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ABSTRACT

In this paper, I present results from theoretical and numerical (Monte Carlo)

N-particle fully relativistic 4-D analysis of Penrose scattering processes (Compton

and γγ −→ e−e+) in the ergosphere of a supermassive or stellar mass Kerr

(rotating) black hole. Specifically, the escape conditions and the escaping orbits

of the Penrose pair production (γγ −→ e−e+) electrons are analyzed, revealing

that these particles escape along collimated, jet geodesic trajectories encircling

the polar axis. Such collimated vortical tightly wound coil-like trajectories of

relativistic particles are inherent properties of rotating black holes. The helical

polar angles of escape for these e−e+ pairs range from ∼ 40o to ∼ 0o.5 (for

the highest energy particles). These jet distributions appear to be consistent

with the astrophysical jets of active galactic nuclei (AGNs) and galactic black

holes, and suggest a mechanism for precollimation within the inner radius of the

dynamically stable accretion disk.

Subject headings: acceleration of particles—black hole physics: jets: general—

gravitation—relativity

1. Introduction

We now have observational evidence that black holes indeed exist in nature. They

are at the cores of quasars and other active galactic nuclei (AGNs) as well as sources in our

Galaxy, commonly referred to as microquasars or galactic black holes. Many of these sources

are associated with polar jets emanating from their cores. Black holes were theoretically

predicted from Einstein’s theory of general relativity. Theoretical and numerical calculations

(Williams 1991, 1995, 1999, 2001, 2002a, 2002b, 2003), described briefly below, show that

http://arxiv.org/abs/astro-ph/0404135v3
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Penrose (1969) gravitational-particle scattering processes are sufficient to describe energy-

momentum extraction from a rotating Kerr (1963) black hole, from radii within the marginal

stable orbit (r . rms ≃ 1.2M , in gravitational units: c = G = 1; a/M = 0.998, where a

is the angular momentum per unit mass parameter and M is the mass of the black hole),

while electromagnetic interactions or magnetohydrodynamics (MHD) appear to govern the

“flow” of polar jets of the extracted particles, escaping away from the central source, out to

the observed distances, as suggested by observations (Junor, Biretta, & Livio 1999).

In the primary paper cited above (Williams 1995), theoretical model calculations involv-

ing Monte Carlo computer simulations of Compton scattering and electron-positron (e−e+)

pair production processes in the ergosphere of a supermassive (∼ 108M⊙) rotating black

hole are presented. Particles from an accretion disk surrounding the rotating black hole fall

into the ergosphere and scatter off particles that are in bound equatorially and nonequa-

torially confined orbits. The accretion flow is assumed to be of the form of the so-called

two-temperature bistable disk model, in which the disk can in principle exist in two phases:

a thin disk (Novikov & Thorne 1973) and/or ion torus (Lightman & Eardley 1974; Shapiro,

Lightman, & Eardley 1976; Eilek 1980; Eilek & Kafatos 1983), where the electrons and

protons (or ions) can have separate temperatures of up to ∼ 109 K and ∼ 1012 K, respec-

tively. Note that disk models of this sort are also referred to as thin disk/ion corona models,

and more recently, the ion corona has been called an advection dominated accretion flow

(ADAF; Mahadevan, Narayan, & Krolik 1997). The Penrose mechanism, in general, allows

rotational energy of a Kerr black hole (KBH) to be extracted by scattered particles escaping

from the ergosphere to large distances from the rotating black hole. The results of these

model calculations show that the Penrose mechanism is capable of producing the astronom-

ically observed high energy particles (∼ GeV) emitted by quasars and other AGNs. This

mechanism can extract hard X-ray to γ-ray photons from Penrose Compton scatterings of

initially low energy soft X-ray photons by target orbiting electrons in the ergosphere. The

Penrose pair production (γγ −→ e−e+) processes allow relativistic e−e+ pairs to escape

with energies up to ∼ 4 GeV, or greater depending on the form of the accretion disk; these

pairs are produced when infalling low energy photons collide with bound, highly blueshifted

photons at the photon orbit . This process may very well be the origin of the relativistic

electrons inferred from observations to emerge from the cores of AGNs. Importantly, these

model calculations show that the Lense-Thirring effect (Thirring & Lense 1918), i.e., the

dragging of inertial frames into rotation, inside the ergosphere, caused by the angular mo-

mentum of the rotating black hole, results in a gravitomagnetic force being exerted on the

scattered escaping particles. This force (which is the gravitational analog or resemblance of

a magnetic force) produces asymmetrical particle emissions in the polar direction, above and

below the equatorial plane, consistent with the asymmetrical or one-sided jets observed in
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radio strong AGNs (Williams 2002a, 1999)1. The dragging of inertial frames also causes the

Penrose escaping particles to escape along vortical trajectories (as discussed in the following

paragraphs).

