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The Kelvin-Helmholtz (KH) instability occurring in a single shear flow con-
figuration that is embedded in a uniform flow-aligned magnetic field, is revisited
by means of high resolution two-dimensional (2D) magnetohydrodynamic (MHD)
simulations. First, the calculations extend previous studies of magnetized shear
flows to a higher compressibility regime. The nonlinear evolution of an isolated
KH billow emerging from the fastest growing linear mode for a convective sonic
Mach number Mcs = 0.7 layer is in many respects similar to its less compressible
counterpart (Mach Mcs = 0.5). In particular, the disruptive regime where locally
amplified, initially weak magnetic fields, control the nonlinear saturation process
is found for Alfvén Mach numbers 4 <

∼ MA
<
∼ 30. The most notable difference be-

tween Mcs = 0.7 versus Mcs = 0.5 layers is that higher density contrasts and fast
magnetosonic shocklet structures are observed. Second, the use of adaptive mesh
refinement allows to parametrically explore much larger computational domains,
including up to 22 wavelengths of the linearly dominant mode. A strong process of
large-scale coalescence is found, whatever the magnetic field regime. It proceeds
through continuous pairing/merging events between adjacent vortices up to the
point where the final large-scale vortical structure reaches the domain dimensions.
This pairing/merging process is attributed to the growth of subharmonic modes
and is mainly controlled by relative phase differences between them. These grid-
adaptive simulations demonstrate that even in very weak magnetic field regimes
(MA ≃ 30), the large-scale KH coalescence process can trigger tearing-type recon-
nection events previously identified in cospatial current-vortex sheets.

52.35.Py, 52.65.Kj, 52.30.-q, 95.30.Qd

I. INTRODUCTION

The Kelvin-Helmholtz (KH) instability in sheared flow configurations is an efficient mechanism
to initiate mixing of fluids, transport of momentum and energy, and the development of turbu-
lence. In many astrophysical or geophysical environments, magnetized shear flow layers with
transonic or supersonic velocities are of concern. For example, this is the case for astrophysical
jets, where supersonic magnetized flows emanate from young stellar objects or active galactic
nuclei. A full understanding of the various nonlinear processes playing a role in the development
of the KH instability in magnetohydrodynamics (MHD) is thus of prime importance.
In its most basic configuration, an MHD study considers a shear layer separating two conduct-

ing fluids flowing at different speeds with an initially homogeneous magnetic field. The linear
stability of such a uniformly magnetized shear layer is well known from the pioneering studies in
incompressible MHD by Chandrasekhar.1 Miura and Pritchett2 have extended the linear stability
study to the compressible case. Stability crucially depends on both the strength and orientation
of the magnetic field vector with respect to the velocity. Depending on this relative orientation,
two classes of configurations are generally considered: a parallel and a transverse one.
In transverse configurations, the nonlinear evolution of the KH instability has been simulated

numerically, for different geophysical/magnetospheric applications (see Miura3 and references

1

http://arxiv.org/abs/astro-ph/0403125v1


therein). In the two-dimensional (2D) transverse case, if the wavenumber parallel to the magnetic
field vanishes, only slight differences are obtained compared to a pure hydrodynamic configura-
tion. This is because the effect of the magnetic field then appears only through an additional
magnetic pressure term in the total pressure, while the line bending term vanishes. Hence, only
the fast magnetosonic mode is excited in MHD, whereas it is the sonic one in hydrodynamics.
A parallel configuration allows a much richer complexity in the nonlinear evolution of the MHD

KH instability. This has been investigated for a shear layer embedded in a uniform magnetic
field, both in 2D, 4–7 and more recently in 2.5D and 3D simulations.8–10 The nonlinear behaviour
varies dramatically with the Alfvén Mach number MA ≡ V/vA of the background configuration,
where V is the total velocity jump across the shear layer and vA is the Alfvén speed. Three
magnetic regimes, briefly discussed in section III, that characterize the development of KH in-
stabilities have been identified. However, most of the studies mentioned above were restricted
to subsonic/transonic layers where the sonic Mach number of the velocity transition across the
shear layer is Ms ≡ V/cs ≤ 1 (for sound speed cs). Moreover, to avoid excessive computational
costs, earlier work typically considered a periodic section of the flow having a length equal to the
wavelength of the linearly fastest growing mode. While this allowed for detailed modeling of non-
linear, magnetically controlled breakup of a single KH billow, any trend to large-scale coalescence
is excluded from these models. Such coalescence due to pairing/merging of adjacent vortices has
been reported in 2D transverse configurations considering longer periodic sections,3,11 as well
as in purely hydrodynamic simulations.12,13 While these longitudinally periodic studies focus on
the temporal development, coalescence has also been found in spatially developing instabilities,
convected with the flow. This was obtained in a magnetospheric context by Wu14 and Manual
and Samson,15 who reported the formation of large vortices due to large-scale coalescence effects
in 2D non periodic simulations.
The aim of the present paper is therefore twofold: (1) to extend single billow studies of a 2D

uniform parallel configuration to higher flow velocities where Ms ≥ 1; and (2) to investigate
the effects of large-scale coalescence by using very long periodic sections of the flow. The latter
significantly benefits from the use of adaptive mesh refinement in our computations, since it
allows us to simulate large spatial domains without prohibitive computational costs.
The paper is organized as follows. The physical model and the numerical codes are presented

in section II. In section III, we show the results of the single vortex evolution in supersonic
versus transonic layers. Section IV focuses on the large-scale coalescence process that occurs in
longitudinally extended shear layers. Finally, we conclude and briefly discuss the consequences
of our findings in the context of astrophysical jets.

