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ABSTRACT

We present a method for computing the 6-dimensional coarse-grained phase-space den-
sity f(x,v) in an N-body system, and derive its distribution functionv(f). The method is
based on Delaunay tessellation, wherev(f) is obtained with an effective fixed smoothing
window over a widef range. The errors are estimated, andv(f) is found to be insensitive
to the sampling resolution or the simulation technique. We find that in gravitationally re-
laxed haloes built by hierarchical clustering,v(f) is well approximated by a robust power
law, v(f) ∝ f−2.5±0.05, over more than 4 decades inf , from its virial level to the numerical
resolution limit. This is tested to be valid in theΛCDM cosmology for haloes with masses
109 − 1015M⊙, indicating insensitivity to the slope of the initial fluctuation power spectrum.
By mapping the phase-space density in position space, we findthat the high-f end ofv(f)
is dominated by the “cold” subhaloes rather than the parent-halo central region and its global
spherical profile. The value off in subhaloes near the virial radius is typically> 100 times
higher than its value at the halo centre, and it decreases gradually from outside in toward its
value at the halo centre. This seems to reflect phase mixing due to mergers and tidal effects
involving puffing up and heating. The phase-space density can thus provide a sensitive tool
for studying the evolution of subhaloes during the hierarchical buildup of haloes. It remains
to be understood why the evolved substructure adds up to the actual universal power law of
v(f) ∝ f−2.5. It seems that this behaviour results from the hierarchicalclustering process
and is not a general result of violent relaxation.

Key words: cosmology: theory — dark matter — galaxies: dwarfs — galaxies: formation —
galaxies: haloes — galaxies: interactions — galaxies: kinematics and dynamics

1 INTRODUCTION

The standard paradigm assumes that dark-matter haloes are the ba-
sic entities in which luminous galaxies form and live. The haloes
dominate the gravitational potential over a wide range of radii and
they have a crucial role in determining the galaxy properties. While
many of the systematic features of halo structure and kinematics
have been revealed byN -body simulations, the origin of these fea-
tures is still an open theoretical puzzle, despite the fact that they are
due to simple Newtonian gravity.

The halo density profileρ(r) is an example for such a
puzzle. It is found in the simulations to have a robust non-
power-law shape (which we refer to in general as “NFW”),
with a log slope−3 near the virial radius, flattening gradu-
ally toward −1 at about 1% of the virial radius, and perhaps
flattening further at smaller radii. (e.g. Navarro, Frenk & White
1997; Moore et al 1998; Klypin et al 2001; Power et al 2003;
Hayashi et al 2004, and references therein). This density pro-
file is insensitive (or at most weakly sensitive) to parameters of

the cosmological model and the initial fluctuation power spec-
trum (e.g., Cole & Lacey 1996; Navarro, Frenk & White 1997;
Subramanian, Cen & Ostriker 2000; Ricotti 2003; Colín et al
2003; Navarro et al 2004) indicating that its origin is due toa
robust relaxation process rather than specific initial conditions.
In particular, violent relaxation (Lynden-Bell 1967) may be in-
volved in shaping up the density profile. In addition, secondary
infall may be important in the outer regions (Gunn and Gott
1972; Dekel, Kowitt & Shaham 1981; Fillmore and Goldreich
1984; Hoffman & Shaham 1985; White & Zaritsky 1992) while
some argue that resonances may have a role in the inner regions
(Weinberg & Katz 2002; but see Valenzuela & Klypin 2003).
Nevertheless, there is no clear understanding for why the haloes
actually pick up the particular density profile they have.

The properties of thevelocity dispersiontensor is another the-
oretical puzzle. The haloes tend to be rather round, with a velocity
dispersion profile that is slightly rising at small radii andslightly
falling at large radii but is rather flat overall (Huss et al 1999a,b).
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The profile of the anisotropy parameterβ(r), which is a measure of
radial versus tangential velocities, indicates near isotropy at small
radii, which gradually develops into more radial orbits at large radii
(Cole & Lacey 1996; Huss et al 1999a,b; Colín et al 2000a). For
a spherical system in equilibrium, theσ(r) andβ(r) are related to
ρ(r) via the Jeans equation, but it is not at all clear why the haloes
in the simulations choose the characteristicσ(r) or β(r) that they
actually do.

An interesting attempt to address the origin of the halo pro-
file has been made by Taylor & Navarro (2001), who measured a
poor-man phase-space density profile byfTN(r) = ρ(r)/σ(r)3,
and found that it displays an approximate power-law behaviour,
fTN ∝ r−1.87, over more than two decades inr. Using the spheri-
symmetric Jeans equation, they showed that this power law permits
a whole family of density profiles, whose limiting case is a profile
similar to NFW, which asymptotically approaches a slope−0.75
asr → 0. The general power-law shape offTN(r) is confirmed in
the simulated haloes described below. This scale-free behaviour of
fTN(r) is intriguing, and it motivates further studies of halo struc-
ture by means of phase-space density.

Simulations of theΛCDM cosmology also reveal a roughly
self-similar hierarchical clusteringprocess, where smaller build-
ing blocks accrete and merge into bigger haloes. At every moment,
every halo contains a substructure of subhaloes on top of a smooth
halo component that has been tidally stripped from an earlier gener-
ation of substructure. Some of the important dynamical processes
involved in this hierarchical halo buildup are understood qualita-
tively. These include, for example, the dynamical frictionwhich
governs the decay of the satellite orbits, the tidal stripping of sub-
haloes due to the host halo potential, and the mergers and flyby
interactions of the subhaloes among themselves. However, acom-
plete theoretical understanding of how these processes work in de-
tail, and how they combine to produce the halo structure and kine-
matics, is lacking.

Attempts have been made to explain an inner density
cusp using toy models of dynamical stripping and tidal ef-
fects during the halo buildup by mergers (Syer & White
1998; Nusser & Sheth 1999; Dekel, Devor & Hetzroni 2003;
Dekel et al. 2003). However, a similar halo density profile seems
to be produced also in some of the simulations where substructure
has been artificially suppressed (Moore et al. 1999b; Huss etal
1999a; Avila-Reese et al. 2001; Bullock, Kravtsov & Colin 2002;
Alvarez, Shapiro & Martel 2002), indicating that the process re-
sponsible for the origin of this density profile might be a somewhat
more general feature of gravity and not unique to the merger sce-
nario.

The issue of halo substructure has become timely both be-
cause of its relevance to observations and its implicationson other
major issues in galaxy formation. Tidal tails and streams associ-
ated with dwarf satellite galaxies have been observed in thehaloes
of the Milky Way and M31 (Ibata et al 1994, 2001a,b), and they
start to allow detailed modelling of the halo history through the
satellite orbits. Gravitational-lensing observations provide prelim-
inary indications for the presence of substructure in haloes at the
high level predicted by the dissipationlessΛCDM scenario (e.g.
Dalal & Kochanek 2002) In contrast, the observed number den-
sity of dwarf galaxies seems to be significantly lower, thus pos-
ing a “missing dwarf problem” Klypin et al. (1999b); Moore etal
(1999a). Also, the “angular-momentum problem” of disk galax-
ies (e.g. Navarro & Steinmetz 2000; Bullock et al. 2001b) is
probably associated with the evolution of substructure in haloes
(Maller & Dekel 2002; Maller, Dekel & Somerville 2002). While

the dwarf and angular-momentum problems necessarily involve
baryonic processes, understanding the gravitational evolution of
substructure is clearly a key for solving them.

In order to better understand the origin the various aspects
of halo structure and buildup mentioned above, we make here a
first attempt at addressing directly and in some detail thephase-
spacestructure of dark-matter haloes. The fundamental quantity
in the dynamical evolution of gravitating systems is the full, six-
dimensional, coarse-grained, phase-space densityf(x,v), which
intimately relates to the underlying Vlasov equation and lies be-
hind any relaxation process that may give rise to the virialized halo
structure (Binney & Tremaine 1987, chapter 4).

Ideally, one would have liked to compute it free of assump-
tions concerning spherical symmetry, isotropy, or any kindof equi-
librium. However, computing densities in a six-dimensional space
is a non-trivial challenge which requires simulations of a very
broad dynamical range. The state-of-the-art N-body simulations,
with more than million particles per halo, allow an attempt of this
sort for the first time. We describe below a successful algorithm for
measuringf(x,v), and study its relevant properties including the
associated systematic and random uncertainties. We then apply this
algorithm to simulated virialized haloes in theΛCDM cosmology.

We report in this paper two surprising new results. First, we
discover that the volume distribution function of the phase-space
density,v(f), displays a universal scale-invariantpower-lawshape,
valid in all virialized haloes that form by hierarchical clustering.
Second, we realise that this power law is not directly related to the
overall density profile, but is rather driven by the halosubstruc-
ture. This implies that the phase-space density provides a useful
tool for studying the hierarchical buildup of dark-matter haloes and
the evolution of substructure in them.