These Penrose processes can apply to any size rotating black hole and, in general, to

any type of relativistic elementary particle scattering energy-momentum exchange process,

inside the ergosphere, allowing particles to escape with rotational energy-momentum from

the KBH. Even in the context of MHD, according to the guiding center (Landau & Lifshitz

1975) approximation, the single-particle approach is essential close to the black hole (de

Felice & Carlotto 1997; Karas & Dovčiak 1997; de Felice & Zonotti 2000), i.e., the behavior

of individual particles moving along geodesics in the strong central gravitational force field

is also that of the bulk of fluid elements. This suggests that even though a MHD simulation

is not performed in this present paper, the results will be valid for the trajectories of particle

flows and e−e+ pairs produced near the black-hole event horizon. Nevertheless, the Penrose

analysis presented here should be considered in the context of a full-scale relativistic MHD

simulation. However, because of the proximity of the Penrose processes to the horizon, and

the dominating effect of gravity, the resulting trajectories are expected to be approximately

the same in the MHD regime.

In the model calculations summarized above, in which energy-momentum is extracted

from a rotating black hole, it is found that particles escape with relativistic velocities along

vortical trajectories, above and below the equatorial plane, with small helical angles of

escape, implying strong coil-like vortex plasma collimation (Williams 2001, 2002b). Thus,

from these model calculations, it appears that the rotating black hole naturally produces

particle trajectories collimated about the axis of symmetry, i.e., the polar axis. Such vortical

orbits or trajectories have been discussed by some other authors (de Felice & Calvani 1972;

de Felice & Curir 1992; de Felice & Carlotto 1997; de Felice & Zanotti (2000); see also

Bičák, Semerák, & Hadrava 1993; Karas & Dovčiak 1997). Their independent findings,

deduced from the geodesic properties of the Kerr metric, and referred to as geometry induced

collimation, can serve as confirmation of Williams’ (1991, 1995) theoretical and numerical

calculated results, or vice versa.

In this paper, I examine the escape conditions and the resulting four-momentum vec-

tors of the Penrose pair production (γγ −→ e−e+) processes, showing that the particles

indeed escape to infinity in the form of vortical jets intrinsically collimated about the polar

1Figures 1(c) and 1(d) of Williams (1999) are incorrect. Figures 4(e) and 4(h), respectively, of Williams

(2002a) are the correct figures, where in Figure 4(h) the target electrons have both positive and negative

equal absolute value polar coordinate angular momenta.
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axis, because of the frame dragging of spacetime inside the ergosphere of the KBH. Impor-

tantly, we shall see that these e−e+ pairs escape without any appreciable interaction with

the dynamically stable accretion disk particles. Now, although most of the Penrose Comp-

ton scattered photons escape along vortical trajectories as well, we are concerned, in this

paper, only with the Penrose pair production (γγ −→ e−e+) electrons, because these are the

particles that compile the main constituents of the observed jets, being responsible for the

synchrotron radiation and Doppler boosting (giving rise to superluminal motion). I refer the

reader to the above references, particularly Williams (1995), for a thorough description of

the “Penrose-Williams” (Williams 2002b) processes discussed in this present paper.

2. Escape Conditions and Vortical Orbits

After the scattering events, not all of the particles escape to infinity. A set of escape con-

ditions must be applied to see if a particular particle escapes from the gravitational potential

well of the black hole [see Williams (1995) and references therein for further descriptions of

the escape conditions]. It is known that outside the event horizon, the orbit of a photon

(or an unbound material particle with E/µo > 1), may have one or no radial turning points

for which Pr → 0 (Piran & Shaham 1977; Williams 1995), where E is the energy of the

particle as measured by an observer at infinity; µo is the rest mass energy; and Pr is the

radial component of the covariant four-momentum vector [Pµ = (Pr, PΘ, PΦ,−E)]. Let L

define the conserved azimuthal coordinate angular momentum (= PΦ), then if E/L for that

particle lies in the range
E

L
≤ Eorb

Lorb

, (1)

for a direct orbit not confined to the equatorial plane [Q > 0; Q is the so-called Carter

constant of motion (Carter 1968):