II. THE PHYSICAL PROBLEM

A. The MHD equations and initial configuration

The linear and early nonlinear phases of the KH instability are ideal for the parallel configu-
ration studied here. Hence, we consider plasmas with very large kinetic and magnetic Reynolds
numbers, as is indeed the case for many astrophysical environments. However, non zero viscosity
and resistivity is important in later evolutionary stages allowing for momentum exchange and
magnetic reconnection, respectively. In most of this work, the set of ideal MHD equations is
solved numerically, relying on the inherent numerical resistivity and viscosity to mimick dissipa-
tive processes (see the discussion in Jones et al.6). Selected cases will make use of fully resistive
MHD. The ideal compressible MHD equations can be written in conservative form as

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂(ρv)

∂t
+∇ · [ρvv+ ptotI −BB] = 0, (2)

∂e

∂t
+∇ · (ev) +∇ · (ptotv)−∇ · (v ·BB) = 0, (3)
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∂B

∂t
+∇ · (vB−Bv) = 0. (4)

Here, ρ is the mass density, v the fluid velocity, B the magnetic field, and t time. I is the identity
tensor. We have defined the total plasma pressure ptot = p+ 1

2
B2, where the thermal pressure p

is related to the energy density e as p = (γ − 1)(e − 1

2
ρv2 − 1

2
B2). We set the ratio of specific

heats γ equal to 5/3. Our units are such that the magnetic permeability is one.
We solve the above set of nonlinear equations as an initial value problem in two spatial di-

mensions and cartesian geometry (x, y). In the initial background configuration, the fluid moves
along the longitudinal x direction with a velocity vx given by

vx(y) =
V

2
tanh

(y

a

)

, (5)

where a is the half-width of the shear layer situated at y = 0. The y direction is the cross-
stream, transverse direction. Note that the interface is at rest: this choice of reference frame is
well adapted to the study of the KH development, as the instability is advected at the local flow
velocity (a statement exactly true for a subsonic flow layer). The initial magnetic field is aligned
with the flow and has a uniform strength given by Bx = B0. The initial thermal pressure p0
and density ρ0 are set equal to one, defining our normalisation. Consequently, the sonic speed is
uniform and cs = (γp/ρ)1/2 = 1.29. In the present study, we fix a = 0.05 and the dimensions of
the computational domain Lx × 2Ly can vary from case to case. In our units, the growth times
of the linearly fastest modes are thus typically tg ≃ 1.7 (taking tg ≡ Γ−1 where Γ is the linear
growth rate).7

B. The numerical procedure

We calculate the evolution of the KH unstable layers with the general finite-volume based
Versatile Advection Code (VAC, see http://www.phys.uu.nl/∼toth)16 and its recent grid-
adaptive variant AMRVAC.17 The latter uses an automated Adaptive Mesh Refinement (AMR)
strategy, where a base grid is refined by adding finer level grids where a higher resolution is
needed. Finer level grids are adjusted, inserted or removed by periodically checking if the grid
structure should be altered in response to the flow dynamics. This procedure allows us to follow
shock-dominated or coexisting global and local plasma dynamics accurately in a much more
efficient way than with a global refinement of a static grid.
All simulations make use of a second-order time accurate shock-capturing method employing

a Roe-type approximate Riemann solver, namely an explicit one-step total variation diminishing
(TVD) scheme with minmod limiting on the characteristic waves.18,19 In AMRVAC, the auto-
mated AMR strategy allows for a grid-level dependent choice of the spatial discretization. We
follow Keppens et al.,17 and use the computationally beneficial combination of a robust two-step
Total Variation Diminishing Lax-Friedrichs method on all but the finest grid level, together with
the less diffusive TVD scheme on the highest one. Note that all discretization methods in VAC,
and all combinations of grid level dependent spatial discretization methods in AMRVAC, are fully
conservative. This implies that when the boundary conditions are conservative as well, exact con-
servation of mass, momenta, total energy, and magnetic flux holds for ideal MHD simulations.
To handle the solenoidal constraint on the magnetic field ∇·B = 0, our VAC simulations apply a
projection scheme at every time step in order to remove any numerically generated divergence of
the magnetic field up to a predefined accuracy.20 In grid-adaptive simulations, this is handled by
a diffusive source term treatment which damps the errors at their maximal rate in accord with
the prevailing Courant-Friedrichs-Lewy condition. This was shown to be effective for multi-D
AMR MHD simulations.17 AMRVAC results employed four grid levels with a refinement factor
of 2 between two consecutive levels. Refining was done based on a Richardson-type extrapolation
procedure, using a weighted average of density, x-momentum, and longitudinal Bx components.
We assume periodicity along the longitudinal x direction. The consequence is to restrict the

longitudinal wavelengths λ to those Fourier components λ = Lx/n, n being an positive integer,
that can fit in the box length Lx. Taking Lx equal to the wavelength of the linearly fastest
growing mode λm prohibits the formation of structures on a larger scale. Large-scale coalescence
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is allowed by taking Lx greatly exceeding λm. We use free outflow boundaries on the lateral sides
at y = ±Ly.
The initial configuration is perturbed with two different forms for the t = 0 transverse velocity.

For deterministic runs, we follow Keppens et al.7 and use the functional form

vy = δV exp[−
( y

4a

)2

]× sin (kx) , (6)

where k = 2π/λ is the longitudinal wavenumber. We take a small amplitude δV = 0.01. This
expression corresponds to a normal mode form with a Gaussian decay in the transverse direction.
A second perturbation used in this work is

vy = δV exp[−
( y

4a

)2

]× ran(x), (7)

where the function ran(x) represents a random number generator in the range [-0.5:0.5]. This
form corresponds to white noise and is appropriate to let all unstable wavelengths grow in a
natural way, in configurations having a long computational domain length that greatly exceeds
λm.