In §2 we introducef(x,v) andv(f). In §3 we describe the
method of computingf andv(f) from anN -body halo, and sum-
marise its properties and the associated errors, which are addressed
in more detail in Appendix A. In§4 we present the universal power-
law shape ofv(f) based on several different simulations, and
demonstrate its robustness to the mass scale and simulationtech-
nique. In§5 we display maps of phase-space density and show that
the high-f contributions tov(f) come from substructures within
the parent halo. In§6 we summarise and discuss our results and
future work.

2 THE PDF OF PHASE-SPACE DENSITY: v(f)v(f)v(f)

This is a more technical and elaborate introductory section, aimed
at introducing the concepts and nomenclature relevant for the anal-
ysis of this paper.

2.1 Definitions

The state of a collisionless system is completely determined by the
fine-grained phase-space density functionf(x,v, t), which mea-
sures the mass contained in an infinitesimal phase-space patch of
volumedxdv, located at(x,v). The evolution off(x,v, t) is gov-
erned by the Vlasov equation,

∂tf + v · ∇xf −∇xΦ · ∇vf = 0 , (1)

with Φ(x) the gravitational potential, related self-consistently to
f(x,v) by the Poisson’s integral

Φ(x) = −G

∫

dx′dv
f(x′,v)

|x− x′| . (2)
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It is therefore sensible to assume that a true understanding
of the nature of self-gravitating collisionless systems must involve
f(x,v) as a primary ingredient. However, being a function of six
variables,f(x,v) is hard to deal with computationally. It turns out
that there is a much simpler function,v(f), which is intimately re-
lated tof(x,v), but is much easier to handle both analytically and
numerically.

Before definingv(f), it is worth recalling that the Vlasov
equation preserves the phase-space density along particletrajec-
tories: It implies eq. (1) implies that

d

dt
f [x(t),v(t)] = 0 , (3)

where[x(t),v(t)] is the trajectory of a phase-space element. This
conservation of phase-space density along trajectories can also be
viewed as a conservation of phase-space volume. In order to il-
lustrate what this means, consider any smooth functionC(x), and
define the integral

I(t) ≡
∫

dxdvC[f(x,v, t)] . (4)

Using the Vlasov equation we find that

dI

dt
=

∫

dxdvC′(f)∂tf (5)

= −
∫

dxdvC′(f)
[

v · ∇xf −∇xΦ · ∇vf
]

(6)

= −
∫

dxdv
[

v · ∇xC(f)−∇xΦ · ∇vC(f)
]

= 0 . (7)

The last equality follows by integrating the first term overx and the
second term overv, and assuming thatf → 0 asx,v → ∞. This
implies thatI is conserved under the dynamics.

Now, if C(f) is the Dirac delta function1 δ(f − f0), then the
integralI becomes anf -dependent function, which we refer to as
thePDF v(f):

v(f = f0) ≡
∫

dxdv δ
[

f(x,v, t)− f0
]

. (8)

From this definition it is clear thatv(f)df is the volume of phase-
space occupied by phase-space elements whose density lies in the
range(f, f + df). The conservation ofv(f) implied by Eq. (7)
means that this volume is conserved under the dynamics. The fine-
grainedv(f) [i.e., the v(f) which is calculated using the fine-
grainedf(x,v)] should therefore be viewed as a signature of the
system, which remains the same throughout its evolution.

2.2 Coarse-Grained Density and Mixing

One might have thought that the conservation ofv(f) poses severe
constrains on the evolution off(x,v, t), but this is not the case
due to the effects ofmixing. In the course of evolution, phase-space
patches of highf are stretched and spiral into regions with lowf .
As the stretching continues, the patches become thiner and thiner,
and as a resultf(x,v) varies over increasingly smaller scales. Very
soon, one can no longer measuref(x,v), but instead measure an
average of it over some finite volume. This average is often re-
ferred to as the “coarse-grained” phase-space density, as opposed to

1 Strictly speaking, the Dirac delta function is not a smooth function, but it
can be approximated by a series of smooth functions, each obeying Eq. (7)

the original “fine-grained” densityf(x,v). We denote the coarse-
grained quantities bȳf and v̄(f̄), but in subsequent sections we
may omit the bar and simply refer to them asf andv(f). The im-
portant point to realise is that the coarse-grainedv̄(f̄) is no longer
conserved. For example, given initially a volumeV filled with
phase-space densityfA and a similar volume filled with density
fB , one ends after mixing with a volume2V filled with an average
density(fA + fB)/2.

When a large fraction of the mass is added to halo, e.g. by
collapse or a major merger, rapid global fluctuations of the gravita-
tional potential re-distribute the energies of each phase-space ele-
ment, and lead to very strong mixing across large scales, resulting
in variations inf̄ . After a few global dynamical times, the potential
fluctuations fade away and̄f stabilises. The fine-grainedf , on the
other hand, continues to spiral and stretch indefinitely, onsmaller
and smaller scales, which no longer affectf̄ . After a while, thef̄
can be viewed as the “physical” phase-space density of the system,
since the microscopic fluctuations off can no longer be measured,
and, in particular, no longer affect the gravitational potential. It is
therefore the coarse-grained̄f which, according to Jeans’ theorem,
can be written as a function of he invariants, the energyE and the
angular momentumL. This relaxation process is referred to asvio-
lent relaxation(Lynden-Bell 1967).

What is the coarse-grained̄v(f̄) of a relaxed system, and how
is it related to the constant fine-grainedv(f) of that system? One
may identify the fine-grainedv(f) with the coarse-grained̄v(f̄) at
an early time when the initialf is smooth enough not to vary over
scales smaller than the averaging scale associated withf̄ . Then, the
question can be rephrased in terms of the relation between the final
v̄(f̄) and the earlȳv(f̄). One obvious constraint on the finalf̄ , as
an average off , is that their maximum values should obeyf̄max 6

fmax. In particular, if the earlȳv(f̄) [namelyv(f)] vanishes for
f̄ > fmax, then so does the final̄v(f̄).

Themixing theorem(Tremaine, Hénon & Lynden-Bell 1986)
specifies several additional constraints on the finalv̄(f̄), which
arise from the fact that it has originated from a givenv(f). The
cumulativedistribution function is defined by

V (f0) ≡
∫

dxv θ
[

f(x,v)− f0
]

=

∫ ∞

f0

v(f ′) df ′ , (9)

whereθ(·) is the Heaviside step function. As a monotonic func-
tion, V (f) can be inverted to yieldf(V ), thereduceddistribution
function. The associated cumulative mass functionM(f), which
measures the mass in phase-space regions wheref(x,v) < f0, is
then defined by

M(f0) ≡
∫

dxdv f(x,v) θ
[

f(x,v)− f0
]

(10)

=

∫ ∞

f0

f ′ v(f ′) df ′ . (11)

Substitutingf = f(V ) inside M(f), one obtains the function
M(V ), which can also be written as

M(V ) =

∫ V

0

f(V ′) dV ′ . (12)

If M(V ) andM ′(V ) denote the functions arising from the density
functionsf(x,v) andf ′(x,v) respectively, then the mixing theo-
rem states that the final (coarse-grained)f̄ ′ is an average of the ini-
tial (coarse- or fine-grained)f if and only if M ′(V ) 6 M(V ) for
everyV . This, in turn, implies an implicit constraint on the evolu-
tion of the coarse-grained̄v(f̄). This is one of the very few rigorous
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results concerning the evolution ofv̄(f̄), but its strength is rather
limited because it provides only an integro-differential inequality
that constrains̄v(f̄).

The mixing theorem can be also stated directly in terms of
v(f), as shown by Mathur (1988). In his formulation, a necessary
condition for the final (coarse-grained)v̄(f̄) evolved from the ini-
tial v(f) is that2

v̄(f) = v(f) +
d2

df2
P (f) , (13)

with P (f) being some continuous function (not to be confused
with a probability distribution) such thatP (f) 6 0 for all f and
P (f) → 0 for f → ±∞.

In the CDM scenario, the dark matter is initially cold – with
vanishing velocity dispersion. This means a one-to-one correspon-
dence between the particle positions and their velocities,v =
v(x), and the initial (fine-grained) phase-space density can be writ-
ten as

f0(x,v) = ρ(x)δ3[v − v(x)] . (14)

Thus, in the beginning, the system can be described by the evolu-
tion of its density and velocity fields, often approximated by the
Zel’dovich approximation. This singular nature of the initial phase-
space density, together with its conservation, plays a crucial role in
the formation of structures, and in particular in the abundance of
dwarf haloes, and in the formation of cusps in dark-matter haloes
(e.g. Coĺin et al 2000b).