Q = P 2
Θ + cos2Θ

[

a2
(

µ2
o − E2

)

+
L2

sin2 Θ

]

, (2)

where the value of Q is zero for particles whose motions are confined to the equatorial plane],

there will be one turning point; otherwise, there will be none, where Eorb is the iso-energy

orbit: the circular orbit of equal energy at constant radius r = rorb, a potential turning

point, and Lorb is the corresponding azimuthal angular momentum. Another independent

condition for the existence of a turning point for which Pr → 0 is

Q

E2
≥ Qorb

E2
orb

, (3)

where Qorb is the corresponding Q value of the iso-energy orbit. [Note, a bound circular

orbit is considered as an orbit with a “perpetual” turning point (see Williams 1995).] In
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equations (1) and (3), Eorb and Lorb are the conserved orbital energy and azimuthal angular

momentum as measured by an observer at infinity, given by (Williams 1995)2

E =

(

r2L2 +D + F

G

)1/2

, (4)

and

PΦ = L =

[−J − (J2 − 4IK)1/2

2I

]1/2

, (5)

where

I ≡ Ã2r4

G2
− r2

G
(2ÃC +B2) + C2,

J ≡ (D + F )

G

[2Ã2r2

G
− 2ÃC − B2

]

+ 2∆(r2µ2
o +Q)

[

C − Ãr2

G

]

,

K ≡ Ã2

G2
(D + F )2 − 2Ã∆

G
(r2µ2

o +Q)(D + F ) + ∆2(r2µ2
o +Q)2;

and

Ã ≡ [(r2 + a2)2 − a2∆],

B ≡ 4Mar,

C ≡ ∆− a2,

D ≡ (3r4 − 4Mr3 + a2r2)µ2
o,

F ≡ (r2 − a2)Q,

G ≡ 3r4 + a2r2,

for direct orbits of constant radius r, where ∆ ≡ r2 − 2Mr + a2.

Upon applying equations (1) and (3) to the Penrose pair production (γγ −→ e−e+)

electrons, for E ≡ E∓, L ≡ L∓, and Q ≡ Q∓, where E∓, L∓, Q∓ are the parameters for a

Penrose pair produced electron, we find that most satisfy the condition to have a turning

point at the iso-energy orbit Eorb, with E∓ = Eorb and L∓ & Lorb at radii rorb ∼ rmb (the last

bound orbit for a material particle, deep within the ergosphere), before escaping to infinity

along vortical orbits about the polar axis, satisfying (Williams 1995)

0 <
Q∓

E2
∓

<
Qorb

E2
orb

, (6)

or Q∓ < Qorb, implying no turning point in (P∓)Θ, i.e., (P∓)Θ 9 0, yet (P∓)r → 0 at

rorb according to satisfaction of equation (1), where (P∓)Θ is the polar coordinate angular

momentum of a Penrose produced electron.

2Note the typographic error in equation (A17) of Williams (1995): µ0 is supposed to be µ
2
0.
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3. Discussion

That the Penrose produced e−e+ pairs escape to infinity along vortical trajectories

without any appreciable interaction with stable accretion disk particles can be seen in the

momentum spectra of Figures 1, 2 (for a supermassive KBH), and Figure 3 (for a “micro-

massive” KBH), as explained in the paragraphs below. Note, in gravitational units (G = c =

1) such distribution spectral plots for the same initial energies are approximately the same

irrespective of the mass of the black hole adopted to make the plot (see Williams 2002b). The

Penrose pair production processes used to calculate Figures 1, 2, and 3 are for an idealized

configuration with the purpose to simply show the effect of the inertial frame dragging

[produced by the gravitational field of the spinning black hole, i.e., its gravitomagnetic

field (Williams 1999; 2002a)], and not an attempt to connect the calculations to detailed

observations. Nevertheless, the initial energies used for these Penrose processes are based

on energies found to exist in relativistic accretion disk models (Novikov & Thorne 1973;

Eilek 1980; Eilek & Kafatos 1983) for black hole masses 108M⊙ and 30M⊙, and the expected

blueshift in orbital energies: increased by the factor e−ν =
√
−gtt ≃ 52 at the photon orbit