III. NUMERICAL RESULTS: SINGLE VORTEX

A. Previous studies: subsonic/transonic layers

We briefly recall previous results on the single vortex formation associated with the linearly
fastest growing KH mode in 2D subsonic/transonic layers where Ms ≤ 1.4–7 The flow is linearly
stable if the magnetic tension of the initial background magnetic field is so strong that it pre-
vents the development of a small perturbation of the shear layer. This linear stability holds for
MA

<∼ 2. When 4 >∼ MA
>∼ 2, the initial field can not provide linear stability, but the flow can

be nonlinearly stabilized by the enhanced magnetic tension generated by the perturbation. This
first regime is referred to as the strong field or the nonlinearly stable regime, as the instability
is stopped after a small amount of quasi-linear growth. In a weaker magnetic field configuration
the shear layer can roll up leading to the formation of a vortex aligned with the flow, similar to
an unmagnetized case. Meanwhile, the magnetic field lines are expelled from the vortex center,
stretched, and amplified around the vortex perimeter. A nonlinear saturation then occurs when
the magnetic field becomes locally dominant, i.e. when the field line tension is able to overcome
the centrifugal force associated to the vortical motion. At this point, a structure similar to
the classical Kelvin’s cat’s eye (of pure hydrodynamics) is formed, enriched by local strands of
strongly amplified magnetic fields. This also leads to magnetic reversals, so that the cat’s eye
structure is subsequently rapidly disrupted due to magnetic reconnection in fully resistive MHD.
This weak field regime is qualified as disruptive, and occurs for 20 >∼ MA

>∼ 4. Finally, a third
regime is obtained when MA

>∼ 20.6 The development of KH instabilities in this very weak field

regime is essentially hydrodynamic in the early stages, and a nearly classical hydrodynamic cat’s
eye is formed. Later, the role of the magnetic field is to enhance its slow dissipation.
The first two magnetic regimes end up in a relaxed state with an enlarged (in the cross-stream

direction) central flow layer of heated and lower density plasma. In this quasi-steady laminar
endstate, the velocity and magnetic field vectors are nearly aligned everywhere. The longitudinal
kinetic energy, which feeds the instability, is thereby reduced as compared to its initial level. In
the strong field case, this is achieved through local amplification and stretching of the magnetic
field, with a weak exchange between the different forms of energy. In cases where the vortex is
disrupted by reconnection (weak field regime), the total (kinetic+magnetic) energy stored by the
vortical motion is fully released on a rapid time scale. For the very weak field regime, the vortex
can survive and decays at a slow rate through viscous and resistive dissipation effects.

B. Extension to higher compressibility regimes

We extend the results obtained for the subsonic/transonic regime (Ms ≤ 1) to a ‘supersonic’
flow layer with Ms ≥ 1. All our nonlinear simulations reported below refer to Ms = 1 layers
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as ‘transonic’ and will go up to slightly ‘supersonic’ layers at Mach number Ms = 1.4. As the
flow velocity increases, the linear stability of the shear layer is enhanced. Typically, the growth
rate is reduced by a factor of order 10 for Ms = 2 when compared to sonic Mach numbers
smaller than one, for Alfvén Mach numbers MA ≫ Ms.

7 This stability enhancement is due to an
increased intrinsic compressibility, usually characterized using the sonic convective Mach number
Mcs (Mach number in the frame convected at the phase velocity of the unstable KH wave).21

In our configurations, the ‘transonic’ Ms = 1 and ‘supersonic’ Ms = 1.4 layers correspond to
subsonic Mcs = Ms/2 = 0.5 and 0.7 flows, respectively, and mainly differ in their intrinsic
compressibility. In fact, the 2D ‘classical’ KH mode is stabilized at a critical M cr

s value close to
2.5 when MA = 10 (see Fig. 2 in Miura22). For a pure hydrodynamic shear layer, this stability

criterion is Ms ≥ 2
√
2.23 While full stability is obtained for the vortex sheet (i.e. in the limit

of vanishing layer width a) when Ms > M cr

s , new supersonic oscillatory instabilities appear in
a finite-width layer above this threshold.24,25,22,26,27 Selected runs at Ms = 3 confirmed the
existence of these unstable traveling modes, but the perturbations attain a rather low level in the
non linear phase, consistent with earlier findings by Miura.22 Hence, in very supersonic layers,
the dominant instability is likely to be less dangerous for the integrity of the background flow.
Consequently, we will not consider this truly supersonic regime (where also Mcs ≥ 1) further in
this work.
In this section, a domain length Lx = 1 is chosen in order to allow the growth of a single

periodic structure at a wavelength Lx ≈ λm. Strictly speaking, the wavelength of the linearly
fastest growing mode λm varies with the fast magnetosonic Mach number Mf = V/(cs + vA)

1/2.
However, this dependence is weak for the range of Mach numbers considered here (see for example
Fig. 3 of Keppens et al.7, and Figs. 4 and 5 of Miura and Pritchett2). Note that this domain
choice Lx = 1 imposes a minimum wavenumber value included in the simulation at ka = 0.314.
We set Ly = 1 and perform VAC simulations at a resolution of 200×400, previously shown to be
sufficient to follow the nonlinear saturation phases.7 For a few MA values, we repeated the runs
with up to 350×700 grid cells in order to check the convergence of our results. The perturbation
used to initiate the instability is the deterministic one given by Eq. (6).
First, we make a global comparison beween the development of the KH instability in supersonic

Ms = 1.4 versus transonic Ms = 1 layers. In Fig. ??, one can see the typical time evolution of the
transverse kinetic ek,y, and magnetic em,y energies, as well as the evolution of the longitudinal
kinetic energy Ek,x for three radically different magnetic field strengths. These energies are
volume averaged quantities defined as

ek,y =
1

Vb

∫

Vb

ρV 2

y

2
dxdy, (8)

em,y =
1

Vb

∫

Vb

B2

y

2
dxdy, (9)

