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1 INTRODUCTION

ABSTRACT

We present a method for computing the 6-dimensional cognai@ed phase-space den-
sity f(x,v) in an N-body system, and derive its distribution functigf). The method is
based on Delaunay tessellation, whe(g) is obtained with an effective fixed smoothing
window over a widef range. The errors are estimated, arid) is found to be insensitive
to the sampling resolution or the simulation technique. Wie that in gravitationally re-
laxed haloes built by hierarchical clusteringf) is well approximated by a robust power
law, v(f) oc f~25%0-95 over more than 4 decades finfrom its virial level to the numerical
resolution limit. This is tested to be valid in theCDM cosmology for haloes with masses
10% — 10 M, indicating insensitivity to the slope of the initial fluettion power spectrum.
By mapping the phase-space density in position space, weHatdhe highf end ofv(f)
is dominated by the “cold” subhaloes rather than the pahnaid-central region and its global
spherical profile. The value ¢f in subhaloes near the virial radius is typically100 times
higher than its value at the halo centre, and it decreasesigits from outside in toward its
value at the halo centre. This seems to reflect phase mixiagalmergers and tidal effects
involving puffing up and heating. The phase-space densittlvas provide a sensitive tool
for studying the evolution of subhaloes during the hiersrahbuildup of haloes. It remains
to be understood why the evolved substructure adds up toctmelauniversal power law of
v(f) o< f=2°. It seems that this behaviour results from the hierarchitatering process
and is not a general result of violent relaxation.

Key words: cosmology: theory — dark matter — galaxies: dwarfs — galsofiermation —
galaxies: haloes — galaxies: interactions — galaxies:rkitics and dynamics

the cosmological model and the initial fluctuation powercspe
trum (e.g.,.Cole & L aceyl 190€; Navarro, Frenk & White 1997;

The standard paradigm assumes that dark-matter halodea Subramanian, Cen & Ostrikef _2000; _Ricotti__2003; @@t al

sic entities in which luminous galaxies form and live. Théoka
dominate the gravitational potential over a wide range dii r@nd
they have a crucial role in determining the galaxy propsrighile
many of the systematic features of halo structure and kitiema
have been revealed hy-body simulations, the origin of these fea-
tures is still an open theoretical puzzle, despite the fatthey are 1972

due to simple Newtonian gravity.

The halo density profile p(r) is an example for such a

2003;[Navarro et al_2004) indicating that its origin is dueato
robust relaxation process rather than specific initial doors.

In particular, violent relaxation_(Lynden-Bell_1967) mag -
volved in shaping up the density profile. In addition, se@gd
infall may be important in the outer regions_(Gunn and Gott
Dekel, Kowitt & Shaham| 1981 _Fillmore and Goldreich
1984;|Hoffman & Shahail_1985; White & Zaritsky _1992) while
some argue that resonances may have a role in the inner segion

puzzle. It is found in the simulations to have a robust non- (Weinberg & Katz [2002; but sea Valenzuela & Klypin_2003).

power-law shape (which we refer to in general as “NFW”"),
with a log slope—3 near the virial radius, flattening gradu-

Nevertheless, there is no clear understanding for why theeba
actually pick up the particular density profile they have.

ally toward —1 at about 1% of the virial radius, and perhaps

flattening further at smaller radii. (e.q. Navarro, Frenk & The properties of theelocity dispersiortensor is another the-
1997; | Moore et all 1998; Klypin etlal 200L; Power etlal _2003; oretical puzzle. The haloes tend to be rather round, withacitg
Hayashi et al| 2004, and references therein). This density pr dispersion profile that is slightly rising at small radii aslébhtly
file is insensitive (or at most weakly sensitive) to parametsf falling at large radii but is rather flat overall (Huss etlal994.b).
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The profile of the anisotropy parametgfr), which is a measure of
radial versus tangential velocities, indicates near égytrat small
radii, which gradually develops into more radial orbitsaagk radii
(Cole & Lacey|1996; Huss etlal 199%a.b; (bt al [2000a). For

a spherical system in equilibrium, thér) and3(r) are related to
p(r) via the Jeans equation, but it is not at all clear why the tsaloe
in the simulations choose the characteristi{c) or 5(r) that they
actually do.

An interesting attempt to address the origin of the halo pro-
file has been made hy Tavlor & Navairb (2001), who measured a
poor-man phase-space density profile faw (r) = p(r)/a(r)?,
and found that it displays an approximate power-law behayio
frn o< r~ %7 over more than two decadesrinUsing the spheri-
symmetric Jeans equation, they showed that this power lawifse
a whole family of density profiles, whose limiting case is afe
similar to NFW, which asymptotically approaches a slop&75
asr — 0. The general power-law shape ffx () is confirmed in
the simulated haloes described below. This scale-freevimireof
fr~(r) is intriguing, and it motivates further studies of halo stru
ture by means of phase-space density.

Simulations of theACDM cosmology also reveal a roughly
self-similar hierarchical clusteringprocess, where smaller build-
ing blocks accrete and merge into bigger haloes. At every embm
every halo contains a substructure of subhaloes on top obatsm
halo component that has been tidally stripped from an eaydieer-
ation of substructure. Some of the important dynamical gsees
involved in this hierarchical halo buildup are understoalga-
tively. These include, for example, the dynamical frictiwhich
governs the decay of the satellite orbits, the tidal strigmf sub-
haloes due to the host halo potential, and the mergers ang flyb
interactions of the subhaloes among themselves. Howewama
plete theoretical understanding of how these processdsiwaie-
tail, and how they combine to produce the halo structure amel k
matics, is lacking.

Attempts have been made to explain an inner density
cusp using toy models of dynamical stripping and tidal ef-
fects during the halo buildup by mergers_(Syer & White
1998; |Nusser & Shethl_1999; Dekel, Devor & Hetziohi__2003;
Dekel et alil 2003). However, a similar halo density profilerse
to be produced also in some of the simulations where sultstaic
has been artificially suppressed (Moore etlal. _1999b; Huab et
19994 | Avila-Reese et al._2001; Bullock, Kravtsov & Colin020
Alvarez, Shapiro & Martell_2002), indicating that the prozes-
sponsible for the origin of this density profile might be a swhat
more general feature of gravity and not unique to the merger s
nario.

The issue of halo substructure has become timely both be-
cause of its relevance to observations and its implicationsther
major issues in galaxy formation. Tidal tails and streanseis
ated with dwarf satellite galaxies have been observed ihalaes
of the Milky Way and M31|(lbata et al 1994, 2001a,b), and they
start to allow detailed modelling of the halo history thrbuipe
satellite orbits. Gravitational-lensing observationevie prelim-
inary indications for the presence of substructure in reaktethe
high level predicted by the dissipationleA€DM scenario (e.g.
Dalal & Kochanek| 2002) In contrast, the observed number den-
sity of dwarf galaxies seems to be significantly lower, thos-p
ing a “missing dwarf problem” Klypin et &l.| (1999h); Moorea:
(1999h). Also, the “angular-momentum problem” of disk gala
ies (e.g.LNavarro & Steinmetz__2000;_Bullock et &l.__2001b) is
probably associated with the evolution of substructure atoés
(Maller & Dekell[2002| Maller, Dekel & Somerville_2002). Wil

the dwarf and angular-momentum problems necessarily \iavol
baryonic processes, understanding the gravitationalugeal of
substructure is clearly a key for solving them.

In order to better understand the origin the various aspects
of halo structure and buildup mentioned above, we make here a
first attempt at addressing directly and in some detailpthase-
spacestructure of dark-matter haloes. The fundamental quantity
in the dynamical evolution of gravitating systems is thd, fsiix-
dimensional, coarse-grained, phase-space defigityv), which
intimately relates to the underlying Vlasov equation ares Ibe-
hind any relaxation process that may give rise to the vi@alihalo
structurel(Binney & Tremairie_1987, chapter 4).

Ideally, one would have liked to compute it free of assump-
tions concerning spherical symmetry, isotropy, or any kihdqui-
librium. However, computing densities in a six-dimensicsace
is a non-trivial challenge which requires simulations of ety
broad dynamical range. The state-of-the-art N-body sitiurlg,
with more than million particles per halo, allow an attempthis
sort for the first time. We describe below a successful allgarifor
measuringf(x, v), and study its relevant properties including the
associated systematic and random uncertainties. We tipintajs
algorithm to simulated virialized haloes in tAée€DM cosmology.