(Williams 1995), where gtt is the contravariant diagonal time component of the Kerr metric

in Boyer-Lindquist (1967) coordinates; such initial energies yield final results consistent with

general observed jet particle energies. The initial incident photons, indicated by the subscript

γ1, are assumed to infall radially along the equatorial plane [(Pγ1)r < 0, Lγ1 = Qγ1 = 0), with

energies Eγ1 = 0.03 MeV for Figures 1 and 2; Eγ1 = 0.0035 MeV for Figure 3. These incident

photons are allowed to collide with highly blueshifted target photons that orbit at the photon

orbit r = rph = 1.074M , in nonequatorially confined trajectories, which repeatedly cross (i.e.,

pass through) the equatorial plane in “spherical-like” orbits that reach certain latitudinal

angles (Wilkin 1972). The collision is assumed to take place when the target photon passes

through the equatorial plane. The initial orbital parameters for the target photons, indicated

by the subscript γ2, are given by equations (4) and (5) for a particular Qγ2. Specifically, the

target photon orbits can be populated by prior Penrose Compton scattering (Williams 1995;

2002b), and probably by proton-proton scatterings of neutral pions that decay (π0 −→ γγ),

occurring in “hot” ADAFs (Eilek & Kafatos 1983; Mahadevan, Narayan, & Krolik 1997),

assuming some of the π0−decay photons are created with appropriate Q values and energies

to become bound at the photon orbit (Williams 1995, 2002a). Now, in a realistic situation

the incident and target particles are not constrained to this idealized configuration, but

this configuration, including the range of initial energies used (see also captions of Figs. 1, 2,

and 3), is most efficient and allows maximum energy-momentum extraction (Williams 1995).

Figures 1a, 2a, and 3a show the azimuthal momenta L∓ of the Penrose pair production

(γγ −→ e−e+) versus the energy E∓ of the escaping electron pairs after 2000 events [each

point (i.e., tiny dot) represents an escaping particle resulting from the events]. In general,
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since the energy E as measured by an observer at infinity is linearly proportional to the

azimuthal angular momentum L in the transformation laws, from the local nonrotating

frame to the observer’s frame at infinity [compare eqs. (2.7c) and (2.7d) or (3.89a) and

(3.89d) of Williams 1995], and since there is a linear relationship between E and L in the

Boyer-Lindquist coordinate frame, as can be seen in Figures 1b, 2b, and 3b (compare also

equation [4]), which is apparently transferred to the scattered particles, the scatter plots

(Figs. 1a, 2a, 3a) representing the approximately 2000 escaping electrons per plot appear

linear.

Figures 1b, 2b, and 3b show the azimuthal coordinate momentum versus energy of the

e−e+ pairs, superimposed on the azimuthal coordinate momentum versus energy, orbital

parameters, of an electron orbit not confined to the equatorial plane (Wilkins 1972), at

rmb and rms, the radii of marginally bound and marginally stable orbits, respectively. The

conserved orbital parameters E and L for the nonequatorially confined orbits (for massless

and material particles), which reduce to the forms of Bardeen, Press, Teukolsky (1972) for

Q = 0, as measured by an observer at infinity, are given by equations (4) and (5). Notice

on Figures 1b, 2b, and 3b that for E∓ = Ee ≡ Eorb at rmb, rms ≡ rorb most of the escaping

e−e+ pairs have L∓ > Le, indicating turning points inside the inner radius of the stable

accretion disk (∼ rms); and some, particularly the higher energy pairs, have turning points

inside rmb. Moreover, compare Figures 1b, 2b, and 3b over the total energy range to see that

the curves for rms and rmb do not merge into one curve at lower energies; they only appear

to on Figures 1b and 2b. This, as well as the satisfaction of the turning point condition

stated above (according to equation [1]) at r . rmb and/or . rms, can clearly be seen when

comparing Figures 4 and 5, which show specific intervals for the cases displayed in Figures 1b

and 2b.