Physically, the phase-space density is never really infinite, as
it is defined by a finite number of dark-matter particles per given
phase-space volume. Numerically, it is the finite mass-resolution of
theN -body simulation that prohibits the phase-space density from
being infinite. Therefore, the initial phase-space densityis expected
to be extremely high in regions wherev ≃ v(x) and vanishingly
small elsewhere. Accordingly,v(f) will have contributions from
a narrow range of extremely high values off and from a narrow
range nearf = 0. As the system evolves and mixing takes place,
phase-space densities from both regions mix and give rise toin-
termediate values off , widening the distributionv(f) under the
constraints of the mixing theorem.

2.3 A Relation Betweenv(f) and ρ(r)

In general, different systems may have the samev(f). However,
if the system is spherically symmetric and stationary, suchthat f
is a function of the energy alone,f(x,v) = f(ǫ), then there is a
unique relation betweenv(f), f(ǫ) andρ(r). We shall see in§4
that thev(f) measured inN -body haloes is actually different from
the v(f) one would have predicted from the haloρ(r) using the
relation assumingf(ǫ).

For a spherical system the relation betweenρ(r) andv(f) can
be derived as follows. Assume thatf(x,v) = f [ǫ(x,v)], where
ǫ(x,v) = v2/2 + Φ(r), and define the density-of-states function

g(ǫ) ≡
∫

dxdv δ[ǫ(x,v)− ǫ] . (15)

The quantityg(ǫ)dǫ measures how much phase-space volume is
occupied by phase-space elements with energy in the interval

2 This is the original statement in Mathur (1988). However, webelieve
that by adding the (trivial) condition that̄v(f) > 0 for everyf , it becomes
also a sufficient condition.

(ǫ, ǫ + dǫ). When the system is spherical,g(ǫ) can be written as
(Binney & Tremaine 1987, Eq. 4-157b),

g(ǫ) = (4π)2
∫ r(ǫ)

0

s2
√

2
[

ǫ− Φ(s)
]

ds , (16)

with r(ǫ) the inverse function of the gravitational potential. The
overall phase-space volume occupied by energy levels belowǫ is
thus given by

V =

∫ ǫ

−∞

g(ǫ′)dǫ′ (17)

=
2

3
(4π)2

∫ r(ǫ)

0

s2
{

2
[

ǫ− Φ(s)
]}3/2

ds . (18)

Therefore, ifV (f) is the cumulativev(f) defined in Eq. (9), and
f(x,v) is a function of the energy alone, we obtain an integro-
differential equation forf(ǫ):

V [f(ǫ)] =
2

3
(4π)2

∫ r(ǫ)

0

s2
{

2
[

ǫ− Φ(s)
]}3/2

ds . (19)

This has to be supplemented by the equation that connectsΦ(r) to
f(ǫ) (Binney & Tremaine 1987, eq. 4-104),

− 1

r2
d

dr

(

r2
dΦ

dr

)

= 4πGρ(r) (20)

= (4π)2G

∫ 0

Φ(r)

f(ǫ)
√

2(Φ− ǫ) dǫ . (21)

In general, these equations can be solved numerically, e.g., using a
Picard iteration scheme.

In the asymptotic regime, the above equations can be solved
analytically. Ifρ(r) ∝ r−α asr → 0, then, forǫ → Φ(0), one can
show thatf(ǫ) andg(ǫ) have the scale-invariant forms

f(ǫ) ∝
[

ǫ − φ(0)]
−

6−α

2(2−α) , (22)

g(ǫ) ∝
[

ǫ − φ(0)]
8−α

2(2−α) . (23)

Note that the derivative of Eq. (19) with respect toǫ yields

v[f(ǫ)] =
g(ǫ)

f ′(ǫ)
. (24)

By plugging the scale-invariant solutions of eq. (23) into eq. (24),
one finds that forf → ∞, the PDF is also a power law,v(f) ∝
f−β , with

β =
18− 4α

6− α
or α =

18− 6β

4− β
. (25)

We learn that the density slopes in the range0 6 α 6 2, relevant
for the inner regions of haloes wheref is high, correspond to a
narrow range ofβ values,3 > β > 2.5. In this case of power-
law profiles,β = 2.5 corresponds to the singular isothermal sphere
α = 2, β = 2.8 corresponds to anα = 1 cusp, andβ = 3
corresponds to a flat core,α = 0.

Eq. (25) can also be obtained from simpler dimensional argu-
ments using the virial theorem.

3 MEASURING v(f)v(f)v(f) IN AN N -BODY SYSTEM

We wish to measure the phase-space densityf(x,v) of a system
represented byN particles of massm each. One straightforward
approach would have been to divide phase-space into a large num-
ber of Cartesian cells of equal volumeV each. If cellj contains

c© 2003 RAS, MNRAS000, 1–16
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Nj particles, then the average phase-space density in it can beesti-
mated asf̄j = Njm/V . However, this approach is impractical in
a six-dimensional space. A moderate resolution of 100 bins along
each axis would require1012 cells, which is beyond the capacity of
any present-day computer. Moreover, for the computedf̄ to have
any statistical meaning, there should be at least 100 particles in
each cell (for a relative Poisson error of∼ 10%), which requires
a total of1014 particles – about 5 orders of magnitude beyond the
number of particles in today’s largest simulations.

A possible way to overcome this problem is by using anadap-
tive grid, where the cells vary in size to properly allow high res-
olution in high-density regions and low resolution in low-density
regions. One can simply create an adaptive grid by dividing each
Cartesian cell which contains more particles than some prescribed
thresholdN∗ into two or more sub-cells. This division can be done
recursively until all cells containN∗ particles or less.

Even more effective would be to vary the shape of the cells
as well, allowing them to adapt more efficiently to the geometry
of the underlying distribution and thus increase the effective res-
olution. A particularly robust method of this type is theDelau-
nay Tessellation Field Estimator(DTFE), which has already been
implemented in three dimensions in a cosmological context (e.g.
Bernardeau & van de Weygaert 1996; Schaap & van de Weygaert
2000, and references therein). We use this method here to measure
f in six dimensions.

3.1 Constructing a Delaunay Tessellation

A tessellation is the division ofRd space into a complete cover-
ing of mutually disjoint convex polygons. The Delaunay tessella-
tion (Delaunay 1934) is defined for a sample ofN points as fol-
lows. TheDelaunay cellsthat construct the tessellation are thed-
dimensional polyhedrons made by connecting every set ofd + 1
points whose circumsphere [the(d − 1)-dimensional sphere that
passes through all of them] does not encompass any other point
from the sample. One immediate advantage of the Delaunay tessel-
lation is that it is parameter-free, and it completely adapts itself to
the underlying distribution of points. Schaap & van de Weygaert
(2000) have demonstrated the superiority of the DTFE over more
conventional methods for estimating the density in 3D (methods
like cloud-in-cell or the smoothing kernel used in SPH simula-
tions). One may assume that the same holds for the 6D case.

In 2D, the Delaunay cells are triangles, as illustrated in Fig. 1.
In 3D, the Delaunay cells are tetrahedrons. In the six-dimensional
phase space, the Delaunay cells are six-dimensional polyhedrons,
each defined by 7 particles.

Figure 2 shows the Delaunay tessellation of an uneven distri-
bution of points in the 2D plane. It demonstrates the obviousadap-
tive nature of the tessellation: regions with high density of particles
are covered by small triangles, whereas regions with low density
are covered with larger triangles.

Constructing the Delaunay tessellation ofN ∼ 106 par-
ticles in a six-dimensional space is not a straightforward task.
Out of the many algorithms that exist in the literature (e.g.,
Su & Drysdale 1995, and references therein), we followed
Bernardeau & van de Weygaert (1996) and van de Weygaert
(1994) in picking the algorithm by Tanemura, Ogawa & Ogita
(1983). We included some of the programming adjustment by van
de Weygaert, e.g., the use ofk-trees to speed up searching, and
converted the code from three dimensions to six dimensions.

A full account of the algorithm, the numerical implementa-
tion and code performance, is provided elsewhere (Arad 2004, in

Figure 1. The Delaunay tessellation of 8 points in two dimensions. Shown
for example is a circumcircle of one Delaunay cell, which, byconstruction,
does not encompass any other point.

=⇒=⇒

Figure 2.An illustration of the adaptive nature of the Delaunay tessellation.
Left: an uneven distribution of points in 2D. Right: the resulting Delaunay
tessellation.

preparation). Here we just mention briefly that for a halo of∼ 106

particles the C code runs for about a week on a common PC with
CPU∼2GHz and internal RAM∼1GB. The resulting tessellation
is made of∼ 109 Delaunay cells, where a typical particle is sur-
rounded by∼ 7, 000 cells involving∼ 200 neighbouring particles.