Ek,x =
1

Vb

∫

Vb

ρV 2

x

2
dxdy, (10)

where Vb is the box volume, namely Vb = 2Ly × Lx. The transverse energies ek,y and em,y serve
as a measure of the energy built up by the instability through the vortical motions, while the
longitudinal kinetic energy in the initial background flow feeds the instability.
For a small Alfvén Mach number MA = 3.33, in the strong field regime, the kinetic and mag-

netic energies attain a maximum value at roughly the same time, before decreasing monotically
towards zero. At higher Alfvén Mach number values (MA = 10, 100), a maximum in kinetic en-
ergy is obtained first, and after a small time delay is followed by a maximum in magnetic energy.
For MA = 10, these energies are released after the occurrence of several secondary peaks that
correspond to the formation of smaller secondary vortices. Generally, the first peak in ek,y corre-
sponds to the non linear saturation of the vortex, while the first maximum in transverse magnetic
energy em,y indicates the beginning of the disruption process due to magnetic reconnection.7 The
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smaller vortices formed later are also disrupted by secondary reconnection events.5 For the very
weak field case having MA = 100, the energies slowly decay in an oscillatory way after the satura-
tion phase, as the cat’s eye structure persists without being disrupted. The period of oscillation
is simply the rotation time of the vortical flow. As seen in Fig. ??, these observations hold for
both transonic and supersonic cases, so that slightly supersonic and transonic layers appear to
behave very similar. The same conclusion can be reached by comparing the time evolution of
other characteristic quantities.
The three regimes (very weak field, disruptive, and strong field) identified for transonic shear

layers were initially deduced from simple but highlighting estimates, based on a few runs only.6 In
order to precisely quantify the transition between the three regimes, we performed a parametric
study for transonic as well as supersonic shear layers. We ran a very large number of simulations
with Alfvén Mach numbers taken in the range [2 : 160]. All these results are reported in Fig. ??,
which shows the dependence of the level of the previously defined energy peak values on the
magnetic field strength. This figure confirms that the ranges of Alfvén Mach numbers defining the
three magnetic regimes are similar for supersonic and transonic layers. In fact, when normalized
by the background kinetic energy, the perturbed saturated energy levels as well as the total
amount of longitudinal kinetic energy released are reduced by a few percent only in supersonic
versus transonic cases. The transitions between the successive regimes are not sharp. From
Fig. ?? one can deduce that the transition between the disruptive and dissipative regime occurs
at an Alfvén Mach number that is closer to MA = 30 than to MA = 20. Furthermore, on
close inspection of the disruptive regime in Fig. ??, a pronounced maximum in the perturbed
magnetic energy clearly appears for MA = 8. The cat’s eye structure with spiral arms obtained
from density (see Fig. ??) and magnetic maps indicate that the initial flow interface is rolled-up
by 1/2 turn for MA = 5, by 1.5 turn for MA = 15, and by exactly one turn for MA = 8. At the
transition Mach number MA = 30, this rolling-up value is close to 2 turns. Note that for field
strengths higher than MA = 8, the levels reached in transverse kinetic and magnetic energies
at saturation are comparable, in contrast to weaker field cases. The maximum magnetic field
measured at saturation for the disruptive regime indicates that the amplification factor is closer
to MA than to MA/2 (obtained by Miura28 in pioneering MHD simulations).
Figure ?? shows the density distribution at the time of saturation for 4 selected cases. We

contrast a disruptive case MA = 15 with a very weak field case MA = 100 for transonic versus
supersonic Ms = 1.4 layer. Notable differences between supersonic and transonic simulations are
the appearance of shocks in the supersonic case. Furthermore, the vortex is a little flatenned
for slightly supersonic layer Ms = 1.4, an effect known to arise in pure hydrodynamics due to
compressibility for Mcs

>∼ 0.5− 0.6.29 Compressive effects are also responsible for a pronounced
difference in the density contrast during the entire evolution: it is higher by roughly 50 per cent
for Ms = 1.4 versus Ms = 1.
The shocks that develop in supersonic layers form at the periphery of the vortex, remain

attached to it, and are nearly aligned with the transverse direction. They slowly travel against
the background flow, and disappear soon after the saturation stage for the supersonic MA = 15
case. For more strongly magnetized supersonic layers (MA

<∼ 13) no such transient shocklets
form. In the very weak field nearly hydrodynamic case MA = 100, the shocks persist much
longer. In the disruptive MA = 15 case, the shock speeds were found to be s ≃ ±0.2 at the time
of saturation t = 4.26 shown in Fig. ??. This corresponds to plasma velocities that cross the fast
magnetosonic Mf = 1 transition in the co-moving frame, confirming that these shocks are of fast
magnetosonic type. Similar eddy shocklets are well known to arise in pure hydrodynamics.29 We
show in Fig. ?? several thermodynamic and magnetic quantities along a 1D cross section in the
x-direction for MA = 15 (cross section at y = 0.3 and t = 4.26 as in Fig. ??), and similarly for
MA = 100 (at y = 0.2 and t = 4.26, slightly later than the t = 4 frame shown in Fig. ??). Both
shocks are very weak, since the entropy increase is of order 1 pro mille for MA = 100, and one
order of magnitude smaller for MA = 15. The shock speed can be determined from the Rankine
Hugoniot relation across the shock, and is printed in the figure. The magnetic field components
change little across the shock (note the multiplicative factors used to show their slight variations),
but their variations are consistent with a minute bending of the field away from the shock normal
(as expected for a fast magnetosonic shock). One must take into account the fact that the shock
front is slightly bent backwards for MA = 15 and forwards for MA = 100 at that position and
time. The flow remains superAlfvénic in the co-moving frame. As a final note, the shock structure
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for the more strongly magnetized cases shows evidence of a more complex structure of several
shock segments where the shock meets the low density vortex perimeter.