Notice also that, the display in Figures 1c, 2c, and 3c, showing |(P∓)Θ| < |(Pe)Θ| for
E∓ = Ee ≡ Eorb at rmb, rms ≡ rorb for most of the escaping e−e+ pairs3, means that these

electrons escape to infinity along vortical trajectories, with helical angles of escape, measured

relative to the equatorial plane, δ∓ = |90◦ −Θ∓| ∼ 60◦ to 0◦.5, δ∓ ∼ 9◦ to 0◦.5, and δ∓ ∼ 6◦

to 0◦.5, for the electrons displayed in Figures 1, 2, and 3, respectively (see Fig. 6; see also

Williams 2002b, 2002a).

Finally, notice that in Figure 1c, some of the e−e+ pairs with E∓ . 2.5 MeV do not

escape and can possibly become bound, i.e., populate the orbits, at rmb or rms for “later”

Penrose Compton scattering events, involving these nonequatorially confined electrons as

3The absolute value brace are included to emphasize that we are comparing the magnitude of the polar

coordinate angular momentum.



– 8 –

targets (Williams 1995, 2002b). This shows that these Penrose processes and the accre-

tion disk assumed (Williams 1995) can compile a self-consistent model producing the three

general spectral high energy regimes observed in all AGNs, more or less (e.g., compare Fig-

ure 8 of Williams 2003). That is, for a particular self-consistent case, somewhat similar to

that of Figure 1, from prior Penrose Compton scattering of initial photons (0.03 MeV) by

equatorially confined electron targets at rmb, the final inward scattered photons ∼ 330 keV,

with turning points after being blueshifted by a factor of e−ν ≃ 52 (Williams 2002a), can

populate the photon orbit for Penrose pair production (γγ −→ e−e+), which in turn yields

electrons that can populate the nonequatorially confined target orbits: with energies up to

∼ 3 MeV, similar to that seen in Figure 1c, for subsequent Penrose Compton scattering. In

this self-consistent case, however, E∓ can extend up to ∼ 17 MeV (compare Fig. 1). Note,

the population of the target particle orbits and accretion disk properties are discussed in

details in Williams (1995, 2002a, 2002b, 2003).

The helical angles of escape stated above (compare Fig. 6), and given analytically by

δ = arccos

[−T +
√
T 2 − 4SU

2S

]1/2

, (7)

where

S ≡ a2(µ2
o − E2),

T ≡ Q+ a2(E2 − µ2
o) + L2,

U ≡ −L2

[as derived from the “Carter constant” of motion by letting PΘ −→ 0 (see equation [2];

see also Piran & Shaham 1977), where Θ∓ = 90◦ ± δ∓ for escaping below “+” or above

“−” the equatorial plane], suggest that the particles escape to large distances along coil-

like geodesics conglomerated in the form of collimated swirling current plasma polar jets,

with energy-momentum of the KBH transferred from the highly blueshifted frame dragged

scattering events. Now, a test particle moves on a geodesic in a gravitational field if it

is not acted on by some external force, but if the parameters such as energy and angular

momentum vary with time, then forces are present that can destroy the geodesic character of

the motion. But the geodesic character of a trajectory, however, can be approximately saved

if the time scale of a significant variation of the physical parameters, say τvar, is longer than

the dynamical time, τdyn, associated with a geodesic trajectory (de Felice & Carlotto 1997).

This means that, if the orbital parameters vary slightly so as to preserve the initial Θ angle

(i.e., the emission angle of the particle above or below the equatorial plane), then under

suitable conditions, say in a suitable electromagnetic field, we obtain a net axial collimation.
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Calculations by de Felice & Carlotto (1997); Karas & Dovčiak (1997) suggest that the

average dynamical time associated with the vortical geodesics is sufficiently short to give

confidence that the average time of a significant variation of the physical parameters, due

to dissipative or accelerating processes, is long enough to ensure the geodesicity condition

on outgoing vortical orbits. This then can possibly permit the maintenance of the intrin-

sic collimation of the Penrose scattered particles by the KBH, particularly because of the

sturdiness or stiffness (de Felice & Carlotto 1997) of the coil-like structure of the geodesics.

Moreover, their calculations also show that for a Lorentz force acting on a charge particle

near the event horizon, for a 108M⊙ KBH, inertia and gravity dominate over electromagnetic

disturbance.