3.2 Recoveringf and v(f) from the Tessellation

Once the Delaunay tessellation is constructed in phase space, we
use it to estimatef(x,v), generalising the method implemented in
3D by Schaap & van de Weygaert (2000). First we estimatefi for
each particlei. We define amacro cellby joining all its surrounding
Delaunay cells:

Wi ≡
⋃

ν

Dνi , (26)

where{Dj} is the set of all Delaunay cells and{Dνi} is the subset
of cells which contain the particlei as one of their vertices. Figure 3
shows such a macro cell in 2D. The estimated phase-space density
at point i should be inversely proportional to the volume of the
macro cell,1/|Wi|. The proportionality factor must be greater than
unity because theWi cells of different particles partly overlap, and
one can show that it should in fact bed+1 in order to preserve the
total mass of the system. In phase-space we therefore define

fi ≡ 7
m

|Wi|
. (27)

In order to estimatef at any general point(x,y), one might
have used linear interpolation based on the 7 vertices of thecor-
responding Delaunay cellDν . This means expressingf(x,v) as
a linear function of the 6D vectorω = (x,v), namelyf(ω) =
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Figure 3. An illustration of a macro cellWi (grey area), the union of the
Delaunay cells that surround the particlei.

Aν ·ω+Bν , with Aν andBν a 6D vector and a scalar whose seven
unknown values are found by equatingf(x,v) with fi at the seven
vertices of the cell. However, with106 particles involving∼ 109

Delaunay cells the linear interpolation is CPU-expensive and prac-
tically impossible. Instead, we perform a zero-order interpolation
wheref(x,v) is constant inside each Delaunay cell – the average
of thefi values at the seven vertices ofDν :

fν ≡ 1

7

∑

iν

fiν . (28)

This has the advantage that any integral of the form

I =

∫

dxdvΨ
[

f(x,v)
]

, (29)

with Ψ(·) some arbitrary function, can be easily estimated by the
sum

I =
∑

ν

Ψ(fν)|Dν | . (30)

In particular, the desiredv(f) can be found by first computing
its cumulative counterpartV (f),

V (f0) =

∫ ∞

f0

v(f ′) df ′ =

∫

f(x,v)>f0

dxdv (31)

→
∑

fν>f0

|Dν | , (32)

and then taking its derivative,

v(f) = −dV (f)

df
. (33)

In what follows, we often denote the DTFE-measuredf and
v(f) by fdel andvdel in order to distinguish them from the exact
quantities.

3.3 Error Estimate

When we measure thev(f) of a cosmologicalN -body system us-
ing the Delaunay tessellation, we should expect two types oferrors.
First are the errors in the underlyingf associated with errors in the
numerical simulation itself, such as errors due to two-bodyrelax-
ation effects, force estimation, time integration and so on. A way to
estimate these errors is by re-simulating the same system with dif-
ferent codes and with different sets of numerical parameters gov-
erning the mass resolution and the force resolution. A systematic
testing of this sort will be reported in an associated paper (Arad,
Dekel & Stoehr, in preparation). In the current paper, we make a
preliminary comparison of several different haloes simulated with

different resolutions and with different codes. We find thatall the
virialized haloes tested recover almost the same shape ofv(f).

The second type of errors originate from the fact that we try
to estimate a smoothf(x,v) from a finite set of particles using
the Delaunay tessellation. Here we may encounter both statistical
and systematic errors. Some of these errors would decrease as the
number of particles is increased, whereas some are an inherent part
of the DTFE independent of the mass resolution. In order to ob-
tain a simple understanding of the nature of the DTFE errors,we
first use a simple statistical model based on a Voronoi tessellation,
which resembles the DTFE but lends itself more easily to analytical
treatment. We then evaluate the DTFE errors empirically by mea-
suringfdel(x,v) in synthetic systems were the particles represent
a knownf(x,v), and compare the results to the error-model pre-
dictions. Since this error analysis is somewhat detached from the
main focus of this paper, we describe it in detail in AppendixA.
Our wisdom regarding the DTFE properties and uncertaintiescan
be summarised in three points as follows:

(i) The measuredfdel at each particle is chosen, to a good
extent, from a probability distribution of the random variable
fdel/ftrue. In a typical realisation with106 particles, the width of
this distribution is about one decade, defining the range of fluctua-
tion of fdel aboutftrue. As N → ∞, the shape of the distribution
approaches an asymptotic limitp(fdel/ftrue) with a finite width
of about one quarter of a decade, as deduced from the DTFE of a
Poisson distribution. Therefore, also in the infinite limit, the DTFE
is expected to produce local fluctuations.

(ii) The measuredvdel(f) can be viewed as a convolution of
the truev(f) and afixed window function, which is related to the
probability distributionp(·) [Eq. (A5)]:

vdel(f = f0) =

∫ ∞

0

vtrue(f)f
−1
0 p(f0/f) df . (34)

For distributions wherev(f) is close to a power-law, the difference
betweenvdel(f) andvtrue(f) is negligible over a large range of
scales, as demonstrated in Figs. A2 and A3. This is a very useful
feature of the DTFE-measuredv(f).

(iii) The relative statistical error invdel(f) is proportional to
1/

√
N , and can be approximated by [Eq. (A18)]

∆(f) = c

(

m

f 〈Vdel(f)〉

)1/2

, (35)

with Vdel(f) =
∫∞

f
vdel(f

′) df ′ andm = M/N . The constantc
is of order unity, and can be calibrated by comparing Eq. (35)to
the actual error in lower-resolution measurements. In practise, this
means that whenN ∼ 106 or more, the statistical error invdel(f)
is negligible for a very wide range off . Moreover, in regions where
there are large statistical errors, they are likely to be overwhelmed
by systematic errors.

4 A UNIVERSAL SCALE-FREE v(f)v(f)v(f)

We have analysed thev(f) of several different haloes, in three dif-
ferent mass ranges, simulated within theΛCDM cosmology with
two differentN -body codes.

In order to calculate thev(f) of a given halo, we find the halo
centre using a simple max-density algorithm, and extract all parti-
cles which lie within a distanceR from its centre. The max-density
algorithm is based on an iterative counting in cells: at eachitera-
tion, space is divided into 8 equal cubic cells and the densest cell is
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Phase-Space Structure of Dark-Matter Haloes7

chosen for the following iteration. The iterative process stops when
the densest cell contains no more than 500 particles, and thecen-
tre of that cell is defined as the centre of the halo. The radiusR is
typically set to be∼ 10 − 20% larger than the virial radius. We
compromise on analysing∼ 106 particles, such that we explore
a significant dynamical range while the computation can be com-
pleted in a few days.

To estimate the typical phase-space density at the outer regions
of the halo, we definefvir by

fvir =
1

π3/2

ρ̄vir
σ3
vir

, (36)

which is the average space-space density that one would measure
for a halo of constant densityρvir and a Maxwellian velocity distri-
bution with a velocity dispersionσvir. For a given halo in a given
cosmology, the mean virial quantitiesρvir andσvir are defined
using the virial theorem and the top-hat model relevant to that cos-
mology.

As one crude estimate of the upper limit onf for which the
measurement ofv(f) is reliable, we evaluate in each halo thef
value,f20%, below which thestatisticalerror in v(f) due to the
DTFE procedure is below20%. For that we use Eq. (35), cali-
brated by measurements with105 particles. This statistical error is
expected to be practically negligible in the rangefvir < f < f20%.

4.1 N -body Simulations on Different Scales

The results described in this paper are based on three different cos-
mological simulations. Two of them used the Adaptive Refinement
Tree (ART) code (Kravtsov, Klypin & Khokhlov 1997), and the
third used the Tree Particle Mesh (TPM) code (Bode et al 2000;
Bode & Ostriker 2003). In all the simulations, the assumed cosmo-
logical model is the standardΛCDM with Ωm = 0.3, ΩΛ = 0.7
andh = 0.7 today.

The ART simulations were done in periodic boxes of sizes
L = 1h−1Mpc andL = 25h−1Mpc, whereas the TPM simu-
lation was done in a box ofL = 320 h−1Mpc. We denote these
three simulations byL1, L25 andL320 respectively. Three haloes
were analysed from each of these simulations, with masses corre-
sponding to to dwarf galaxies (109 − 1010M⊙), normal galaxies
(∼ 1012M⊙) and clusters (∼ 1015M⊙) respectively. Global prop-
erties of of the simulations and the haloes are given in table4.1.
Thev(f) curves for these haloes are shown in Fig. 4.

The L1 simulation is from Colín et al (2003). It is analysed
at z = 2.33 in physical coordinates. The three haloes studied,
labelledA, B, C, are the largest haloes in the snapshot. Their
virial radii refer to a mean overdensity of∆ = 183, as appro-
priate for the given cosmology and redshift. The L25 simulation
is by Klypin et al (2001). The haloes are denotedB, C, D fol-
lowing the notation in the simulation paper. The L320 simulation is
by Wambsganss et al (2004); Weller et al (2004). The three haloes
studied, labelledA, B, C, are the most massive haloes in the simu-
lation excluding haloes whose real density map shows an ongoing
major merger.