We report in this paper two surprising new results. First, we
discover that the volume distribution function of the phapace
density,v( f), displays a universal scale-invarigrawer-lawshape,
valid in all virialized haloes that form by hierarchical stering.
Second, we realise that this power law is not directly relatethe
overall density profile, but is rather driven by the haldbstruc-
ture. This implies that the phase-space density provides a lusefu
tool for studying the hierarchical buildup of dark-mattafdes and
the evolution of substructure in them.

In §2 we introducef (x, v) andv(f). In §3 we describe the
method of computing’ andv(f) from an N-body halo, and sum-
marise its properties and the associated errors, whichdaressed
in more detail in AppendikdA. I we present the universal power-
law shape ofv(f) based on several different simulations, and
demonstrate its robustness to the mass scale and simulation
nique. Ingd we display maps of phase-space density and show that
the high+f contributions tov(f) come from substructures within
the parent halo. Iffd we summarise and discuss our results and
future work.

2 THE PDF OF PHASE-SPACE DENSITY: »(f)

This is a more technical and elaborate introductory sectioned
at introducing the concepts and nomenclature relevanhéanal-
ysis of this paper.

2.1 Definitions

The state of a collisionless system is completely deterchbyethe
fine-grained phase-space density functjtix, v, t), which mea-
sures the mass contained in an infinitesimal phase-spack pht
volumedxdv, located atx, v). The evolution off (x, v, t) is gov-
erned by the Vlasov equation,

Of+v -Vxf —Vx® -Vyf=0, @
with ®(x) the gravitational potential, related self-consistendy t
f(x,v) by the Poisson’s integral

o(x) =—-G /dx'dv fev)

x — x|

@)
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It is therefore sensible to assume that a true understandingthe original “fine-grained” density (x, v). We denote the coarse-

of the nature of self-gravitating collisionless systemsstrinvolve
f(x,v) as a primary ingredient. However, being a function of six
variables,f(x, v) is hard to deal with computationally. It turns out
that there is a much simpler function(f), which is intimately re-
lated tof (x, v), but is much easier to handle both analytically and
numerically.

Before definingu(f), it is worth recalling that the Vlasov
equation preserves the phase-space density along partfe-
tories: It implies eq.[fl) implies that

d
(), v(0)] ®

where[x(t), v(t)] is the trajectory of a phase-space element. This
conservation of phase-space density along trajectoriesica be
viewed as a conservation of phase-space volume. In ordd+ to i
lustrate what this means, consider any smooth funafi¢n), and
define the integral

0,

I(t) = /dxdv Clf(x,v,t)] . 4)
Using the Vlasov equation we find that
% _ / dxdv C'(f)0:f ®)

—/dxdv [V VxC(f) = Vx® -V C(f)] =0. (7)

The last equality follows by integrating the first term owesind the
second term ovey, and assuming that — 0 asx, v — oo. This
implies that is conserved under the dynamics.

Now, if C(f) is the Dirac delta functions(f — fo), then the
integral I becomes arf-dependent function, which we refer to as
thePDF v(f):

o(f = fo) = /dxdva[f(x,v,t) - fo] - (8)
From this definition it is clear that(f)df is the volume of phase-
space occupied by phase-space elements whose density ffes i
range(f, f + df). The conservation of(f) implied by Eq. [¥)
means that this volume is conserved under the dynamics. e fi
grainedv(f) [i.e., thev(f) which is calculated using the fine-
grainedf(x, v)] should therefore be viewed as a signature of the
system, which remains the same throughout its evolution.

2.2 Coarse-Grained Density and Mixing

One might have thought that the conservatiom @f) poses severe
constrains on the evolution of(x, v, t), but this is not the case
due to the effects ahixing In the course of evolution, phase-space
patches of highy’ are stretched and spiral into regions with Igw
As the stretching continues, the patches become thinerhamet t
and as a resulf(x, v) varies over increasingly smaller scales. Very
soon, one can no longer meastfit, v), but instead measure an
average of it over some finite volume. This average is often re
ferred to as the “coarse-grained” phase-space densitppased to

1 Strictly speaking, the Dirac delta function is not a smoaihction, but it
can be approximated by a series of smooth functions, eacfinapEg. [I)

grained quantities by and%(f), but in subsequent sections we
may omit the bar and simply refer to them gandv(f). The im-
portant point to realise is that the coarse-grainéfi) is no longer
conserved. For example, given initially a volurie filled with
phase-space densitfs and a similar volume filled with density
fB,one ends after mixing with a volun® filled with an average
density(fa + f5)/2.

When a large fraction of the mass is added to halo, e.g. by
collapse or a major merger, rapid global fluctuations of ttaiga-
tional potential re-distribute the energies of each plumeee ele-
ment, and lead to very strong mixing across large scalegltires
in variations inf. After a few global dynamical times, the potential
fluctuations fade away anfistabilises. The fine-grainef] on the
other hand, continues to spiral and stretch indefinitelysmmaller
and smaller scales, which no longer affgctAfter a while, thef
can be viewed as the “physical” phase-space density of #tersy
since the microscopic fluctuations fiftan no longer be measured,
and, in particular, no longer affect the gravitational poit. It is
therefore the coarse-graingdvhich, according to Jeans’ theorem,
can be written as a function of he invariants, the endtggnd the
angular momenturlu. This relaxation process is referred tovéas-
lent relaxation(Lynden-Bell| 1967).

What is the coarse-grained f) of a relaxed system, and how
is it related to the constant fine-graine(f) of that system? One
may identify the fine-grained( f) with the coarse-grained( f) at
an early time when the initigf is smooth enough not to vary over
scales smaller than the averaging scale associate¢fwithen, the
guestion can be rephrased in terms of the relation betwesfimt
o(f) and the early(f). One obvious constraint on the finfl as
an average of, is that their maximum values should obgy., <

fmax. In particular, if the earlyo(f) [namelyv(f)] vanishes for
f > fmax, then so does the final f).

Themixing theoren{Tremaine, Hénon & Lynden-Bell 1986)
specifies several additional constraints on the fif@l), which
arise from the fact that it has originated from a givefy). The

cumulativedistribution function is defined by

/ o) df’
fo

whered(-) is the Heaviside step function. As a monotonic func-
tion, V'(f) can be inverted to yielgf(V'), thereduceddistribution
function. The associated cumulative mass functidif), which
measures the mass in phase-space regions whtigrer) < fo, is
then defined by

9)

V(fo) = /dxvﬁ[f(x,v) — fo]

M(fy) = /dxdvf(x,v)&[f(x,v)ffo] (10)
= frolf)df. (11)
fo

Substitutingf = f(V) inside M(f), one obtains the function
M(V'), which can also be written as

\%4
M(V) = / fvhav'. (12)
0

If M (V) andM’(V') denote the functions arising from the density
functions f (x, v) and f’(x, v) respectively, then the mixing theo-
rem states that the final (coarse-graingdjs an average of the ini-
tial (coarse- or fine-grained) if and only if M’ (V) < M (V) for
everyV. This, in turn, implies an implicit constraint on the evolu-
tion of the coarse-graines( f). This is one of the very few rigorous
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results concerning the evolution of f), but its strength is rather
limited because it provides only an integro-differentiaéqguality
that constraing(f).

The mixing theorem can be also stated directly in terms of
v(f), as shown bizMathurl (1988). In his formulation, a necessary

condition for the final (coarse-grained] ) evolved from the ini-
tial v(f) is that

d2
dr?
with P(f) being some continuous function (not to be confused
with a probability distribution) such tha?(f) < 0 for all f and
P(f) — 0for f — +oo.

In the CDM scenario, the dark matter is initially cold — with

vanishing velocity dispersion. This means a one-to-oneespon-
dence between the particle positions and their velocities=

v(x), and the initial (fine-grained) phase-space density canrtie w
ten as

fo(x,v) = p(x)8°[v — v(x)] .

Thus, in the beginning, the system can be described by tHa-evo
tion of its density and velocity fields, often approximatedthe
Zel'dovich approximation. This singular nature of the i@iphase-
space density, together with its conservation, plays aartae in
the formation of structures, and in particular in the abumgaof
dwarf haloes, and in the formation of cusps in dark-mattéodsa
(e.g..Cain et al [2000b).