IV. NUMERICAL RESULTS: N VORTICES

A. Many vortices

The motivation to study multiple vortices arises from the known trend to large-scale coalescence
in the 2D transverse case.3,11 Until now, claims in the literature exist that no coalescence is found
for the parallel configuration.5

Our results obtained for a large simulation domain take a rectangular box of size of Lx×2Ly =
10 × 8. The initialisation for the perturbations makes use of the random noise form given by
Eq. (7). AMRVAC is used with a base resolution of 100 × 100 grid cells and three finer levels
of refinement, effectively achieving a resolution of 800 × 800. We again investigate two Ms

values equal to 1 and 1.4. For each sonic Mach number, up to 5 Alfvén Mach numbers equal to
MA = 3.33, 7, 15, 30, and 100 are considered.
The results for the time evolution of the longitudinal Ek,x and transverse kinetic ek,y energies

are plotted in Fig. ?? for 3 magnetic field strengths in the transonic layer. Plotting the same
indicators for the supersonic runs yields very similar trends. The deviation from exact total
energy conservation in these long time runs with AMRVAC is only a few percent, and since
AMRVAC is fully conservative, entirely due to the treatment of the lateral y = ±Ly boundaries
as open.
Let us, first, discuss the results obtained for the very weak field regime with MA = 100. As

seen in Fig. ??, the characteristic time evolution of the energetic quantities is fundamentally
different from that of the single vortex. Indeed, after an initial phase of exponential growth of
ek,y that ends at t ≃ 7, a phase of continuous global increase is obtained. The transverse energy
rises approximately linearly with a superposed oscillation. Corresponding snapshots displaying
the density structure at different times are reported in Fig. ??. At early times close to the
first local maximum of ek,y, we can identify 11 successive vortices. This number of vortices is
roughly in accord with the wavelength of the most unstable mode, which grows naturally from
the added noise. For the same reason, the vortex strength can differ from one vortex to the next.
The second snapshot in Fig. ?? corresponds to a time close to the second ek,y maximum, and
one can easily see that two pairing/merging events have already occured leading to 9 remaining
vortices. This indicates the start of a continuous process of successive pairing/merging events,
which ends up only when a big single vortex is formed at t ≃ 45. For the simulation shown in
Fig. ??, the number of vortices changes as follows: 11 → 9 → 7 → 5 → 4 → 3 → 2 → 1. Each
merger corresponds to a successive local maximum of ek,y in Fig. ??. During the same time,
the longitudinal kinetic energy is continuously decreasing in the same oscillatory way. At the
end of our simulation, the characteristic cross-stream scale length of the final vortex, as well as
the attained level in transverse kinetic energy, is roughly 10 times larger than those deduced for
the initial small vortices. This final big single vortex subsequently decays at a low rate through
viscous/resistive dissipation.
A similar qualitative evolution is obtained for the supersonic very weak field counterpart case,

illustrated in Fig. ??. However, the merging is leading to complex eddy shocklet interactions
which were previously observed in the single vortex evolution. As a consequence, higher density
contrasts can be reached. In the final snapshot shown, the larger structures show clear evidence
of incomplete merging events due to the various shock interactions. Hydrodynamic simulations
also demonstrated similar shock-shock interactions.30

For the strong field regime with MA = 3.33, the time evolution of the energy monitors (Fig. ??)
is again very different from the single vortex one (Fig. ??). Indeed, after a saturation phase at
t ≃ 9, the transverse kinetic energy shows a long phase of decrease till times t ≈ 20. The snapshots
showing the density structure in Fig. ??, indicate that the shear layer is initially deformed with
a growing perturbation having 11 wavelengths. The perturbation strength is irregular along
the layer. Subsequently, a saturation occurs with at the same time 2 merging events between
2 adjacent wavelength structures, at x ≈ 2 and x ≈ 6.5. From times t = 10 till t = 15, the
evolution is similar to that of a single-vortex simulation with Lx = 1, with a relaxation phase
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during which an enlarged shear layer tends to form. Suddenly, at time t ≃ 20, the density shows
evidence of a larger scale structure along the flow shear layer. This leads to exponential rebirth
of a sinusoidal-like perturbation having two longitudinal wavelengths of different amplitude. A
final merging event leads to a single wavelength structure remaining at t ≃ 50. A subsequent
relaxation then occurs, as seen in the decreasing transverse energy (Fig. ??). Our simulations
show a similar scenario for the supersonic layer counterpart of this magnetic regime. Again, the
characteristic lengthscales of the final single perturbation are about ten times those of a small
single one.
Let us now turn to simulations for an intermediate magnetic field strength with MA = 7,

in the disruptive regime of the single MHD vortex. For early times t <∼ 9, in a way similar to
the previous case, two pairing/merging events can be identified to occur once 11 or 12 initial
vortices have developed. As seen in Fig. ??, the subsequent evolution is characterized by a
saturation phase in which the remaining vortices become elongated. This is followed by the
beginning of a disruption process, clearly visible in the snapshot taken at t = 9.1. Whilst this
magnetic reconnection proceeds locally, a few merging/pairing events are also taking place. The
reconnection is unable to fully destroy individual vortices, which continue their trend to pair and
merge. The distorted layer shows the rebirth of 4 vortices of unequal strength (see the snapshot
taken at t = 13.1). Later, a pairing between two vortices occurs near x = 8 whilst the two
other vortices are partially disrupted by reconnection. Finally, the cascade towards large scales
ends up when a final single vortex-like structure is formed, as seen in the last snapshot taken at
t ≃ 34. Simultaneously, the disruptive influence of the magnetic field causes small-scale MHD
turbulence.
As in the two previous magnetic regimes there is a global increase of the transverse kinetic

energy following from the large-scale coalescence events. The disruptive effect can not change
this dominant trend, but partial magnetic reconnections allow the release of a non negligible part
of the energy built up by the instability at different stages of the evolution. From the transverse
kinetic energy curve displayed in Fig. ??, we can conclude that the scaling factor between the
initial small vortices and the final single one is now only of order 6, while there was a tenfold
increase for the very weak field as well as in the strong field case. A similar time evolution is
obtained for a transonic layer with MA = 15, and also for their supersonic counterparts.