For completeness, the overall difference in the distributions of the polar angles of escape,

displayed in Figure 6, is a general relativistic effect due to the gravitomagnetic (GM) force

field acting on the momentum of individual particles, resulting in an “alteration” of the

incoming and scattering angles. The resultant force in the polar direction, as conveyed in

the spectra of Figure 6, depends largely on the counterbalance between the dynamics of the

nonequatorially confined target photons’ orbits (with latitudinal angles . 0◦.5 about the

equatorial plane) and the GM force. Note, an important feature of the GM field (caused

by the angular momentum of the rotating black hole) is the production of symmetrical and

asymmetrical polar jets: appearing to break the expected reflection symmetry of the Kerr

metric, above and below the equatorial plane (Williams 2002a). The general shapes of the

spectra are not the same because the energy-momenta of the initial and escaping particles,

in the three cases (Figs. 6a−6c) are different; therefore, the GM force (F
GM

=
↔
H · p), acting

proportional to the momentum (p) of a particle, will be different, where
↔
H is the GM tensor

(Thorne, Price, & Macdonald 1986). The GM force behaves in some degree like a “Coriolis

force,” acting on the momentum of particles in the local inertial frame that has been dragged

into rotation. This can be somewhat understood by looking at the GM force component in

the polar direction:

(F
GM

)Θ ∝ (HrPΦ − H̃ΦPr); (8)

with

Hr ≤ 0 for Θ ≤ 90◦,

Hr ≥ 0 for Θ ≥ 90◦,

H̃Φ > 0 for Θ ≤ 90◦ and Θ > 90◦, (9)

as defined by the components of the GM tensor for r ∼ r+, where it appears that the

spacetime frame dragging is so severe that the GM field lines are distorted into the direction

of rotation, producing the nonzero H̃Φ term (Williams 2002a). Notice in equation (8), using
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equation (9), that the first term maintains equatorial reflection symmetry, while the second

term introduces asymmetry; this second term is expected to exist effectively only near the

event horizon (r+), i.e., inside the ergosphere: the region of importance for the Penrose

mechanism to operate. A general analysis of equations (8) and (9) reveals the following

conditions:

1. At Θ = 90◦, Pr < 0 or Pr > 0, the force on the particle will be (F
GM

)Θ > 0 or

(F
GM

)Θ < 0, respectively.

2. At Θ > 90◦, Pr > 0, PΦ > 0, the force on the particle will be (F
GM

)Θ > 0 for

HrPΦ > H̃ΦPr, and (F
GM

)Θ < 0 for HrPΦ < H̃ΦPr.

3. At Θ < 90◦, Pr > 0, PΦ > 0, the force on the particle will be (F
GM

)Θ < 0.

We now use the three conditions above to explain the escaping particle distribution

in the individual spectra of Figure 6. The momentum components (PΦ, Pr) and the polar

angle (Θ) are to be compared with that of the initial and escaping particles. In the case

of the lowest energy (Fig. 6c; see also Fig. 3) target (Eγ2 ≃ 3.387 MeV) and incoming

(Eγ1 = 0.0035 MeV) photons, the initial asymmetry, favoring the positive êΘ direction, is

established by the GM field acting on the radially infalling photons according to condition 1.

The outward radial momenta of the escaping electrons with 90◦ . Θ∓ . 90◦, according

to conditions 1−3, are not large enough to overcome the force produced by (F
GM

)Θ > 0;

therefore, the asymmetry remains. For the lowest energy escaping electrons, the GM force

dominates over the dynamics of the target photons, resulting in helical angles of escape

δ∓ > 0◦.5 for most of the escaping electrons. Also, the Hr component has a larger absolute

value for a particle with a larger δ∓ (Williams 2002a), thus contributing to the distribution

being forced away from the equatorial plane according to conditions 2 and 3 (compare eqs. [8]

and [9]). Finally, in this particular case, as the energy of the escaping electrons increases, the

GM force dominates less and less, while the orbital dynamics of the target photons begin to

dominate, producing smaller δ∓ values, consistent with the latitudinal angles of the target

photons (which are . 0◦.5).

In the case of the somewhat higher energy (Fig. 6a; see also Fig. 1) target (Eγ2 ≃
13.54 MeV) and incoming (Eγ1 = 0.03 MeV) photons, the initial asymmetry, favoring the

positive êΘ direction, caused by the GM field acting on the radially infalling photons ac-

cording to condition 1 appears to be approximately balanced by (F
GM

)Θ < 0 according to

conditions 2 and 3, except at the very highest energy of the escaping electron pairs, where

(F
GM

)Θ > 0 dominates according to condition 2, producing asymmetry. For most of the es-

caping electrons, the GM force dominates over the dynamics of the target photons, resulting
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in helical angles of escape as high as δ∓ ∼ 60◦ according to conditions 2 and 3. Nevertheless,

as the energy of the escaping electrons increase, the orbital dynamics of the target photons

begin to dominate, producing smaller δ∓ values.