Physically, the phase-space density is never really igfimis
it is defined by a finite number of dark-matter particles psegi
phase-space volume. Numerically, it is the finite masshuéiso of
the N-body simulation that prohibits the phase-space dengy fr
being infinite. Therefore, the initial phase-space densigxpected
to be extremely high in regions wheve~ v(x) and vanishingly
small elsewhere. Accordingly(f) will have contributions from
a narrow range of extremely high values ofind from a narrow
range nearf = 0. As the system evolves and mixing takes place,
phase-space densities from both regions mix and give rige-to
termediate values of, widening the distributiorv(f) under the
constraints of the mixing theorem.

o(f) =v(f) + -5 P(f) (13)

(14)

2.3 A Relation Betweernv(f) and p(r)

In general, different systems may have the sarfig). However,
if the system is spherically symmetric and stationary, sttt f
is a function of the energy along(x,v) = f(e), then there is a
unique relation between(f), f(e) and p(r). We shall see irifd
that thev(f) measured inV-body haloes is actually different from
the v(f) one would have predicted from the ha¢r) using the
relation assuming (e).

For a spherical system the relation betwgér) andv(f) can
be derived as follows. Assume thafx,v) = fle(x, V)], where
€(x,v) = v?/2 + ®(r), and define the density-of-states function
g(e) = /dxdv Ole(x,v) — € . (15)

The quantityg(e)de measures how much phase-space volume is
occupied by phase-space elements with energy in the itterva

2 This is the original statement In_MatHut_(1988). However, hetieve
that by adding the (trivial) condition that(f) > 0 for every f, it becomes
also a sufficient condition.

(e, € + de). When the system is spherical(e) can be written as
(Binney & Tremainel 1987, Eq. 4-157b),

g(e) = (4n)* /0“5)821 / 2[6 — @(s)} ds,

with r(¢) the inverse function of the gravitational potential. The
overall phase-space volume occupied by energy levels belsw
thus given by

(16)

Vv = /6 g(€)de a7)
= 24 e 2 — o()] 1% d 18
_ éﬁ)l 2 Lafe—a(s)] V7 ds. (18)

Therefore, ifV(f) is the cumulativev(f) defined in Eq.[{P), and
f(x,v) is a function of the energy alone, we obtain an integro-
differential equation forf (¢):

r(e) o
(47r)2/ 2 {2[e— ()]} ds.

0

wl N

V(o] = (19)
This has to be supplemented by the equation that cond€cisto
f(e) (Binney & Tremainel 1987, eq. 4-104),

_1d (ﬁ@)
r2 dr dr

4w Gp(r)

(%YG/(ﬂd
D(r)

In general, these equations can be solved numerically,sing a
Picard iteration scheme.

In the asymptotic regime, the above equations can be solved
analytically. If p(r) o< 7~* asr — 0, then, fore — ®(0), one can
show thatf(e) andg(e) have the scale-invariant forms

(20)

2(® —€)de. (21)

[0 o [e—o(0) =T (22)
9(0) o[- (07T (23)
Note that the derivative of EJ_{IL9) with respecktyields

o1 = 9
i@l = 55 24)

By plugging the scale-invariant solutions of dg.(23) intp &34),
one finds that forf — oo, the PDF is also a power law( f) o
=7, with
18 — da _18-6p
6—a CT 43

We learn that the density slopes in the rafge a < 2, relevant
for the inner regions of haloes whejfeis high, correspond to a
narrow range of3 values,3 > 8 > 2.5. In this case of power-
law profiles,3 = 2.5 corresponds to the singular isothermal sphere
a = 2, 8 = 2.8 corresponds to aa = 1 cusp, and3 = 3
corresponds to a flat cora,= 0.

Eqg. [Z%) can also be obtained from simpler dimensional argu-
ments using the virial theorem.

8=

(25)

3 MEASURING v(f) INAN N-BODY SYSTEM

We wish to measure the phase-space denfity; v) of a system
represented byV particles of massn each. One straightforward
approach would have been to divide phase-space into a large n
ber of Cartesian cells of equal volunmé each. If cellj contains
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N; particles, then the average phase-space density in it castibe
mated asf; = N;m/V. However, this approach is impractical in
a six-dimensional space. A moderate resolution of 100 Hmrsga
each axis would require0*2 cells, which is beyond the capacity of
any present-day computer. Moreover, for the compuyted have
any statistical meaning, there should be at least 100 festio
each cell (for a relative Poisson error sf 10%), which requires

a total of 10'* particles — about 5 orders of magnitude beyond the
number of particles in today’s largest simulations.

A possible way to overcome this problem is by usingdap-
tive grid, where the cells vary in size to properly allow high res-
olution in high-density regions and low resolution in lowrgsity
regions. One can simply create an adaptive grid by dividimghe
Cartesian cell which contains more particles than somecphesl
thresholdNV* into two or more sub-cells. This division can be done
recursively until all cells contaiv* particles or less.

Even more effective would be to vary the shape of the cells
as well, allowing them to adapt more efficiently to the geamet
of the underlying distribution and thus increase the eiffectes-
olution. A particularly robust method of this type is tlelau-
nay Tessellation Field Estimat¢DTFE), which has already been
implemented in three dimensions in a cosmological contex. (
Bernardeau & van de Weyaairt 1996; Schaap & van de Weygaert
2000, and references therein). We use this method here teungea
f in six dimensions.

3.1 Constructing a Delaunay Tessellation

A tessellation is the division oR? space into a complete cover-
ing of mutually disjoint convex polygons. The Delaunay &diss
tion (Delaunayl 1934) is defined for a sample/éfpoints as fol-
lows. TheDelaunay cellghat construct the tessellation are the
dimensional polyhedrons made by connecting every set-ofl
points whose circumsphere [tli¢ — 1)-dimensional sphere that

Figure 1. The Delaunay tessellation of 8 points in two dimensionsw8ho
for example is a circumcircle of one Delaunay cell, whichcbpstruction,
does not encompass any other point.

Figure 2. An illustration of the adaptive nature of the Delaunay tééaten.
Left: an uneven distribution of points in 2D. Right: the riéisig Delaunay
tessellation.

preparation). Here we just mention briefly that for a hale-of0°
particles the C code runs for about a week on a common PC with
CPU~2GHz and internal RAM~1GB. The resulting tessellation

passes through all of them] does not encompass any othetr poin is made of~ 10° Delaunay cells, where a typical particle is sur-

from the sample. One immediate advantage of the Delaunsagltes
lation is that it is parameter-free, and it completely adafself to
the underlying distribution of points._Schaap & van de Weartia
(2000) have demonstrated the superiority of the DTFE ovelemo
conventional methods for estimating the density in 3D (roé¢h
like cloud-in-cell or the smoothing kernel used in SPH siaul
tions). One may assume that the same holds for the 6D case.

In 2D, the Delaunay cells are triangles, as illustrated qmHi
In 3D, the Delaunay cells are tetrahedrons. In the six-dsiveral
phase space, the Delaunay cells are six-dimensional pirghs,
each defined by 7 particles.

Figurel2 shows the Delaunay tessellation of an uneven distri
bution of points in the 2D plane. It demonstrates the obvixep-
tive nature of the tessellation: regions with high densftgarticles
are covered by small triangles, whereas regions with lowsitien
are covered with larger triangles.

Constructing the Delaunay tessellation &f ~ 10° par-
ticles in a six-dimensional space is not a straightforwaask
Out of the many algorithms that exist in the literature (e.g.
Su & Drysdale | 1995, and references therein), we followed
Bernardeau & van de Weygaert| _(1996) and__van de Weygaert
(1994) in picking the algorithm by_Tanemura, Ogawa & Ogita
(1983). We included some of the programming adjustment by va
de Weygaert, e.g., the use bftrees to speed up searching, and
converted the code from three dimensions to six dimensions.

A full account of the algorithm, the numerical implementa-
tion and code performance, is provided elsewhere (Arad 2004

rounded by~ 7,000 cells involving~ 200 neighbouring particles.