B. The pairing/merging process

As a white noise is used to initiate the instability, we need to explore the sensitivity of the
results to the initial conditions. To that end, we performed three realisations (A, B, and C)
of the same simulation. This was done for the transonic layer with MA = 7, in the disruptive
regime where the influence of small-scale reconnections is maximized. The comparison of the
time evolution of the transverse kinetic energy is displayed in Fig. ??. After a virtually identical
linear phase (up to t ≈ 7), all realizations show a global increase for a extended period of time.
Hence, the overall scenario drawn in the previous subsection remains valid. Differences in the
time localization of the peaks are in agreement with the different times for merging events. The
maximum amount of transverse kinetic energy built up by the process differs from run to run.
The same is true for the transverse magnetic energy evolutions. More precisely, the overall
increase is fivefold, sixfold, and ninefold for runs A, B, and C, respectively. This means that the
amount of energy release is not the same and is very sensitive to the initial seed perturbation.
This is due to transient reconnection events, that are able to either partially or almost completely
release built-up magnetic energy depending on the run considered. This is also observed in the
differences in density structure (not shown) at intermediate times. Specifically, run A has a more
turbulent aspect than run C.
In order to understand in more detail the pairing/merging process occurring between adjacent

vortices, we now turn to a more deterministic study of the interaction between two identical vor-
tices only. This is done using VAC, setting Lx = Ly = 2, and taking a resolution of 400×800 grid
cells. The case investigated is a transonic shear layer with a magnetic field strength correspond-
ing to MA = 10. We follow the time evolution of the system, now perturbed by the deterministic
disturbance form given by Eq. (6). However, two wavelengths with the same amplitude are now
excited, λ1 = Lx and λ2 = Lx/2. The latter and the former wavelength correspond roughly to the
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linearly fastest growing mode and to its first subharmonic, respectively. In pure hydrodynamics,
it has been shown that two relative phase angles Φ between the subharmonic and its fundamental
modes are of particular importance.31 These special angles are even and odd multiples of π/2.
Thus, 2 simulations with Φ = 0, and π/2 are performed. An additional run, in which only the
fundamental mode is perturbed, is done in order to serve as a reference case.
The results for the time evolution of the transverse magnetic energy component are plotted

in Fig. ?? for the three cases. For Φ = 0, the pairing/merging event starts to occur before
the saturation phase of the individual vortices. This saturation for a single vortex is typically
observed at t ≃ 4.5. Indeed, on the first snaphot of Fig. ??, one can see that the two vortices
are slightly displaced up and down before being elongated. The pairing continues through a
rotation one around each other of the two vortices. Meanwhile, the vortices become elongated and
magnetic reconnection starts to occur in each vortex separately at about t ≃ 5 (second snapshot).
The pairing is being completed and coincides with the second increase in the transverse energy
evolution. The disruption of the resulting bigger vortex after times t ≈ 15 further releases the
energy built up by the vortical motion. Figure ?? indicates that the maximal transverse magnetic
energy reached is approximately twice its value obtained in the absence of subharmonic growth
(reference case in which pairing/merging is absent). This is also true for the characteristics of
the final relaxed state at the end of the simulation for Φ = 0.
For Φ = π/2, the difference with the reference case without subharmonic excitation, as seen in

the first snapshot of Fig. ??, is to alternately strengthen and weaken the two vortices, without
upward and downward displacement as in the Φ = 0 case. The pronounced increase of the energy
is absent, and an evolution similar to the reference case is now observed. This agrees with the
absence of a pairing/merging event before or during the saturation of the two vortices. Later, as
the two vortices are quasi-independently disrupted by magnetic reconnection, the weaker vortex
tends to be shredded by the stronger one. This explains the somewhat slower decrease of the
energy observed at t ≃ 16, when comparing to the reference case. The final state is rather similar
to the reference case but the relaxed shear layer is enlarged by a few percent.
These deterministic runs clearly demonstrate the central role played by the growth of subhar-

monics of the fundamental mode on the pairing/merging process. Moreover, the relative phase
angle between the fundamental and the subharmonic mode appears to be an important control
parameter. In a simulation with many initial vortices, we can thus easily understand how pairing
events between adjacent vortices can be more or less favored depending on the different angle val-
ues. For white noise excitations, these are randomly distributed. In particular for the disruptive
regime, this explains the extreme sensitivity to the initial conditions. As an illustrative example,
Fig. ?? shows snapshots of a transonic, MA = 7 shear layer that differ from the simulation shown
in Fig. ?? only in the size of the simulated domain as well as in the initial random perturba-
tion. As we doubled the domain size and resolution, up to 22 vortices are now formed at early
times. Qualitatively though, their trend to large-scale structure formation, partially countered
by small-scale reconnection, is similar.
In 2D hydrodynamics as well as in a 2D transverse MHD configuration, the coalescence has

been shown to be a self-organization process with a selective decay of enstrophy, allowing the
relaxation to a nearly minimum enstrophy state.11 Attempts to explore the role of the enstrophy
in our MHD parallel configurations were unsuccesful. More precisely, in the very weak field regime
(nearly hydrodynamics), it was not surprising to find a continuous decrease of the enstrophy with
time. However, a non monotonous time evolution of the enstrophy was obtained for the disruptive
regime, making thus the importance of enstrophy much less evident.