In the case of the highest energy (Fig. 6b; see also Fig. 2) target (Eγ2 ≃ 2146 MeV)

and incoming (Eγ1 = 0.03 MeV) photons, the asymmetry, favoring the positive êΘ direction,

caused by the GM field acting on the the radially infalling photons according to condition 1

and the high energy escaping electrons according to condition 2, where (F
GM

)Θ > 0 dominates

for HrPΦ > H̃ΦPr (recall that PΦ increases with increasing E), appears to dominate over

(F
GM

)Θ < 0 in conditions 1−3. Also, except for the relatively very lowest energy of the

escaping pairs, the orbital dynamics of the target photons appear to dominate over the GM

force, as the escaping energy increases, producing predominantly electrons with δ∓ . 1◦.

Note, in these Penrose processes, the GM force is inherently tied to the overall scattering

process through the Kerr metric. That is, just as we do not have to calculate separately

the gravitational force on the scattered particles due to the mass M of the KBH, we do

not have to calculate separately the GM force on the scattered particles due to the angular

momentum J of the KBH. The GM force, however, is given here separately only to show

how it relates to the final four-momenta of the scattered particles, in an effort to explain the

major difference of spectral distributions displayed in Figure 6.

4. Conclusions

In this paper, I have shown that the Penrose pair production (γγ −→ e−e+) electrons,

of processes occurring at the photon orbit rph, escape to infinity along vortical trajectories

about the polar axis, without any appreciable interaction with the stable accretion disk

particles (which are located at r & rms). This is also expected to be true for the Penrose

Compton scattered escaping photons that have inward directed radial momenta with turning

points at r ∼ rph, escaping along vortical orbits concentric to the polar axis (Williams

2001, 2002b). On the other hand, since the Penrose Compton scattering processes occur

at radii rmb . r . rms the scattered photons with positive radial momenta probably have

appreciable interaction with the inner region of the accretion disk, as suggested by the broad

Fe Kα emission line at ∼ 6 keV observed in the bright Seyfert 1 galaxy MCG—6-30-15

(Wilms et al. 2001); see the qualitative description in Williams (2002b). Details concerning

MCG—6-30-15 will be investigated in a future paper.

Overall, these vortical trajectories of escaping particles suggest that the KBH is respon-

sible for the precollimation (de Felice & Curir 1992; de Felice & Carlotto 1997; de Felice
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& Zanotti 2000; see also Bičák, Semerák, & Hadrava 1993; Karas & Dovčiak 1997) of the

observed jets of relativistic particles, emanating from the cores of objects powered by black

holes (compare Junor, Biretta, & Livio 1999). Note, the coil-like collimation of the vortical

orbits, presented here, and those of the Penrose Compton scattering processes, are investi-

gated in further details elsewhere. Further investigations of this precollimation will include

the self-induced dynamo magnetic field associated with the vortical orbiting escaping Pen-

rose produced (γγ −→ e−e+) pairs; such a field could be an important contribution to the

observed synchrotron emission as well as in maintaining collimation. Recent polarization

measures (e.g., see Homan 2004 and references therein) appear to be consistent with the dy-

namics and kinematics of these vortical polar trajectories of escaping electrons. The degree

to which the above statement applies consistently, with the interpretation that the observed

transverse rotation-measure gradients across the jets (Gabuzda & Murray 2003) are due

to an intrinsic helical magnetic field structure associated with the accretion disk, must be

looked at in detail. The best-case scenario would be for the magnetic field of the accretion

disk to assist in further collimating and accelerating the Penrose produced relativistic jet

particles as they escape from the black hole out to observed distances.