3.2 Recoveringf and v(f) from the Tessellation

Once the Delaunay tessellation is constructed in phasee spac
use it to estimatg (x, v), generalising the method implemented in
3D bylSchaap & van de Weygaklt (2000). First we estinfafer
each particle. We define anacro cellby joining all its surrounding
Delaunay cells:

WiEUDV“

where{D;, } is the set of all Delaunay cells afd,, } is the subset

of cells which contain the particleas one of their vertices. Figurk 3
shows such a macro cell in 2D. The estimated phase-spaciydens
at point: should be inversely proportional to the volume of the
macro cell,1 /|W;|. The proportionality factor must be greater than
unity because th&/; cells of different particles partly overlap, and
one can show that it should in fact le- 1 in order to preserve the
total mass of the system. In phase-space we therefore define

fi

(26)

m
=7—.
[Wi

In order to estimate at any general pointx, y), one might
have used linear interpolation based on the 7 vertices otdne
responding Delaunay celD,. This means expressinf(x,v) as
a linear function of the 6D vectav = (x,v), namely f(w) =

@7)
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Figure 3. An illustration of a macro cellV; (grey area), the union of the
Delaunay cells that surround the parti¢cle

A, -w+ By, with A, andB, a 6D vector and a scalar whose seven
unknown values are found by equatifigx, v) with f; at the seven
vertices of the cell. However, with0® particles involving~ 10°
Delaunay cells the linear interpolation is CPU-expensive grac-
tically impossible. Instead, we perform a zero-order ipddation
where f(x, v) is constant inside each Delaunay cell — the average
of the f; values at the seven vertices bf :

et
fo== Z fi - (28)
This has the advantage that any integral of the form
I= /dxdv\I/[f(x, V), (29)

with ¥(-) some arbitrary function, can be easily estimated by the
sum

I:Z\I/(fu)lDyl. (30)

In particular, the desired(f) can be found by first computing
its cumulative counterpaft ( f),

V(fo) = / o(f)df' = / dxdv (31)
fo f(x,v)>fo
— |D.|, (32
fv>fo
and then taking its derivative,
o) = -0 (33)

In what follows, we often denote the DTFE-measujednd
v(f) by fae @andwger in order to distinguish them from the exact
guantities.

3.3 Error Estimate

When we measure the f) of a cosmologicalV-body system us-
ing the Delaunay tessellation, we should expect two typesrofs.
First are the errors in the underlyirfgassociated with errors in the
numerical simulation itself, such as errors due to two-bilsx-
ation effects, force estimation, time integration and sofoway to
estimate these errors is by re-simulating the same systémoif4
ferent codes and with different sets of numerical pararsegex-
erning the mass resolution and the force resolution. A systie
testing of this sort will be reported in an associated papead,
Dekel & Stoehr, in preparation). In the current paper, we enak
preliminary comparison of several different haloes sirtedawith

different resolutions and with different codes. We find tatthe
virialized haloes tested recover almost the same shapéfof

The second type of errors originate from the fact that we try
to estimate a smootlf(x,v) from a finite set of particles using
the Delaunay tessellation. Here we may encounter bottsttati
and systematic errors. Some of these errors would decrsabe a
number of particles is increased, whereas some are an ithEne
of the DTFE independent of the mass resolution. In order to ob
tain a simple understanding of the nature of the DTFE ernges,
first use a simple statistical model based on a Voronoi tedsel,
which resembles the DTFE but lends itself more easily toydical
treatment. We then evaluate the DTFE errors empirically lkeg-m
suring f4el (x, v) in synthetic systems were the particles represent
a known f(x, v), and compare the results to the error-model pre-
dictions. Since this error analysis is somewhat detachad the
main focus of this paper, we describe it in detail in Apperi@lix
Our wisdom regarding the DTFE properties and uncertainées
be summarised in three points as follows:

(i) The measuredfqe1 at each particle is chosen, to a good
extent, from a probability distribution of the random vala
fae1/ ferue. IN @ typical realisation with0° particles, the width of
this distribution is about one decade, defining the rangeuofih-
tion of fae @about firue. AS N — oo, the shape of the distribution
approaches an asymptotic limt fae1/ ferue) With a finite width
of about one quarter of a decade, as deduced from the DTFE of a
Poisson distribution. Therefore, also in the infinite lintite DTFE
is expected to produce local fluctuations.

(il) The measuredqe (f) can be viewed as a convolution of
the truewv(f) and afixed window functionwhich is related to the
probability distributionp(-) [Eq. (B3)]:
vael(f = fo) =/ virae () fo "(fo/ £) df - (34)

0
For distributions where( f) is close to a power-law, the difference
betweenuge (f) and verue(f) is negligible over a large range of
scales, as demonstrated in Figsl A2 A3. This is a veryblusef
feature of the DTFE-measuredy).

(iii) The relative statistical error imge1(f) is proportional to
1/+/N, and can be approximated by [EG{A18)]

1/2
Alf)=e (f—<vdel<f>>> !

with Vaa (f) = fmvdel(f’) df’ andm = M/N. The constant
is of order unity, and can be calibrated by comparing Ed. (85)
the actual error in lower-resolution measurements. IntE@cthis
means that whe®V ~ 10° or more, the statistical error i ( f)
is negligible for a very wide range ¢t Moreover, in regions where
there are large statistical errors, they are likely to bewhelmed
by systematic errors.

(35)

4 A UNIVERSAL SCALE-FREE ()

We have analysed theg f) of several different haloes, in three dif-
ferent mass ranges, simulated within th€ DM cosmology with
two different N-body codes.

In order to calculate the( f) of a given halo, we find the halo
centre using a simple max-density algorithm, and extrdqiaati-
cles which lie within a distanc® from its centre. The max-density
algorithm is based on an iterative counting in cells: at etefa-
tion, space is divided into 8 equal cubic cells and the demsdiss
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chosen for the following iteration. The iterative procesgps when
the densest cell contains no more than 500 particles, ancetie
tre of that cell is defined as the centre of the halo. The ragliis
typically set to be~ 10 — 20% larger than the virial radius. We
compromise on analysing 10° particles, such that we explore
a significant dynamical range while the computation can lye-co
pleted in a few days.

To estimate the typical phase-space density at the outieneg
of the halo, we defing,;. by
1 ﬁvir

3/2 43
7T/ Tyir

fvi'r =

(36)

which is the average space-space density that one woulduneeas
for a halo of constant densipy,;,- and a Maxwellian velocity distri-
bution with a velocity dispersion., ;. For a given halo in a given
cosmology, the mean virial quantitigs;,» and o, are defined
using the virial theorem and the top-hat model relevant &b ¢bs-
mology.

As one crude estimate of the upper limit grfor which the
measurement of(f) is reliable, we evaluate in each halo tlfie
value, f20%, below which thestatistical error inv(f) due to the
DTFE procedure is below0%. For that we use Eq[{B5), cali-
brated by measurements with® particles. This statistical error is
expected to be practically negligible in the ran§e < f < fao%-

4.1 N-body Simulations on Different Scales

The results described in this paper are based on threedtiffeos-
mological simulations. Two of them used the Adaptive Refiertn
Tree (ART) codel(Kravtsav, Klvpin & Khokhlav_1997), and the
third used the Tree Particle Mesh (TPM) code_(Bode et al 12000;
Bode & Ostrikefl 2003). In all the simulations, the assumezhtm
logical model is the standarddCDM with 2, = 0.3, Qx = 0.7
andh = 0.7 today.

The ART simulations were done in periodic boxes of sizes
L = 1h 'Mpc andL = 25h~'Mpc, whereas the TPM simu-
lation was done in a box of = 320 h~'Mpc. We denote these
three simulations by.1, L25 and L320 respectively. Three haloes
were analysed from each of these simulations, with masges-co
sponding to to dwarf galaxied@ — 10'°My), normal galaxies
(~ 10" M) and clusters+{ 10'° M) respectively. Global prop-
erties of of the simulations and the haloes are given in {@Gle
Thew(f) curves for these haloes are shown in Elg. 4.

The L1 simulation is from_Cdah et al [2008). It is analysed
at z 2.33 in physical coordinates. The three haloes studied,
labelled A, B, C, are the largest haloes in the snapshot. Their
virial radii refer to a mean overdensity & = 183, as appro-
priate for the given cosmology and redshift. The L25 simarat
is by|Klypin et al (2001). The haloes are denotBd C, D fol-
lowing the notation in the simulation paper. The L320 sirtiolais
bylWambsganss etlal (2004); Weller et al (2004). The threselsal
studied, labelled4, B, C, are the most massive haloes in the simu-
lation excluding haloes whose real density map shows aninggo
major merger.