C. Tearing-type reconnection in very weak field regime

Finally, we turn to an interesting result obtained for the transitional Mach number MA = 30.
This value separates the disruptive from the very weak field regime identified for a single vortex.
Multiple vortex studies for much weaker field cases showed essentially hydrodynamic behaviour
with only the large-scale trend obviously appearing in the density evolution (see Fig. ??). Well
in the disruptive regime, this trend is somewhat opposed by the possibility to disrupt individual
vortices by reconnection (see Fig. ??).
Here, we investigate the pairing effect in MA = 30 shear layers. Both randomly initiated
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as well as deterministically excited runs demonstrated the formation of magnetic islands at an
intermediate stage in their evolution. This is illustrated in Fig. ??, where small islands are
clearly seen to grow at the periphery of the vortices in the density snapshot at t = 12. In this
run, we maximized the effect by choosing a deterministic excitation with zero phase differences
between the various modes. We also use AMRVAC setting Lx = 8 and Ly = 4. The features are
very similar to results obtained in the non linear development of a single vortex in the 2D KH
unstable shear layer in the presence of initially antiparallel magnetic fields (see Fig. 9 of Keppens
et al.7). This island formation appears as a result of a tearing-type instability induced by the
vortical motions. For the small initial magnetic field strength case of Fig. ??, the vortical motions
associated to the initial small eddies are able to roll-up the magnetic field lines in more than one
turn without disruptive effect. Thus, the subsequent pairing/merging between two vortices lead
to push antiparallel field lines together, forming thin current sheets. These eventually become
unstable and trigger magnetic islands at the periphery of the resulting bigger vortices. The result
shown in Fig. ?? is in fact obtained for a fully resistive MHD simulation, where the constant
resistivity coefficient is η = 3.33 × 10−5. At the effective resolution of this AMR simulation,
this low value for the resistivity is just dominating the numerical dissipation in the calculation
(see the convergence study in Keppens et al.7). Note that the reconnection events cause a rapid
transition to MHD turbulence, superposed on the large scale vortex structures.

V. SUMMARY, OUTLOOK AND ASTROPHYSICAL RELEVANCE

We can summarize our findings as follows. We have numerically studied the development of
the KH instability that occurs in a 2D parallel magnetized shear flow layer. We extend previous
studies made for a single periodic vortex in subsonic/transonic layers, to a configuration allowing
the growth of many linearly dominant wavelengths along the layer. First, for a slightly supersonic
layer having a sonic Mach number Ms = 1.4 and a subsonic convective Mach number Mcs = 0.7,
we confirm the existence of three dynamically different regimes according to the relative magnetic
field strength. Indeed, for a strong enough magnetic field with 2 <∼ MA

<∼ 4, the KH instability
is halted by the magnetic field tension generated by the vortical motion itself. In the opposite
regime, for an Alfvén number exceeding a critical value Mc, MA ≥ Mc, the development of the
vortex is hydrodynamics-like. The intermediate regime is the most interesting one from the point
of view of the dynamics. Indeed, the magnetic field structure generated by the vortical motion is
able to saturate and disrupt the vortex due to magnetic reconnection. The high number of runs
allow us to quantify the transitions between the different regimes. In particular, we obtained
evidence that the transitional Alfvén Mach number value Mc separating the disruptive from
the very weak field regimes is closer to Mc = 30 than to Mc = 20, as previously determined.
Moreover, the disruptive regime can be separated into two subregimes, according to MA greater
or smaller than 8. This corresponds to the rolling-up value of the interface at saturation, that
is 1/2, 1, and 2 turns for MA = 5, 8, and 30, respectively. The comparison of results obtained
for Ms = 1.4 and Ms = 1 show many similarities, except that the maximum density contrast
is higher by approximately 50 percent for the supersonic layer. An additional feature is the
formation of eddy shocklets of fast magnetosonic type. These are transient for MA = 15 and
persistent for MA = 100. For truly supersonic flow (Ms = 3, where also Mcs > 1), the dominant
instability changes character, having both a low linear growth rate and a low saturation level.
The associated unstable traveling modes for highly supersonic layers are much less disruptive for
the flow.
Second, the use of adaptive mesh refinement in our code allowed us to explore large spatial

domains containing transonic and slightly supersonic shear layers. A white noise perturbation
is added to the background flow in order to let the most unstable modes grow in a natural way.
Typically, up to 22 associated wavelengths are initially observed to grow in accord with the
linear theory. In the very weak field regime, a continuous sequence of pairing/merging events
between vortices is obtained, that ends only when a single big long-lived vortex is formed. This
is very similar to the behaviour known in pure 2D hydrodynamics.12 This trend towards large-
scale coalescence is also observed for the disruptive regime, but it is accompanied by magnetic
reconnection events that are able to partially disrupt the vortices at different stages of the evo-
lution. We have also demonstrated the sensitivity of the results to the seed perturbation, that
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is stronger than for a purely hydrodynamic regime. This is a consequence of the central role
played by the relative phase differences between the subharmonic modes, that are responsible
for the large-scale coalescence. For a particular magnetic field strength of the very weak field
regime (MA = 30), tearing-type reconnection events are identified to occur during the cascade
towards large scales. When the magnetic field is so strong (strong field regime) as to prevent the
formation of vortices, the large-scale coalescence is once more obtained after a relaxation phase.
Therefore, we can conclude that the coalescence towards large scales is a strong mechanism, that
can not be stopped by disruptive effects. Magnetic reconnection can only partially release the
energy built up by the whole instability mechanism.
It will be of interest to study whether the trend to form a large-scale structure eventually ceases

when a certain longitudinal lengthscale is reached. A critical factor will be the dependence of
the cross-stream scaling factor relating the characteristics of the bigger vortices formed through
mergings with the original smaller ones. So far, in none of our simulations covering up to 22
wavelengths, has the merging ceased before reaching the full computational domain size.
Finally, the issue of large-scale, magnetized flow coherence and survival is of fundamental