In each of the analysed haloes, we findv(f) to be well de-
scribed by a power-law,

v(f) ∝ f−2.50±0.05 , (37)

over 3 to 5 decades inf . It is typically valid between slightly above
fvir and slightly belowf20%. Outside this range,v(f) gradually
and systematically deviates downward from the power law. Inthe
low-f regime the deviation is associated with departure from the

L1AL1A

L1BL1B

L1CL1C

L25BL25B

L25CL25C

L25DL25D
L320AL320A

L320BL320B

L320CL320C

10−5010−50

10−4510−45

10−4010−40

10−3510−35

10−3010−30

10−2510−25

10−2010−20
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10−510−5

100100

105105

v
(f

)
v
(f

)

10−410−4 100100 104104 108108

f/f
−2f/f
−2

Figure 4. The volume distribution of phase-space density,v(f), for each
of the nine haloes analysed in this paper (see Table 4.1). Thecurves were
shifted to coincide atf = f−2, where the local log slope ofv(f) is−2, and
were then shifted vertically by 4 decades relative to each other. A power-
law line v(f) ∝ f−2.5 is shown on top of each curve. Marked on each
curve are the virial levelfvir and the 20% statistical error limitf20%. The
f range is shorter for the L320 haloes because they were sampled with less
particles.

virial regime, and the high-f deviation is consistent with being due
to the limited mass resolution of the specific halo, as seen bythe
proximity tof20% and as demonstrated in Appendix A. The high-f
deviation from the power-law tends to occur at a smallerf value in
L25, and even smaller in L320, due to the fact thatMvir is smaller
respectively.

There is no evidence for a significant dependence ofv(f) on
the halo mass. There may be a marginal trend for slight steepening
of v(f) as a function of mass, but only from steeper thanf−2.45 at
∼ 109M⊙ to flatter thanf−2.55 at∼ 1015M⊙. This indicates rel-
ative insensitivity to the exact slope of the initial fluctuation power
spectrum, which varies across the range from dwarf galaxiesto
clusters of galaxies. Additionally, the fact that we obtained essen-
tially the samev(f) from simulations using two different numer-
ical codes, indicates that the shape ofv(f) is not an artifact of a
particular simulation technique.
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8 I. Arad, A. Dekel, A. Klypin

Table 1.Global properties of the 9 haloes analysed in this paper. Thev(f) of each halo was calculated from all theNcut particles that lie within a radiusRcut.
Rvir andMvir are the the virial radius and mass.C is the concentration of the halo, calculated from an NFW fit.f2 is thef level where the logarithmic slope of
v(f) is−2. This value, together withv(f2), are used to scale thev(f) curves of the different haloes in Fig. 4. Finally, “Code”,z, mpar, rforce andσ8 describe
the computer code, red-shift, mass-resolution, force-resolution, and normalisation of each simulation.

Halo Ncut Rcut Rvir Mvir C f2a v(f2)b Code z mpar rforce σ8

[kpc] [kpc] [M⊙] [M⊙] [kpc]

L1A 1.6× 106 23 21 1.1× 1010 7.0 4.7× 108 1.0× 10−8 ART 2.33 7.0× 103 8.7× 10−2 0.75
L1B 1.3× 106 23 20 8.6× 109 4.3 3.4× 108 1.3× 10−8 ART 2.33 7.0× 103 8.7× 10−2 0.75
L1C 1.1× 106 20 19 7.8× 109 7.5 3.5× 108 1.1× 10−8 ART 2.33 7.0× 103 8.7× 10−2 0.75

L25B 1.1× 106 420 320 1.9× 1012 17.4 5.8× 105 1.3× 100 ART 0 1.2× 106 1.4× 10−1 0.9
L25C 1.2× 106 420 330 2.0× 1012 12.8 3.4× 105 4.0× 100 ART 0 1.2× 106 1.4× 10−1 0.9
L25D 1.4× 106 420 340 2.2× 1012 11.7 3.4× 105 4.3× 100 ART 0 1.2× 106 1.4× 10−1 0.9

L320A 4.6× 105 3, 000 2, 700 1.1× 1015 6.28 8.8× 102 3.4× 108 TPM 0 2.6× 109 4.7× 100 0.95
L320B 4.5× 105 3, 000 2, 700 1.1× 1015 5.00 6.0× 102 6.7× 108 TPM 0 2.6× 109 4.7× 100 0.95
L320C 4.6× 105 3, 000 2, 700 1.1× 1015 6.43 1.0× 103 2.4× 108 TPM 0 2.6× 109 4.7× 100 0.95

a units:M⊙Mpc−3km−3s3

b units:M−1
⊙ Mpc6km6s−3

5 SUBSTRUCTURES

5.1 Clumpiness in Phase-Space Density

Had f(x,v) been a function of the energy alone, and the haloes
were completely spherical and isotropic, the power-lawv(f) ∝
f−2.5 would have implied via Eq. (25) that the real-space den-
sity profile must also be a power law, in fact an isothermal sphere
ρ(r) ∝ r−2, at least over some finite range inr. This is clearly
not the case, as the simulated haloes are well described by a univer-
sal average density profile whose local logarithmic slope isvarying
continuously from−3 at the outer parts to−1 or even flatter in the
inner parts (§1). We conclude thatf is far from being a function of
energy alone, and in particular the system must deviate significantly
from spherical symmetry or isotropy. This could be mostly due to
the clumpy substructure of the halo, where the surviving subhaloes
contribute volume of high phase-space density tov(f), thus mak-
ing it shallower than expected from a smooth system with an inner
density slope flatter than−2.

In order to address the hypothesis thatv(f) is driven by sub-
structure, we plot real-density and phase-space density maps of
each halo in real-space slices. Fig. 5 and Fig. 6 show such maps
for dwarf haloes B and C (all other haloes show a similar qualita-
tive behaviour).

The real-space densityρ of each particle was calculated using
a three-dimensional Voronoi tessellation (van de Weygaert1994),
generated using the freeqhull software package. We chose this
technique to estimate the real-space density because it is very simi-
lar in its adaptive nature to the Delaunay tessellation technique used
to estimate the six-dimensional phase-space density. A brief ac-
count of the Voronoi tessellation technique is found in Appendix A,
where it is used to estimate the errors in the DTFE method.

The maps were produced in the following way. For each halo,
we consider all the particles within an equatorial slice parallel to
thexy-plane, whose width is 40% of the virial radius. The slice is
divided into500× 500× nz equal cubic cells, withnz set to have
the cells cubic. The density (ρ or f ) assigned to each cell is the
average of the densities of all particle within it. ¿From each group
of cells with the samex andy, we plot the one with the highest
density.

We see that the real-space density maps are dominated by
the familiar relatively smooth trend of density decreasingfrom
the centre outward, with several tight clumps spread through-
out the halo. The phase-space density maps, on the other hand,
are qualitatively different. While the global trend with radius is
much less apparent, the subhaloes become the highest peaks,
especially in the outer regions of the halo. For example, the
clumps with f > 1012M⊙ Mpc−3(km/s)−3 (yellow-reddish
colours) are found everywhere. The very high peaks, withf >
1013M⊙ Mpc−3(km/s)−3 (bright yellow colours), are all found
at a considerable distances from the centre. The central peak in f
is quite modest in comparison; the elongated structures near the
centre of dwarf-halo B are most likely subhaloes in the process of
merging.

Fig. 7 highlights the same effect by showingρ and f asso-
ciated with a random subset of the N-body particles as a function
of their distancer from the halo centre. A large portion of these
particles follow the global trend of decreasing density with radius
– they could be associated with a smooth-background component,
for which f is approximately a function of energy alone. At radii
r > 1 kpc, the high-f values come in “spikes” corresponding to
the subhaloes. While the spikes inρ reach values comparable to
the central peak, the spikes inf could be more than 100 times
higher, indicating that the subhaloes are bothcompactand cold.
We note in dwarf halo B, for example, that all the points where
f >∼ 1012M⊙ Mpc−3km−3s3 are in subhaloes.

The other interesting feature of the spikes is the fact that they
seem to get lower and broader as they get closer to the halo centre,
and that beyond a certain radius (of about2 kpc), the spikes com-
pletely blend into the smooth background. This indicates that the
subhaloes phase-mix and lose their high phase-space densities as
they approach the halo centre. This seems to be the natural result
of mergers andtidal effects, which both puff up the subhaloes and
heat them up.

5.2 Toy Model: Adding Up Small Haloes

As a first attempt at trying to understand how the power lawv(f) ∝
f−2.5 in a halo of massM may originate from its substructure, we
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45 kpc

45 kpc

Figure 5. Density maps of dwarf haloL1B in a slice of thickness0.4Rvir.
Top: real-space density. Bottom: phase-space density. Theunits in the
colour key arelog(ρ/[M⊙Mpc−3]) and log(f/[M⊙Mpc−3km−3s3])
respectively. The very-highf values are found inside clumps which are
typically far away from the halo centre.

simply add up the typical contributions from the general popula-
tion of haloes of different massesm smaller thanM , as predicted
in the ΛCDM cosmology. Based on cosmological N-body sim-
ulations (Moore et al 1999a; Ghigna el al 2000; De Lucia et al.
2004), and in accordance with the Press-Schechter approximation
(Press & Schechter 1974) and its extensions (e.g., Lacey & Cole
1993; Sheth 2003), the mass function of small-mass haloes (not
necessarily subhaloes) can be approximated bydn/dm ∝ m−γ ,
with γ ≃ 1.8− 2.0. Additionally, we assume that the average den-
sity profiles of haloes of different masses have the same functional
form and are simply scaled versions of each other. This is estab-
lished byn-body simulations for the case ofisolatedhaloes, but is
less clear when one considers subhaloes (e.g., Hayashi et at2003).
Nevertheless, we adopt this assumption as our first crude toymodel.