In each of the analysed haloes, we findf) to be well de-
scribed by a power-law,

’U(f) o f72.50:l:0A05 , (37)

over 3to 5 decades ifi. Itis typically valid between slightly above
fvir and slightly belowfsq,. Outside this rangey(f) gradually
and systematically deviates downward from the power lavthén
low-f regime the deviation is associated with departure from the

10°

10°

107°

1071
1071

10—20

vu(f)

107%
10~%
107%
1074

10—45

10~
1

10*
f/f-2

Figure 4. The volume distribution of phase-space densityf), for each

of the nine haloes analysed in this paper (see Table 4.1)clives were
shifted to coincide af = f_», where the local log slope ef( f) is —2, and
were then shifted vertically by 4 decades relative to eablerofA power-
law line v(f) o f~2:3 is shown on top of each curve. Marked on each
curve are the virial levef,;, and the 20% statistical error limf,go;. The

f range is shorter for the L320 haloes because they were samjiteless
particles.

9
~

virial regime, and the highf-deviation is consistent with being due
to the limited mass resolution of the specific halo, as seethéy
proximity to f,09 and as demonstrated in Appenflk A. The high-
deviation from the power-law tends to occur at a smaflealue in
L25, and even smaller in L320, due to the fact thag;, is smaller
respectively.

There is no evidence for a significant dependence(g on
the halo mass. There may be a marginal trend for slight stésgpe
of v(f) as a function of mass, but only from steeper tifai-*® at
~ 10° My, to flatter thanf ~2-%% at~ 10'5 M. This indicates rel-
ative insensitivity to the exact slope of the initial fluctioa power
spectrum, which varies across the range from dwarf galaxies
clusters of galaxies. Additionally, the fact that we obairessen-
tially the samev(f) from simulations using two different numer-
ical codes, indicates that the shapev6f) is not an artifact of a
particular simulation technique.
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Table 1. Global properties of the 9 haloes analysed in this paperaTffig of each halo was calculated from all th&.,.; particles that lie within a radiuRcut.
Ryir and M., are the the virial radius and mass.is the concentration of the halo, calculated from an NFWitis the f level where the logarithmic slope of
v(f) is —2. This value, together with( f2), are used to scale the f) curves of the different haloes in FIg. 4. Finally, “Code},;mpar, Ttorce andog describe
the computer code, red-shift, mass-resolution, forcelaéisn, and normalisation of each simulation.

Halo Neut Recut Ryir Myir C f2a 'U(f2)b Code z Mpar Tforce o8
[kpc] [kpc] [Me] [Me] [kpc]
L1y 1.6 x 108 23 21 1.1 x 1010 7.0 47x10%8 1.0x108 ART 233 7.0x10% 87x10"2 0.75
Llg 1.3 x 106 23 20 8.6 x 10° 43 34x10®° 13x107% ART 233 7.0x10°% 87x10"2 0.75
Llc 1.1 x 106 20 19 7.8 x 107 75 35x10%8 1.1x1078 ART 233 7.0x10% 87x10"2 0.75
L255 1.1 x 108 420 320 1.9x102 174 5.8x10° 1.3x10° ART 0 12x10% 1.4x10°1 0.9
L25¢ 1.2 x 106 420 330 2.0x10'2 12.8 34x10° 4.0 x 100 ART 0 12x10% 1.4x10°1! 0.9
L25p 1.4 x 106 420 340 2.2x 102 117 3.4x10° 43x109 ART 0 12x10% 1.4x10°1 0.9
L3204 4.6x10° 3,000 2,700 1.1x10® 6.28 88x10%2 34x108 TPM 0 26x10°9 4.7x10° 0.95
L320p 4.5x10° 3,000 2,700 1.1x10® 500 6.0x102 6.7x10% TPM 0 26x10°9 4.7x10° 0.95
L320c 4.6 x10° 3,000 2,700 1.1x10® 6.43 1.0x103 24x108 TPM 0 26x10°9 4.7x10° 0.95

@ ynits: MoMpc—3km—3s3
b units: M 'Mpc®kmSs—3

5 SUBSTRUCTURES
5.1 Clumpiness in Phase-Space Density

Had f(x,v) been a function of the energy alone, and the haloes
were completely spherical and isotropic, the power-layf) o
f~2° would have implied via Eq[I25) that the real-space den-
sity profile must also be a power law, in fact an isothermaksph
p(r) o r=2, at least over some finite range in This is clearly
not the case, as the simulated haloes are well describedriyer-u
sal average density profile whose local logarithmic slopaiging
continuously from—3 at the outer parts te-1 or even flatter in the
inner parts ). We conclude thaf is far from being a function of
energy alone, and in particular the system must deviatdisigntly
from spherical symmetry or isotropy. This could be mostlg doi
the clumpy substructure of the halo, where the survivindhaildes
contribute volume of high phase-space density(tf), thus mak-
ing it shallower than expected from a smooth system with aefin
density slope flatter than 2.

In order to address the hypothesis théf) is driven by sub-
structure, we plot real-density and phase-space densips rofa
each halo in real-space slices. Hi§j. 5 and Eig. 6 show sucls map
for dwarf haloes B and C (all other haloes show a similar gaali
tive behaviour).

The real-space densigyof each particle was calculated using
a three-dimensional Voronoi tessellation (van de Wey(ad8a4),
generated using the freghul1l software package. We chose this
technique to estimate the real-space density becauseeityisimi-
lar in its adaptive nature to the Delaunay tessellationrieghe used
to estimate the six-dimensional phase-space density. & bd-
count of the Voronoi tessellation technique is found in Apgig[AL
where it is used to estimate the errors in the DTFE method.

The maps were produced in the following way. For each halo,
we consider all the particles within an equatorial sliceapial to
the zy-plane, whose width is 40% of the virial radius. The slice is
divided into500 x 500 x n equal cubic cells, withu, set to have
the cells cubic. The density (or f) assigned to each cell is the
average of the densities of all particle within it. ¢ Fromtegmoup
of cells with the same: andy, we plot the one with the highest
density.

We see that the real-space density maps are dominated by
the familiar relatively smooth trend of density decreasfram
the centre outward, with several tight clumps spread thieug
out the halo. The phase-space density maps, on the other hand
are qualitatively different. While the global trend withdias is
much less apparent, the subhaloes become the highest peaks,
especially in the outer regions of the halo. For example, the
clumps with f > 10"2Mg Mpc=2(km/s)™* (yellow-reddish
colours) are found everywhere. The very high peaks, vfith-

10" Mg Mpc™3(km/s) ™2 (bright yellow colours), are all found
at a considerable distances from the centre. The centr&lipef
is quite modest in comparison; the elongated structures thea
centre of dwarf-halo B are most likely subhaloes in the pseasf
merging.

Fig.[@ highlights the same effect by showipgand f asso-
ciated with a random subset of the N-body particles as a ifumct
of their distancer from the halo centre. A large portion of these
particles follow the global trend of decreasing densityhwadius
— they could be associated with a smooth-background conmpone
for which f is approximately a function of energy alone. At radii
r > 1kpc, the highf values come in “spikes” corresponding to
the subhaloes. While the spikes grreach values comparable to
the central peak, the spikes jficould be more than 100 times
higher, indicating that the subhaloes are bottmpactand cold.

We note in dwarf halo B, for example, that all the points where
f 2 102 Mg Mpc—2km~3s® are in subhaloes.

The other interesting feature of the spikes is the fact they t
seem to get lower and broader as they get closer to the hatecen
and that beyond a certain radius (of abBiipc), the spikes com-
pletely blend into the smooth background. This indicates the
subhaloes phase-mix and lose their high phase-space idsresit
they approach the halo centre. This seems to be the natstdt re
of mergers andidal effects which both puff up the subhaloes and
heat them up.

