the level [ > 1 grids is indicated by the solid bars and the bottom panel shows a
high resolution reference result.
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Fig. 6. Diagonal advection of the VAC-logo on a doubly periodic domain. We show
the initial 3-level grid structure at top left, and snapshots at ¢ = 0.6 (bottom
left) and after two full advection cycles (bottom right). Cuts at y = 0.5 for times
t=0,1,2 (top right) demonstrate the maintained accuracy.

Fig. 7. The density structure at ¢ = 0.2 for the Woodward and Colella reflected
shock problem, obtained with an AMR simulation using 4 grid levels and a 80 x 20
base grid.

Fig. 8. The logarithm of the density at time t = 1.9 shows the fine scale mixing
process of a heavy fluid (dark) into a lighter one underneath under the influence of
gravity. Only the level [ = 5 grids are indicated.

Fig. 9. For the Rayleigh-Taylor simulation from Figure 8 (left) and for the
Orszag-Tang vortex simulation from Figure 10 (right), the domain coverage of the
grid levels used in the AMR simulation as a function of time.

Fig. 10. Left: the temperature at t = 3.14 for the Orszag-Tang magnetized vortex
system as obtained with a 4 level AMR simulation. Right: the thermal pressure at
t = 0.15 for the rotor problem as obtained with a 4 level AMR simulation.

Fig. 11. The density structure at time ¢ = 4.4 for a Kelvin-Helmholtz unstable
shear flow configuration containing a current sheet shows the triggering of magnetic
islands through tearing instabilities. Only the central part of the computational
domain is shown.

Fig. 12. 3D MHD implosion problem at time ¢ = 0.4. Top left: in the plane z = 0,
we show a schlieren plot of the pressure, the magnetic field lines, and the velocity
field. Top right: schlieren plot of the density in y = 0. Bottom panels: density
(left) and thermal pressure (right) variation in the plane z = 0.
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