As a first approximation we assume that the haloes all form at
the same time in an Einstein-deSitter cosmology, so they have the

45 kpc

45 kpc

Figure 6. Density maps of dwarf haloL1C . See Fig. 5.

same characteristic real-space densityρm = ρ (a constant factor
times the universal density), and therefore their typical radii scale
like rm ∝ m1/3. Based on the virial theorem, the velocity disper-
sions then scale likeσm ∝ m1/3. Therefore, the typical phase-
space volume of a halo of massm scales likeVm ∝ r3mσ3

m ∝ m2,
and its typical phase-space density isfm ∝ m/Vm ∝ m−1. If we
denote bỹv(f) the universal, un-scaled, normalised, dimensionless
probability distribution function relevant for all the haloes, then the
volume distribution functionvm(f) of a halo of massm, defined
such thatvm(f)df is a volume, is given by

vm(f) =
Vm

fm
ṽ
(

f

fm

)

= m3ṽ(mf) . (38)

Then the total contribution tov(f) of haloM from the population
of smaller haloesm < µM is

v(f) =

∫ µM

0

dn

dm
vm(f) dm =

∫ µM

0

m3−λṽ(mf) dm , (39)
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Figure 7.Densities as a function of radius for dwarf haloL1B , using a ran-
dom set of 4% of the particles. Top: real-space density. Bottom: phase-space
density. The background particles define a general trend of decreasing den-
sity with radius, while the spikes correspond to subhaloes.The phase-space
density spikes are higher than the central peak because the subhaloes are
cold. They become shorter and broader at smaller radii, indicating heating
and puffing up by tidal effects and mergers.

whereµM is the mass of the largest subhalo (µ < 0.5). Changing
variablesm → mf , we finally get

v(f) = f−(4−γ)

∫ µMf

0

s3−γ ṽ(s) ds . (40)

Thus,v(f) is a multiple of a power-lawf−(4−γ) and a monotoni-
cally increasing function off ; it therefore has to be shallower than
the power lawf−(4−γ). Forγ > 1.8, this means thatv(f) is shal-
lower thanf−2.2, which is significantly shallower than the mea-
suredf−2.5±0.05. This idealised toy model does not seem to work.

This calculation can be generalised to the case where haloes
of smaller masses form first, as implied from the slope of the initial
fluctuation power spectrumPk. For an Einstein-deSitter cosmol-
ogy, the formation time scales withm such thatρm ∝ m−ν , with
ν = (n+3)/2, andn is the local power index,n = d lnPk/d ln k,
at the relevant effective scale for masses< µM . Then, in anal-
ogy to the calculation in the previous paragraph, we haveσm ∝

m(2−ν)/6, Vm ∝ m(4+ν)/2, fm ∝ m−(2+ν)/2, and we finally
obtain thatv(f) must be flatter than the power law

v(f) ∝ f−2−2(2−γ)/(2+ν) . (41)

Forn = −3, namelyν = 0, the asymptotic index for small haloes
where all haloes form at the same epoch, we recover the earlier
result thatv(f) is flatter thanf−(4−γ). For ΛCDM on galactic
scales, the effective power index isn 6 −2.3, soν 6 0.35, and
for γ > 1.8 we obtain thatv(f) is flatter thanf−2.17. We see that
the time dependence makes only a little difference.

The totalv(f) of the halo should be the sum of the background
contribution and the subhalo contribution, but at the high-f range
we expectv(f) to be dominated by the contribution of subhaloes,
as seen earlier in this section. The above toy model thus predicts
thatv(f) should be flatter thanf−2.2, in conflict with the measured
v(f) ∝ f−2.5.

We conclude that a halo is not simply an ensemble of clumps
drawn from the general population of smaller haloes. The sub-
haloes may have a different mass function, their shape properties
may vary differently with mass, and they both could vary withdis-
tancer from the host-halo centre. If one keeps the scaling relation
with ν = 0 and ignores any variation withr, the required subhalo
mass function for matching the measuredv(f) ∝ f−2.5 is with
γ = 1.5 (compared toγ = 1.8). Indeed, a flattening of the subhalo
mass function could be a natural result of the inevitable dynamical
evolution of the subhaloes in the potential well of their host halo.
The phase mixing due to tidal effects, including total disruption,
is likely to be more efficient in less massive subhaloes, thusflat-
tening the mass function. Also, dynamical friction is more efficient
in making more massive subhaloes sink into the halo, thus making
the mass function flatter in the inner parts. However, recentsim-
ulations indicate that the subhalo mass function is not flatter than
γ ≃ 1.7 (De Lucia et al. 2004), indicating that the tidal effects on
the inner structure of subhaloes must also have an importantrole.
These are matters for more detailed future studies, but the failure
of the idealised toy model analysed above to reproduce the magic
power lawv(f) ∝ f−2.5 indicates that the phase-space density is
likely to provide a useful tool for studying the dynamical evolution
of subhaloes in host haloes.

6 DISCUSSION AND CONCLUSION

Using Delaunay tessellation, we developed a method for measur-
ing the 6-dimensional coarse-grained phase-space densityf(x,v)
in N -body systems. We focused, in particular, on measuring the
phase-space volume distribution function,v(f). We applied this
technique to several simulated haloes of∼ 106 particles, formed
by hierarchical clustering in the standardΛCDM scenario, and ob-
tained two striking new results.

First, v(f) is well described by a power law,v(f) ∝
f−2.5±0.05, over 3 to 5 decades inf . The power-law regime starts
at anf value which corresponds to the characteristic size of the
virialized halo. It ends at anf value which is determined by the
dynamical resolution limit of the specific simulation. Therefore,
the true power-law range may extend tof → ∞. This power law
seems to be insensitive to the halo mass in the range109−1015M⊙,
indicating insensitivity to the exact slope of the fluctuation power
spectrum, as long as the haloes are built by hierarchical merging of
clumps bottom up.

Second, this power-law originates from substructures within
the halo rather then the overall trend with radius. The substructure
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completely dominates the high-f parts of thev(f) distribution. The
infalling clumps seem to phase-mix — by puffing up, heating and
stripping — as their orbits decay from the virial radius inwards
toward the halo centre and they melt into the halo smooth back-
ground.

Our first worry is that these results could be numerical arti-
facts, or severely contaminated by such. Based on our error analysis
and tests with mock datasets, we argue that thev(f) measured by
the DTFE algorithm genuinely reflects the true phase-space prop-
erties of the givenN -body system over a broad range off . The
question is whether the phase mixing suffered by the subclumps as
they approach the halo centre might be an artifact of numerical ef-
fects such as two-body relaxation, leading to underestimated inner
densities and/or overestimated internal velocities. A similar effect
has been pointed out using a one-dimensional toy model (Binney
2003). The apparent agreement between simulations run withdif-
ferent codes and different resolutions is encouraging. In order to
specifically address the effect of few-body relaxation, we intend to
run twice a simulation of the same halo with the same number of
particles but with a different force resolution (ongoing work with
F. Stoehr).

Assuming that the simulations genuinely reflect the true phys-
ical behaviour under the Vlasov equation, the origin of the robust
power-law shape ofv(f) from the merging substructure becomes a
very interesting theoretical issue. As demonstrated in§5, a simple
model using the mass function and the scaled profiles of the gen-
eral halo population in theΛCDM scenario does not reproduce the
correct power law. This, and the apparent trend of thef spikes with
radius, indicate that the structural and kinematic evolution of the
subhaloes in the parent halo are important. Studies of tidalheating
and stripping may be found useful in this modelling.

It would be interesting to follow the phase-space evolutionand
the contribution to the overallv(f) by a single, highly resolved
subhalo, or many of those, as they orbit within the parent halo and
approach its centre. This may help us understand the nature of the
interaction between the parent halo and its subhaloes, and the origin
of thev(f) power law (ongoing works with E. Hayashi and with B.
Moore).

Another more general but speculative possibility is that the
f−2.5 power law represents some sort of a cascade of relaxation
processed in phase-space, in which high phase-space densities turn
into lower (coarse-grained) densities through the processof mix-
ing. In general, the fact that our findings are expressed in terms of
the fundamental concept of phase-space density should makethem
more directly accessible to analytical treatment. In this respect, it
may prove beneficial to investigate more closely the time evolu-
tion of thev(f) of a cosmological halo and its components. This
may shed light on the connection between thev(f) power-law be-
haviour and the relaxation processes within the halo.