importance for astrophysical jets. Indeed, very high resolution hydrodynamic simulations are
unable to reproduce the remarkable stability deduced from observations.32,33 Attempts to stabi-
lize such highly supersonic jets, invoke jet densities much higher than that of the surrounding
medium and/or favorable radiative effects (critically dependent on the choice of the cooling
function).34–36 However, as the presence of non negligible magnetic fields is necessary to ensure
the collimation of jets, the solution to this problem could also be magnetic. A recent numerical
study has shown that a cylindrical jet will likely be subject to both KH and current-driven modes.
These latter instabilities are of magnetic origin, and result from the presence of helical magnetic
fields. It has been obtained that the nonlinear interaction between simultaneously growing KH
and current-driven modes can in fact aid jet survival.37 Without invoking magnetic instabilities,
MHD simulations of the long-term evolution of a whole jet configuration have shown that jets
embedded in a helical magnetic field seem to be significantly more stable than similar flows in a
purely axial field.38 The enhanced linear stability due to the azimuthal field component that is
predicted by theory, is probably not sufficient to explain this effect.39 This indicates the necessity
to investigate in detail all aspects occurring in the nonlinear regime. The large-scale coalescence
observed in the present work could indeed play an important role, as this mechanism continu-
ously transfers the free energy towards the large scales without fully releasing it in a disruptive
way. In three dimensional hydrodynamics, this is not possible as 3D instabilities are able to
break up the jet in a turbulent transition, in which all the important physical quantities cascade
toward high wavenumbers until they dissipate.13 However, in MHD, a strong inverse cascade
toward small wavenumbers is allowed both in 2D and 3D. Indeed, self-organization processes,
which lead to the formation of large-scale coherent structures, follow from the inverse cascade
of the mean square magnetic potential and magnetic helicity in 2D and 3D, respectively.40 A
representative 3D example of such an effect is the subsequent formation of a large-scale magnetic
field in association with a dynamo mechanism.41 Hence, the large-scale coalescence effect should
be investigated in more detail for 3D jet-like magnetized configurations.
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Figure Captions:

Figure 1: Time evolution of the transverse kinetic ek,y (upper panels), transverse magnetic
em,y (middle panels), and the longitudinal kinetic Ek,x energies (bottom panels) for a strong field
case MA = 3.33 (dash-dotted line), a disruptive case MA = 10 (solid line), and a very weak field
case MA = 100 (dashed line). Shown are transonic Ms = 1 (left panels) and supersonic Ms = 1.4
(right panels) cases.

Figure 2: Saturation level versus the Alfvén Mach number MA for the transonic Ms = 1
(circles), and supersonic Ms = 1.4 (squares) cases. We use the first maximum of the transverse
kinetic ek,y and magnetic em,y energies in (a) and (b), respectively. The transitions between the
three magnetic regimes are indicated.

Figure 3: Colour images of the density distribution at saturation, for the transonic Ms = 1
case (top panels) versus the supersonic Ms = 1.4 case (bottom panels). Shown are density maps
for Alfvén Mach numbers MA = 15 and 100. Only a part with y in the range [−0.35 : 0.35] of
the full grid is shown.

Figure 4: Left: Cross-sectional variation of various quantities through the upper shock taken
at t = 4.26 (as in Fig. ??) and at y = 0.3 for the MA = 15 case. Right: Similarly for the
MA = 100 case at t = 4.26 (slightly later than in Fig. ?? where t = 4) and at y = 0.2.

Figure 5: Time evolution of the longitudinal Ek,x (plain line) and transverse ek,y (dotted
line) kinetic energies, for transonic Ms = 1 and three Alfvén MA Mach numbers. The values are
normalized by the initial value of Ek,x at t = 0. The transverse energy is additionally multiplied
by a scale factor that is equal to 30 for MA = 3.33, 7, and to 7 for MA = 100.

Figure 6: Grey-scale images of the density distribution of a very weak field transonic layer
with MA = 100. The contour levels are normalized using a linear scale with density values
ranging from 0.42 to 1.13. Only a part with y in the range [−2 : 2] of the full grid is shown.
Times are indicated at left.

Figure 7: Contour levels of the density for 2 snapshots in the evolution of a supersonic
layer Ms = 1.4 with MA = 100. Also indicated is the location of the finest level grids in the
grid-adaptive simulations: note how the shock fronts are fully captured at the highest resolution.

Figure 8: Same as Fig. ?? but for a transonic layerMs = 1 with a strong field withMA = 3.33.
The contour levels are normalized using a linear scale with density values ranging from 0.67 to
1.12.

Figure 9: Same as Figure ?? but for a transonic layer Ms = 1 with MA = 7 (disruptive). The
contour levels are normalized using a linear scale with density values ranging from 0.52 to 1.21.

Figure 10: Time evolution of the transverse kinetic energy ek,y for a transonic shear flow
layer Ms = 1, with MA = 7. We display three realisations A (dash-dotted line), B (plain line),
and C (dashed line) of the same physical case, only differing in the initial random perturbation.

Figure 11: Time evolution of the transverse magnetic energy em,y of two identical interacting
vortices for a transonic Ms = 1 layer. A value MA = 10 is taken. The initial perturbation has a
relative phase difference Φ = 0 (plain line), and Φ = π/2 (dashed line). A simulation with only
the fundamental perturbed is also reported (dash-dotted line).

Figure 12: Grey-scale images of the density distribution of a transonic layer corresponding
to Fig. ?? with a relative perturbation angle Φ = 0. The contour levels are normalized using a
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linear scale with density values ranging from 0.51 to 1.10.

Figure 13: Grey-scale images of the density distribution of a transonic layer corresponding to
Figure ?? with a relative perturbation angle Φ = π/2. The contour levels are normalized using
a linear scale with density values ranging from 0.54 to 1.09.

Figure 14: Different realization of a transonic layer Ms = 1 with MA = 7, as in Figure ??,
but for a double domain size (and resolution) including up to 22 vortices at early times. We set
Lx = 20 and Ly = 8. Only a part with y in the range [−2 : 2] of the full grid is shown.

Figure 15: Density evolution in a transonic layer Ms = 1 with MA = 30. The contour
levels are normalized using a linear scale with density values ranging from 0.61 to 1.12. Note
the formation of small magnetic islands, nicely visible in the density structure at t = 12 (fourth
snapshot) at the periphery of the vortices.
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