5.2 Toy Model: Adding Up Small Haloes

As afirst attempt at trying to understand how the powerd@y) o
f~2%% in a halo of mass$// may originate from its substructure, we
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Figure 5. Density maps of dwarf halé 1z in a slice of thicknes8.4 Ry, .
Top: real-space density. Bottom: phase-space density. ufiits in the
colour key ardlog(p/[Me Mpc—3]) andlog(f/[Me Mpc—3km~3s3])
respectively. The very-higlf values are found inside clumps which are
typically far away from the halo centre.

simply add up the typical contributions from the general ap
tion of haloes of different masses smaller thanl/, as predicted

in the ACDM cosmology. Based on cosmological N-body sim-
ulations (Moore et al_1999a; Ghigna el Bl_2000; De Lucia ¢t al.
2004), and in accordance with the Press-Schechter appatigim
(Press & Schechtér 1974) and its extensions (€.4.._Laceyl& Co
1993;1Shethl_2003), the mass function of small-mass halagts (n
necessarily subhaloes) can be approximated/bydm < m™7,
with v ~ 1.8 — 2.0. Additionally, we assume that the average den-
sity profiles of haloes of different masses have the sameiturad
form and are simply scaled versions of each other. This &best
lished byn-body simulations for the case @blatedhaloes, but is
less clear when one considers subhaloes (e.q.. HayashPena).
Nevertheless, we adopt this assumption as our first crudedolel.

As a first approximation we assume that the haloes all form at

the same time in an Einstein-deSitter cosmology, so theg Ha
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Figure 6. Density maps of dwarf halé. 1. See Fig[hb.

same characteristic real-space dengity = p (a constant factor
times the universal density), and therefore their typiediirscale
like 7, o m'/2. Based on the virial theorem, the velocity disper-
sions then scale like,, « m!/3. Therefore, the typical phase-
space volume of a halo of massscales likeV;,, « 73,03, x m?,

and its typical phase-space densityfis cc m/Vy, o< m™t. If we
denote byo( f) the universal, un-scaled, normalised, dimensionless
probability distribution function relevant for all the logls, then the
volume distribution functior,, (f) of a halo of massn, defined
such thaw,, (f)df is a volume, is given by

- i(£

Then the total contribution to(f) of halo M from the population
of smaller haloesn < pM is

/ “Mn
o dm

vm (f) (38)

) =m’s(mf) .

nwM
o(f) (f) dm = / P No(mf)dm, (39)
0
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Figure 7. Densities as a function of radius for dwarf hdla 5, using a ran-
dom set of 4% of the particles. Top: real-space densitydButphase-space
density. The background particles define a general trenéakdsing den-
sity with radius, while the spikes correspond to subhaldbs.phase-space
density spikes are higher than the central peak becauseilihalses are
cold. They become shorter and broader at smaller radiicatitig heating
and puffing up by tidal effects and mergers.

whereu M is the mass of the largest subhalo<£ 0.5). Changing
variablesn — mf, we finally get

uMf
v(f):f’(“’"’)/ $275(s)ds . (40)
0

Thus,v(f) is a multiple of a power-lay =~ and a monotoni-
cally increasing function of; it therefore has to be shallower than
the power lawf~ (=), For~ > 1.8, this means that(f) is shal-
lower thanf~2-2, which is significantly shallower than the mea-

mE=/6 Y mEt)/2 fm o m~@t/2 and we finally
obtain that( f) must be flatter than the power law

’U(f) x f*2*2(2*’y)/(2+1/) ) (41)

Forn = —3, namelyr = 0, the asymptotic index for small haloes
where all haloes form at the same epoch, we recover the rarlie
result thatv(f) is flatter thanf~(=7). For ACDM on galactic
scales, the effective power indexnis< —2.3, sov < 0.35, and

for v > 1.8 we obtain thaw(f) is flatter thanf~2-'". We see that
the time dependence makes only a little difference.

The total(f) of the halo should be the sum of the background
contribution and the subhalo contribution, but at the hjglange
we expect(f) to be dominated by the contribution of subhaloes,
as seen earlier in this section. The above toy model thusgised
thatv( f) should be flatter thafi=2-2, in conflict with the measured
o(f) o< £

We conclude that a halo is not simply an ensemble of clumps
drawn from the general population of smaller haloes. The sub
haloes may have a different mass function, their shape prepe
may vary differently with mass, and they both could vary vdis-
tancer from the host-halo centre. If one keeps the scaling relation
with v = 0 and ignores any variation with the required subhalo
mass function for matching the measurelf) o 7% is with
v = 1.5 (compared toy = 1.8). Indeed, a flattening of the subhalo
mass function could be a natural result of the inevitableadyical
evolution of the subhaloes in the potential well of their thaalo.
The phase mixing due to tidal effects, including total diion,
is likely to be more efficient in less massive subhaloes, flais
tening the mass function. Also, dynamical friction is moffecent
in making more massive subhaloes sink into the halo, thusngak
the mass function flatter in the inner parts. However, resent
ulations indicate that the subhalo mass function is noteflattan
~v ~ 1.7 (De_Lucia et al.| 2004), indicating that the tidal effects on
the inner structure of subhaloes must also have an impaént
These are matters for more detailed future studies, butahed
of the idealised toy model analysed above to reproduce tlggcma
power lawv(f) oc £~ indicates that the phase-space density is
likely to provide a useful tool for studying the dynamicabkytion
of subhaloes in host haloes.

6 DISCUSSION AND CONCLUSION

Using Delaunay tessellation, we developed a method for nneas
ing the 6-dimensional coarse-grained phase-space def{sitw)

in N-body systems. We focused, in particular, on measuring the
phase-space volume distribution functiar{,f). We applied this
technique to several simulated haloes~ofL0°® particles, formed

by hierarchical clustering in the standak€DM scenario, and ob-
tained two striking new results.

First, v(f) is well described by a power lawy(f) o
254005 gyer 3 to 5 decades ifi. The power-law regime starts
at an f value which corresponds to the characteristic size of the
virialized halo. It ends at arf value which is determined by the

suredf~2-°+9-95 This idealised toy model does not seem to work. dynamical resolution limit of the specific simulation. Tafsre,
This calculation can be generalised to the case where haloesthe true power-law range may extendfto—+ oo. This power law

of smaller masses form first, as implied from the slope of nitéai
fluctuation power spectrun®;.. For an Einstein-deSitter cosmol-
ogy, the formation time scales with such that,,, « m™", with

v = (n+3)/2, andn is the local power indexy = d1n Py /dIn k,

at the relevant effective scale for massesp M. Then, in anal-
ogy to the calculation in the previous paragraph, we hayex

seems to be insensitive to the halo mass in the raﬁ%e 10*° Mo,
indicating insensitivity to the exact slope of the fluctoatpower
spectrum, as long as the haloes are built by hierarchicajimgpf
clumps bottom up.

Second, this power-law originates from substructuresiwith
the halo rather then the overall trend with radius. The subgire
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completely dominates the highparts of thev( f) distribution. The
infalling clumps seem to phase-mix — by puffing up, heatind an
stripping — as their orbits decay from the virial radius imd&
toward the halo centre and they melt into the halo smooth-back
ground.

Our first worry is that these results could be numerical arti-
facts, or severely contaminated by such. Based on our etatysis
and tests with mock datasets, we argue thatilfg measured by
the DTFE algorithm genuinely reflects the true phase-speme- p
erties of the givenV-body system over a broad range fof The
question is whether the phase mixing suffered by the subzdias
they approach the halo centre might be an artifact of nuralegic
fects such as two-body relaxation, leading to undereséichainer
densities and/or overestimated internal velocities. Ailaineffect
has been pointed out using a one-dimensional toy model é8/nn
2003). The apparent agreement between simulations rundifith
ferent codes and different resolutions is encouraging.rifeoto
specifically address the effect of few-body relaxation, mtend to
run twice a simulation of the same halo with the same number of
particles but with a different force resolution (ongoingrivevith
F. Stoehr).

Assuming that the simulations genuinely reflect the truesphy
ical behaviour under the Vlasov equation, the origin of thisust
power-law shape af( f) from the merging substructure becomes a
very interesting theoretical issue. As demonstrategina simple
model using the mass function and the scaled profiles of the ge
eral halo population in thACDM scenario does not reproduce the
correct power law. This, and the apparent trend offtlspikes with
radius, indicate that the structural and kinematic evolubf the
subhaloes in the parent halo are important. Studies of tieiating
and stripping may be found useful in this modelling.

It would be interesting to follow the phase-space evolutind
the contribution to the overall(f) by a single, highly resolved
subhalo, or many of those, as they orbit within the parent hald
approach its centre. This may help us understand the nafttine o
interaction between the parent halo and its subhaloesharatigin
of thewv(f) power law (ongoing works with E. Hayashi and with B.
Moore).