We saw that the power-law behavior ofv(f) is limited to
the virial regime. It would be interesting to learn how this shape
evolves in time as the halo virializes. A preliminary study (to
be concluded and reported in another paper) indicates that in the
intermediate-f regime thev(f) of a pre-virialized system is sig-
nificantly flatter thanf−2.5, while in the high-f regime it drops in
a much steeper way. Thef−2.5 behaviour seems to be a feature
unique to virialized systems.

We learnt that in the haloes that are built by hierarchical clus-
tering, the power-law behaviourv(f) ∝ f−2.5 reflects the halo
substructure. It would be interesting to find out whether this power-
law behaviour actually requires substructure, or it is a more gen-
eral phenomenon of virialized gravitating systems, valid indepen-

dently of substructure. One way to answer this question would be to
analyse simulated haloes in which all fluctuations of wavelengths
smaller than the halo scale were removed, resulting in a smooth
halo formed by monolithic collapse, with no apparent substruc-
ture in the final configuration. As described in§1, such haloes are
known to still have NFW-like density profiles in real space, and one
wonders whether they also have the magic power-lawv(f). There
are preliminary indications for a steeperv(f) in this case (Arad,
Dekel & Moore, in preparation). If confirmed, it would indicate
that thef−2.5 behaviour, while insensitive to the exact slope of the
initial power spectrum, is unique to the hierarchical clustering pro-
cess, and is not a general result of violent relaxation.

Our current results are just first hints from what seems to be
a promising rich new tool for analysing the dynamics and structure
of virialized gravitating systems. The analysis could become even
more interesting when applied to haloes including the associated
gaseous and stellar components.
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APPENDIX A: ERRORS IN vdel(f)vdel(f)vdel(f)

The “true”, underlying coarse-grainedf(x,v) is what one would
have measured using a fixed smoothing window in phase space (e.g.
counts in fixed cells) and an arbitrarily large number of particles.
Instead, the Delaunay Tessellation Field Estimator uses adaptive
cells in order to deal with the mass resolution limitations.There-
fore, the relation between the measuredvdel(f) and the underlying
vtrue(f) is not trivial. Both statistical and systematic errors might
influence our results. We estimate these errors empiricallybelow,
but we start with an approximate model that provides a simpleun-
derstanding of the origin of the errors.

A1 A Voronoi Model: Fixed Smoothing v(f)

A technique similar to the Delaunay tessellation, but somewhat
simpler to interpret, is the Voronoi tessellation (van de Weygaert
1994). For each particle, the Voronoi cell is defined as the region
of phase space in which every point is closer to that particlethan
to any other particle. In this case,N particles define exactlyN
Voronoi cells which cover all of phase space with no overlaps. If
Vi is the Voronoi cell of particlei, then a natural mass-preserving
way of estimating the phase-space density inside that cell is by
fi ≡ mi/|Vi|. We denote the quantities measured this way byfvor
andvvor(f).

Much like the Delaunay tessellation, the Voronoi tessellation
is an adaptive grid that enables one to estimatef(x,v) even in the
presence of a relatively small number of particles. We use the De-
launay method in our main analysis because it is somewhat more
accurate (Schaap & van de Weygaert 2000), and is easier to calcu-
late numerically. However, the similar Voronoi method provides a
simple way of learning about the properties of the measuredv(f)
and understanding the uncertainties associated with such amea-
surement. The empirical tests of the Delaunay measurementsbe-
low demonstrate the relevance of the wisdom gained by analysing
the Voronoi model.

To understand the errors in the Voronoi density estimation,let
us start with the trivial case where all of infinite phase-space is uni-
formly filled with phase-space densityf0, which is represented by
an infinite number of particles with massm. A volumeV of phase-
space would then contain on average a finite number of particles,
f0V/m. The Voronoi estimate offi for each particle would fluc-
tuate aboutf0 due to the discreteness of the particle distribution.
Since there is no typical scale in the problem, and each cell always
contains one particle, the fluctuationsδf/f per Voronoi cell would
remain at the same level even if one increases the average number
density of particles while decreasing the mass of each particle in
proportion, keepingf0 the same. Therefore, the probability that the
Voronoi estimatedf would lie in the intervalf → f + df may
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be written in terms of a universal probability distributionfunction
p∞(f/f0) d(f/f0).

When we consider a finite system in a box of volumeV , with
a finite number of particlesN inside it, we may expect the proba-
bility distributionpN(·) to deviate from its asymptotic formp∞(·).
AsN decreases, we expectpN(·) to widen due to the increasing ef-
fect of the boundaries. Next, examine a system with a non-uniform
phase-space density, such as a cosmological halo. If the number of
particles that represent thisf is sufficiently large, we may approxi-
mate every region in phase-space as being locally uniform, and es-
timate its Voronoif using the asymptoticp∞(·). This assumption
is expected to break down in regions with very high phase-space
density, where the sampling may become poor and insufficient, or
in regions wheref has large gradients over small scales. Neverthe-
less, lets assume for the moment that there exists an effective p(·)
[not necessarilyp∞(·)] which properly approximates the fluctua-
tion distribution of the Voronoif for all particles.

This assumption allows us to calculate the expectation value
of vvor(f) for a finite system with a givenf(x,v). This is done by
first calculating the average ofVvor(f), the cumulative version of
vvor(f) defined in (9), and then differentiate it to obtain the average
of vvor(f). Assuming thatf(x,v) is realised byN ≫ 1 particles,
we divide phase space into a large number of cellsωα, which are
small enough to guarantee that (a) each cell is very unlikelyto con-
tain more than one of theN particles, and (b) the value off(x,v)
is approximately constant within every cell.

For each cellωα, we calculate〈Vα(f)〉, the average of the
contribution of this cell toVvor(f). The contributionVα(f) would
be non-zero only when there is a particle in the cellωα, a parti-
cle whose assigned Voronoi estimated density isfvor. If fα is the
true phase-space density in that the cell, then, according to our as-
sumption,fvor would be chosen at random out of the probability
distributionp(fvor/fα) d(fvor/fα). Oncefvor is chosen,Vα(f) is
given by

Vα(f) =

{

m/fvor , f < fvor
0 , f > fvor

. (A1)

Using our assumption (a) above, the probability ofωα to host one
particle isPα = NM−1

∫

ωα

f(x,v) dxdv, with M = Nm the
total mass of the system. Therefore,

〈Vα(f)〉 = Pα ×
∫ ∞

f

p(fvor/fα)d(fvor/fα)m/fvor (A2)

=

∫

ωα

dxdv

∫ ∞

f

p[fvor/f(x,v)]f
−1
vor dfvor , (A3)

and so,

〈Vvor(f)〉 =
∑

α

〈Vα(f)〉

=

∫

dxdv

∫ ∞

f

p[fvor/f(x,v)]f
−1
vor dfvor

=

∫ ∞

0

df ′ v(f ′)

∫ ∞

f

p(fvor/f
′)f−1

vor dfvor . (A4)

In the last equality, we have used the exactv(f) to replace the six-
dimensional phase-space integration. By differentiatingEq. (A4)
with respect tof0, we finally obtain the desired expectation value:

〈vvor(f)〉 =
∫ ∞

0

v(f ′)f ′−1p(f/f ′) df ′ . (A5)

We see that the measured〈vvor(f)〉 is a convolution of the ex-

act v(f) with a fixed window functionp(f/fftrue ). The narrower
p(·) is, the closer〈vvor(f)〉 would be to the truev(f). However,
as argued above, even whenN → ∞ the windowp(·) does not
approach a Dirac delta function; it rather converges to somefinite-
width distributionp∞(·). Therefore, even with an infinite resolu-
tion the Voronoi tessellation would not produce the exactv(f); it
converges to a convolution of it with a fixed windowp∞(·).

This convolution would not affect the shape of the measured
〈vvor(f)〉, and would preserve the true shape ofv(f), provided
thatv(f) does not vary drastically overf scales which are smaller
than the width of the window. In particular, whenv(f) is a power
law, the Voronoi algorithm would recover the same power law for
〈vvor(f0)〉.

A2 Empirical Testing with Mock Systems

For an empirical study of the errors in the DTFE-measuredv(f),
and for testing how well the Voronoi model approximates these er-
rors, we have performed a series ofvdel(f) measurements on sys-
tems with known phase-space densities of the form

f(x,v) = ρ(x)
[

2πσ2(x)
]−3/2

e−v2/2σ2(x) , (A6)

corresponding to a spherical system in real space with a
Maxwellian velocity dispersion. We have examined six such sys-
tems with three different density profiles parametrised byα,

ρα(x) =
e−x/5

xα(1 + x)3−α
, α = 0, 0.5, 1.0 , (A7)

and the following two types of dispersion profiles:

σv(x) =

[

M(x)

x

]1/2

, (A8)

σc(x) = 0.1 . (A9)

The subscripts “v” or “c” denote a varying dispersion profileversus
a constant one respectively. Thev(f) for such systems is

v(f) =
(4π)2

f

∫ x(f)

0

x2σ3(x)

√

2 log
f(x)

f
dx , (A10)

with

f(x) ≡ ρ(x)
[

2πσ2(x)
]3/2

, (A11)

andx(f) its inverse.
Figure A1 shows the cumulative distributions offdel/ftrue in

different bins(fj , fj+1) of ftrue, for theα = 1 σv system and
theα = 1 σc system. Both systems were realised using106 parti-
cles. In both cases we have also plotted the cumulative distribution
fdel/ftrue for a homogeneous Poisson distribution, realised in a
six-dimensional cubic box with106 particles. We have verified that
this distribution is essentially unchanged when the calculation is
done with105 particles. Therefore, it should be regarded as good
approximation to the asymptotic limit we would have reachedin
the different bins, had we used an infinite number of particles. The
other four systems give essentially the same results.

In the 1-v system, five bins were defined byfj =
10−7, 10−5, 10−3, 10−1, 10, 103. We see that the shape of the dis-
tribution, corresponding to the width of the differential distribution,
is very much independent offtrue. For all bins, the full width is
less than a 1.5 decades. On the other hand, there does seem to be a
systematic shift of the median toward larger values offdel/ftrue
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Figure A1. The cumulative distribution offdel/ftrue as measured in dif-
ferent bins offtrue for two mock systems described by Eq. (A6) with106

particles. Top: an NFWρ(x) given by Eq. (A7) (α = 1.0) with a varying
σ2
v(x) = M(x)/x. Bottom: sameρ(x) but with a constantσc(x) = 0.1.

The solid black line represents the cumulative distribution offdel/ftrue for
a homogeneous Poisson distribution, which is realised in a six-dimensional
cube using106 particles. This should be regarded as the asymptotic limit
with an infinite resolution.

for smaller values offtrue. The large shift of the highest-f bin
(10 < f < 103) toward smallfdel/ftrue is a result of the very
low number of particles in that bin, less than 500, which is insuffi-
cient for representing such high phase-space densities.

The bias toward larger phase-space densities in the low-fftrue
bins may be attributed to boundary effects: while the total mass
of theN particles in the realisation is equal to the total mass one
would obtain from the exactf(x,v) integrated over the infinite
phase-space, the total phase-space volume used by the DTFE to es-
timatef(x,v) is finite. It is the smallest possible convex polygon
containing allN particles. Therefore, we may expect an overesti-
mate off , which would be more pronounced near the boundaries.
Nevertheless, as we shall see by comparingvdel(f) to vtrue(f), on
scales of a few-decades, this bias is rather meaningless.

Thefdel/ftrue distributions of the 1-c system are essentially
the same as the ones in the 1-v system. Here 4 bins were defined
by fi = 10−5, 10−3, 10−1, 101, 103. The overall shape of the
plots changes very little from bin to bin, and its width is about a
decade and a half. Additionally there exists the bias towards larger
fdel/ftrue ratios asftrue gets smaller.
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Figure A2. The measuredvdel(f) versus the truev(f) for the threeσc

mock systems, each performed with three different resolutions.

To see how well the DTFE reconstructs the truev(f), we have
measured thevdel(f) of the six mock systems using104, 105 and
106 particles for each system. Figures A2, A3 present the results
of these numerical experiments. We see that with the highestres-
olution, of 106 particles, the recovery is excellent over a range of
almost 7 decades inf . Systematic deviations begin at the high-f
end and the low-f end. At both ends, the deviations appear at about
one to two decades inward to the highest and lowest values offdel
in that realisation. When the resolution is decreased, thef -range
wherevdel(f) closely matchesvtrue(f) narrows gradually.

As argued above, the systematic deviations at the low-f end
are probably a result of the finite phase-space volume occupied by
the particles. As the number of particles is increased, a larger por-
tion of phase-space is covered, enabling the reconstruction of lower
values offdel.

The high-f systematic deviations can be qualitatively under-
stood using the Voronoi model and its convolution formula (A5).
Since the DTFE uses a finite number of particles to recover thef
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Figure A3. Same as Fig. A2 but for theσv mock systems.

field, there must be an upper cutoff,f1, for the spectrum off val-
ues that the DTFE can produce in principle. As far as the DTFE is
concerned, the truev(f) has an effective cutoff atf1. If we plug
this “true” truncatedv(f) into the convolution formula (A5), as-
sume a distribution functionp(·) with a width of about 1 decade,
and setf1 ≃ 50, we recover the qualitative behaviour of the mea-
suredvdel(f) for theN = 106 mock samples withσv and the three
values ofα. This simple picture is, however, an oversimplification
because the high-f region is also effected by statistical fluctuations
due to the low number of particles there.

The convolution formula can also explain theoverestimation
by the vdel(f) in the high-f regions of the mock systems with
σc. In these systems, the transition between the low-f power-law
and the steep high-f decline is rather sharp; it occurs over a scale
comparable to the width of the window functionp(·). As a result,
the vdel(f) measurement at a high-f includes contributions from
the higherv(f) values at lowerf . This becomes very apparent in
the case withα = 0 andσc, in which f has an upper bound of
f ≃ 63. While the truev(f) vanishes for allf values larger than
this limit, the DTFE-measuredv(f) vanishes only at anf value

that is an order-of-magnitude larger, due to the 1-decade width of
the assumed probability distribution functionp(·).

A3 Statistical Errors in vdel(f).

The Voronoi model can also be used to estimate thestatisticaler-
rors invvor(f). Strictly speaking,vvor(f) is an ill-defined random
variable, as it is measured by differentiatingVvor(f), which is a
super-position of Heaviside step functions, and as suchvvor(f) is
a sum of Dirac delta functions. Much like a white-noise process,
its variance is infinite. In practise, however, we always compute
vvor(f) by differentiating asmoothedversion ofVvor(f) (using a
spline, for example). Therefore, we may expect the statistical error
in vvor(f) to be comparable to the statistical error inVvor(f). The
latter can be estimated in a way similar to how we estimated the
average ofVvor(f).

To calculate
〈

[∆Vvor(f)]
2
〉

=
〈

V 2
vor(f)

〉

− 〈Vvor(f)〉2, we
can use the definition ofVα(f) to write
〈

V 2
vor(f)

〉

=
∑

α6=β

〈Vα(f)Vβ(f)〉+
∑

α

〈

V 2
α (f)

〉

. (A12)

Assuming thatVα(f) is independent ofVβ(f), the cross terms
would cancel out from

〈

[∆Vvor(f)]
2
〉

, leaving us with the upper
limit
〈

[∆Vvor(f)]
2
〉

6

∑

α

〈

V 2
α (f)

〉

. (A13)

Using arguments similar to those used for calculating
〈Vα(f)〉, one can show that

〈

V 2
α (f)

〉

= m

∫

ωα

dxdv

∫ ∞

f

p[fvor/f(x,v)]f
−2
vor dfvor(A14)

6
m

f

∫

ωα

dxdv

∫ ∞

f

p[fvor/f(x,v)]f
−1
vor dfvor(A15)

=
m

f
〈Vα(f)〉 . (A16)

Therefore,
〈

[∆Vvor(f)]
2
〉

6
m

f
〈Vvor(f)〉 , (A17)

and the relative error∆(f) is given by

∆(f) 6

(

m

f 〈Vvor(f)〉

)1/2

. (A18)

Pluggingm = M/N into the formula above, whereM is the total
mass of the system andN the total number of particles, we recover
the common large-numbers limit∆(f) ∝ 1/

√
N .

To check how good this estimate is for the DTFE-measured
v(f), we have measured thev(f) of 100 realisations of theα = 1
σv mock system withN = 103 andN = 104 particles, and 30
realisations withN = 105 particles. From these measurements we
computed the true relative error inv(f) [with respect to the average
of the DTFE-measuredv(f), not with respect to the exactv(f)],
and compared it to the prediction of Eq. (A18). Figure A4 shows
the comparison for the three resolutions. We see that Eq. (A18)
performs well as an upper bound for the statistical errors, except for
the low-f region. In that region the cumulativeV (f) approaches a
constant asf → 0, due to the finite phase-space volume of the halo.
This introduces fluctuations tov(f) as a result of the numerical
differentiation in Eq. (33).

However, it is interesting to notice that whenever the statistical

c© 2003 RAS, MNRAS000, 1–16
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Figure A4. The average (top) and relative error (bottom) inv(f) as mea-
sured in the mock system (α = 1, σv) sampled with three different res-
olutions. The relative errors are compared to the analytic prediction of
Eq. (A18).

errors invdel(f) become important, they are overwhelmed by the
low-f or high-f systematic errors. In that respect, the statistical
errors invdel(f) are of no big relevance.
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