Another more general but speculative possibility is that th
25 power law represents some sort of a cascade of relaxation
processed in phase-space, in which high phase-spaceieensin
into lower (coarse-grained) densities through the prooéssix-
ing. In general, the fact that our findings are expressedring®f
the fundamental concept of phase-space density should tinaie
more directly accessible to analytical treatment. In thspect, it
may prove beneficial to investigate more closely the timdwevo
tion of thew(f) of a cosmological halo and its components. This
may shed light on the connection between#¢) power-law be-
haviour and the relaxation processes within the halo.

We saw that the power-law behavior of f) is limited to
the virial regime. It would be interesting to learn how thimape
evolves in time as the halo virializes. A preliminary studg (
be concluded and reported in another paper) indicates rihuei
intermediatef regime thev(f) of a pre-virialized system is sig-
nificantly flatter thanf ~2-5, while in the high# regime it drops in
a much steeper way. Thg=2® behaviour seems to be a feature
unique to virialized systems.

We learnt that in the haloes that are built by hierarchicas-cl
tering, the power-law behaviour(f) oc f~2° reflects the halo
substructure. It would be interesting to find out whethes gawer-
law behaviour actually requires substructure, or it is aargen-
eral phenomenon of virialized gravitating systems, vatidepen-

dently of substructure. One way to answer this question evbalto
analyse simulated haloes in which all fluctuations of wavglles
smaller than the halo scale were removed, resulting in a fmoo
halo formed by monolithic collapse, with no apparent sulustr
ture in the final configuration. As describeddfl, such haloes are
known to still have NFW-like density profiles in real spaced ane
wonders whether they also have the magic power:léf). There
are preliminary indications for a steepeff) in this case (Arad,
Dekel & Moore, in preparation). If confirmed, it would indiea
that thef ~2-> behaviour, while insensitive to the exact slope of the
initial power spectrum, is unique to the hierarchical auisty pro-
cess, and is not a general result of violent relaxation.

Our current results are just first hints from what seems to be
a promising rich new tool for analysing the dynamics andcstme
of virialized gravitating systems. The analysis could lreeeven
more interesting when applied to haloes including the astet
gaseous and stellar components.
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APPENDIX A: ERRORS IN  vgel(f)

The “true”, underlying coarse-grainef{x, v) is what one would
have measured using a fixed smoothing window in phase space (e
counts in fixed cells) and an arbitrarily large number of ipkas.
Instead, the Delaunay Tessellation Field Estimator useptae
cells in order to deal with the mass resolution limitatiohkere-
fore, the relation between the measurgd ( f) and the underlying
verue (f) 1S NOt trivial. Both statistical and systematic errors ntigh
influence our results. We estimate these errors empiritalgw,
but we start with an approximate model that provides a sirapte
derstanding of the origin of the errors.

Al A Voronoi Model: Fixed Smoothing v(f)

A technique similar to the Delaunay tessellation, but sohsw
simpler to interpret, is the Voronoi tessellation_(van de/déert
1994). For each particle, the Voronoi cell is defined as tiggore
of phase space in which every point is closer to that partica
to any other particle. In this cas&y particles define exactlyw
Voronoi cells which cover all of phase space with no overldps
Vi is the Voronoi cell of particle, then a natural mass-preserving
way of estimating the phase-space density inside that sdilyi
fi = m;/|Vi|. We denote the quantities measured this wayly
andvyer (f).

Much like the Delaunay tessellation, the Voronoi tessielfat
is an adaptive grid that enables one to estinfdte, v) even in the
presence of a relatively small number of particles. We useDié-
launay method in our main analysis because it is somewhat mor
accuratel(Schaap & van de Wevgaert _2000), and is easiercio-cal
late numerically. However, the similar Voronoi method pd®s a
simple way of learning about the properties of the measuf¢d
and understanding the uncertainties associated with sunbaa
surement. The empirical tests of the Delaunay measurerbents
low demonstrate the relevance of the wisdom gained by anaglys
the Voronoi model.

To understand the errors in the Voronoi density estimatain,
us start with the trivial case where all of infinite phaseespia uni-
formly filled with phase-space densify;, which is represented by
an infinite number of particles with mass. A volumeV of phase-
space would then contain on average a finite number of pasticl
foV/m. The Voronoi estimate of; for each particle would fluc-
tuate aboutfy due to the discreteness of the particle distribution.
Since there is no typical scale in the problem, and each kedlys
contains one patrticle, the fluctuatiofis/ f per Voronoi cell would
remain at the same level even if one increases the averageenum
density of particles while decreasing the mass of eachgbaiiti
proportion, keeping the same. Therefore, the probability that the
Voronoi estimatedf would lie in the intervalf — f + df may


http://arxiv.org/abs/astro-ph/0310576
http://arxiv.org/abs/astro-ph/0311231
http://arxiv.org/abs/astro-ph/0306088

Phase-Space Structure of Dark-Matter Haloesl3

be written in terms of a universal probability distributifimction
poo(f/fo) d(f/fo).

When we consider a finite system in a box of volubigwith
a finite number of particled/ inside it, we may expect the proba-
bility distributionpx (-) to deviate from its asymptotic forp. (-).

As N decreases, we expett; (-) to widen due to the increasing ef-
fect of the boundaries. Next, examine a system with a nofetmi
phase-space density, such as a cosmological halo. If thbeuoh
particles that represent thisis sufficiently large, we may approxi-
mate every region in phase-space as being locally unifonehea-
timate its Voronoif using the asymptotip (). This assumption
is expected to break down in regions with very high phaseepa
density, where the sampling may become poor and insuffiaient
in regions wheref has large gradients over small scales. Neverthe-
less, lets assume for the moment that there exists an e#exti)
[not necessarily. (-)] which properly approximates the fluctua-
tion distribution of the Voronojf for all particles.

This assumption allows us to calculate the expectationevalu
of vyor (f) for a finite system with a giverfi(x, v). This is done by
first calculating the average & (f), the cumulative version of
vvor (f) defined in[[B), and then differentiate it to obtain the averag
of vyor (f). Assuming thaif (x, v) is realised byN >> 1 particles,
we divide phase space into a large number of eellswhich are
small enough to guarantee that (a) each cell is very unlilcetypn-
tain more than one of th& particles, and (b) the value ¢f(x, v)
is approximately constant within every cell.

For each cell,, we calculate{V,(f)), the average of the
contribution of this cell td/.:(f). The contributionV, (f) would
be non-zero only when there is a particle in the cgll a parti-
cle whose assigned Voronoi estimated density.is. If f, is the
true phase-space density in that the cell, then, accordiogrt as-
sumption, fvor would be chosen at random out of the probability
distributionp(fvor/ fa) d( fvor / fa ). ONCEfyor is chosenVo (f) is
given by

Va(f)={ A AEA

Using our assumption (a) above, the probability.afto host one
particle isPo, = NM~" [ f(x,v)dxdv, with M = Nm the
total mass of the system. Therefore,

(A1)

Valf)) = Pox / T oo YA oo/ fo) 1) fror (A2)
f
_ / dxdv / PLfvor/ FG6, V)] ook dfver + (A3)
Wa f
and so,
Veor (1)) = Y (Valf)

/dXdV/ p[fvor/f(x7 V)]fl;)%l‘ deOY
f

/ af o(f") / Deor) ) ook dfver - (AD)
0 f

In the last equality, we have used the exaf) to replace the six-
dimensional phase-space integration. By differentiaftiog [A2)
with respect tofo, we finally obtain the desired expectation value:

(AS)

(veer (1) / ()P p(F /) df

We see that the measuréd,. (f)) is a convolution of the ex-

actv(f) with afixed window functiom(f/ f#....). The narrower
p(+) is, the closervyor(f)) would be to the true(f). However,
as argued above, even whéh — oo the windowp(-) does not
approach a Dirac delta function; it rather converges to sfinite-
width distributionp. (-). Therefore, even with an infinite resolu-
tion the Voronoi tessellation would not produce the exsgt); it
converges to a convolution of it with a fixed windgw (+).

This convolution would not affect the shape of the measured
(vvor (f)), and would preserve the true shapewdf), provided
thatv(f) does not vary drastically oveft scales which are smaller
than the width of the window. In particular, wheif) is a power
law, the Voronoi algorithm would recover the same power law f

{vvor (fo))-

A2 Empirical Testing with Mock Systems

For an empirical study of the errors in the DTFE-measurgf),
and for testing how well the Voronoi model approximates ¢hes
rors, we have performed a serieswafi (/) measurements on sys-
tems with known phase-space densities of the form

f(x,v) = p(x) [271'0'2 (m)} 73/26*”2/202@) 7 (A6)

corresponding to a spherical system in real space with a
Maxwellian velocity dispersion. We have examined six sughr s
tems with three different density profiles parametrisediby

671/5
pa(fl’) = W 5 o = 07 05, 107 (A?)
and the following two types of dispersion profiles:
1/2
oula) = [—M (x)} , (A8)
T
oc(x) = 0.1. (A9)

The subscripts “v” or “c” denote a varying dispersion profiggsus
a constant one respectively. Théf) for such systems is

=(f)
o(f) = M / 220 (2)4/21og f() dz , (A10)
I Jo f
with
fay = —2D (A1)
= [271-0-2(]?)} 3/2 7

andz(f) its inverse.

Figure[A1 shows the cumulative distributionsfaf; / firue in
different bins(f;, fj+1) of ftrue, for thea = 1 o, System and
thea = 1 o. system. Both systems were realised usifif parti-
cles. In both cases we have also plotted the cumulativeliistn
fae1/ forue for @ homogeneous Poisson distribution, realised in a
six-dimensional cubic box with0® particles. We have verified that
this distribution is essentially unchanged when the catoonh is
done with10° particles. Therefore, it should be regarded as good
approximation to the asymptotic limit we would have reacired
the different bins, had we used an infinite number of pasiclde
other four systems give essentially the same results.

In the 1-v system, five bins were defined b
1077,107°,1073,107}, 10, 10®. We see that the shape of the dis-
tribution, corresponding to the width of the differentigtdibution,
is very much independent of.,.. For all bins, the full width is
less than a 1.5 decades. On the other hand, there does seera to b
systematic shift of the median toward larger valuesf@i / firue
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a homogeneous Poisson distribution, which is realised ir-disnensional
cube usingl08 particles. This should be regarded as the asymptotic limit f
with an infinite resolution.
Figure A2. The measuredqy.(f) versus the true(f) for the threeo.
mock systems, each performed with three different reswmiati

for smaller values offi.ue. The large shift of the highest-bin
(10 < f < 10%) toward smallfqer/ firue iS @ result of the very

low number of particles in that bin, less than 500, which guffi- To see how well the DTFE reconstructs the to¢), we have
cient for representing such high phase-space densities. measured theq. (f) of the six mock systems usirig)*, 10° and
The bias toward larger phase-space densities in theflow: 10° particles for each system. FigulesIAZ]1A3 present the ®sult

bins may be attributed to boundary effects: while the totaksn of these numerical experiments. We see that with the higlesst
of the N particles in the realisation is equal to the total mass one olution, of 10° particles, the recovery is excellent over a range of
would obtain from the exacf(x, v) integrated over the infinite almost 7 decades ifi. Systematic deviations begin at the high-
phase-space, the total phase-space volume used by the DPEBEt end and the lowf end. At both ends, the deviations appear at about
timate f(x, v) is finite. It is the smallest possible convex polygon one to two decades inward to the highest and lowest valugs.of
containing allN particles. Therefore, we may expect an overesti- in that realisation. When the resolution is decreased fth@nge
mate of f, which would be more pronounced near the boundaries. wherev4e(f) closely matches:.v.(f) narrows gradually.
Nevertheless, as we shall see by compating(f) t0 virue(f), ON As argued above, the systematic deviations at the flasnd
scales of a few-decades, this bias is rather meaningless. are probably a result of the finite phase-space volume oedupy
The f4el/ frue distributions of the 1-c system are essentially the particles. As the number of particles is increased,getgpor-
the same as the ones in the 1-v system. Here 4 bins were definedion of phase-space is covered, enabling the reconstructimwer
by fi = 107°,107%,107!,10',10%. The overall shape of the  values off4..
plots changes very little from bin to bin, and its width is aba The highf systematic deviations can be qualitatively under-
decade and a half. Additionally there exists the bias tos/&ayer stood using the Voronoi model and its convolution form{l&)YA
fael/ ferue ratios asfirue gets smaller. Since the DTFE uses a finite number of particles to recoverfthe
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Figure A3. Same as FidA2 but for the, mock systems.
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field, there must be an upper cutoff,, for the spectrum of val-
ues that the DTFE can produce in principle. As far as the DEFE i
concerned, the true(f) has an effective cutoff af;. If we plug
this “true” truncatedv(f) into the convolution formulad{A5), as-
sume a distribution functiop(-) with a width of about 1 decade,
and setf; ~ 50, we recover the qualitative behaviour of the mea-
suredvae (f) for the N = 10° mock samples withr, and the three
values ofa. This simple picture is, however, an oversimplification
because the higlf-region is also effected by statistical fluctuations
due to the low number of particles there.

The convolution formula can also explain tbeerestimation
by the vqel(f) in the highs regions of the mock systems with
o.c. In these systems, the transition between the fopewer-law
and the steep higlf-decline is rather sharp; it occurs over a scale
comparable to the width of the window functigi-). As a result,
the vge1 (f) measurement at a highincludes contributions from
the higherv(f) values at lowerf. This becomes very apparent in
the case withw = 0 ando., in which f has an upper bound of
f =~ 63. While the truev(f) vanishes for allf values larger than
this limit, the DTFE-measured(f) vanishes only at arf value

that is an order-of-magnitude larger, due to the 1-decadihvaf
the assumed probability distribution functip(t).

A3 Statistical Errors in vgei (f).

The Voronoi model can also be used to estimatesthésticaler-
rors invyor (f). Strictly speakingvvor (f) is an ill-defined random
variable, as it is measured by differentiatif@..(f), which is a
super-position of Heaviside step functions, and as sugh(f) is
a sum of Dirac delta functions. Much like a white-noise psse
its variance is infinite. In practise, however, we always pate
vvor (f) by differentiating asmoothedrersion of Vio: (f) (using a
spline, for example). Therefore, we may expect the stasikérror
in vyor (f) to be comparable to the statistical errofin,.(f). The
latter can be estimated in a way similar to how we estimated th
average oo (f).

To calculate([AVyor (£)]2) = (V2,(f)) — (Veor (£))?, we
can use the definition df, (f) to write

(Vior(D)y =D (Val V(D) + D _ (V) -

—

(A12)

Assuming thatV,,(f) is independent of/5(f), the cross terms
would cancel out fron’([AVVOY(f)]2>, leaving us with the upper

limit
D> (Vi) -

([AVir (1)) <

Using arguments similar to those used for calculating
(Va(f)), one can show that

(A13)

(Vi) = m / dxdv / Pl fvor/ £ (5, V)] fuor dfvolAL4)
Wa f
< 2 [ axav [ Sl dngass)
Wa f
= Falf) - (A16)
Therefore,
([AVaor (1)) < (Veor (1) (AL7)
and the relative errof(f) is given by
1/2
m
A(f)<<‘f<vvor(f)>> ' (A18)

Pluggingm = M/N into the formula above, wher#/ is the total
mass of the system arid the total number of particles, we recover
the common large-numbers limk(f) o 1/v/N.

To check how good this estimate is for the DTFE-measured
v(f), we have measured th€ f) of 100 realisations of the = 1
oy mock system withV = 10% and N = 10* particles, and 30
realisations withV = 10° particles. From these measurements we
computed the true relative errorirf) [with respect to the average
of the DTFE-measured( f), not with respect to the exae( f)],
and compared it to the prediction of ER.{A18). Figlird A4 show
the comparison for the three resolutions. We see that[EqE)(A1
performs well as an upper bound for the statistical errowse gt for
the low-f region. In that region the cumulativié( f) approaches a
constantag — 0, due to the finite phase-space volume of the halo.
This introduces fluctuations to(f) as a result of the numerical
differentiation in Eq.[3B).

However, it is interesting to notice that whenever the stiagl
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Figure A4. The average (top) and relative error (bottomyify) as mea-
sured in the mock systen(= 1, o) sampled with three different res-
olutions. The relative errors are compared to the analytediption of

Eq. [ATH).

errors invqel (f) become important, they are overwhelmed by the
low-f or high-f systematic errors. In that respect, the statistical
errors invgel ( f) are of no big relevance.
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