In comparison with some MHD energy extraction models, of the Blandford-Znajek

(1977) and Blandford-Payne (1982) type, we find the following. Firstly, because of the

proximity of the Penrose pair production (γγ −→ e−e+) processes (Williams 1995) to the

event horizon, i.e., occurring at the photon orbit rph inside the marginally bound orbit rmb

(the last radius for any bound material particle before it falls directly into the black hole),

the accretion disk magnetic field, proposed to be frozen to the plasma particles (e.g., Koide

et al. 2002; Koide 2003; Meier, Koide, & Uchida 2001), is expected to have a negligible

effect on these pair production processes, even without considering that the existences of

such magnetic fields or “flux tubes” near the event horizon are inconsistent with general rel-

ativistic findings by Bičák (2000) and Bičák & Ledvinka (2000). These findings reveal that

such fields, if aligned with the rotation axis, will be expelled from the horizon or redshifted

away, for a rapidly rotating black hole (i.e., a near extreme KBH). Now based on these find-

ings, it is probably safe to say that the disk magnetic field may have little, if any, effect on

the Penrose Compton scattering processes (Williams 1995), particularly those occurring at

∼ rmb, the radii first to be populated by the target electrons (Williams 2002b) and where the

most energy would be extracted for a specific Qe value [compare the bound electron orbits

displayed in Figs. 1c and 3c; see also Fig. 1(b) of Williams 1995]. The radius of marginally

bound orbit rmb is closer to the event horizon (∆r ≡ rmb − r+ ≃ 0.026M) than it is to rms

(∆r ≡ rmb − rms ≃ 0.111M), where r+ ≃ 1.063M for a = 0.998M (Bardeen et al. 1972).

Secondly, the main advantage of the Penrose-Williams processes, over such Blandford-

Znajek (1977) and Blandford-Payne (1982) type models, is that the Penrose-Williams grav-
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itational energy-momentum extraction processes occur independently of a magnetic field,

while producing highly relativistic particles that escape to infinity along intrinsically col-

limated vortical trajectories in the form of symmetrical or asymmetrical jets, because of

the inertial frame dragging. Another feature of these processes is that most of the en-

ergy extracted is gravitational binding energy with only a small fraction of the scattered

particles having final negative energies (up to ∼ 30% of the Penrose Compton scattered

photons and up to ∼ 10% of the Penrose pair produced electrons, occurring only in the

lowest energy-momentum scattering processes), which means that the angular momentum

of the black hole will not decrease significantly in these processes. The lifetime of these

processes is expected to be indefinite as long as there is matter to be accreted, since positive

energy-momentum particles are also scattered into the KBH. The resulting escaping plasma

jets are expected to generate a self-induced dynamo magnetic field, as stated above, in the

form of a polar solenoid-like field, which could possibly magnetically confine and further

assist in acceleration, collimation processes, as well as producing observed synchrotron radi-

ation. Importantly, as soon as the inner region unstable disk particles reach a temperature

T & 17 keV—the energy needed to populate the target particle orbits for Penrose Compton

scattering, assuming, of course, the probable existence of turning points (compare eq. [1]

and discussion in § 2), this Penrose process can “turn on” (Williams 2002b), irrespective of

the mass of the rotating black hole. Moreover, the general observed high energy luminosity

spectra of quasars and microquasars can be reproduced by these processes (see Williams

2002b, 2003). The above features are general characteristics of observed black hole sources.

None of the 3-D MHD energy extraction jet models at the present (e.g., Koide et al. 2000;

Meier et al. 2001; Koide et al. 2002; Koide 2003, 2004) exhibit such characteristic features

in such details as does the Penrose-Williams mechanism. Nevertheless, 3-D MHD models

can possible achieve the necessary powers (Blandford & Znajek 1977; Meier et al. 2001),

but, in some cases, only after assuming an unrealistically large strength magnetic field.

Lastly, it appears that the modern-day Blandford-Znajek (1977) and Blandford-Payne

(1982) type models are essentially faced with the age-old problem of converting from electro-

magnetic energy to particle energy and thus the inability of generating the highly relativistic

particles needed to be consistent with observations. The problems associated with such

models in the direct extraction of energy near the event horizon suggest that these models

may be important in the weak gravitational field limit, serving perhaps the same purpose

they do in the jets of protostars, i.e., appearing to have a dominant role on a large scale at

distances outside the strong effects of general relativity. The recent model of Koide (2004)

and its application to γ-ray bursts, assuming a large scale, superstrong radial magnetic field

(∼ 1015 G) down to the event horizon of a rapidly rotating KBH (a = 0.99995), produces a

mildly relativistic outflow. Not only, at least at the present, does this model not collimate,
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but it may not be consistent with the general relativistic determination that any “radiat-

able” multipole field gets radiated away completely as a star collapses to a KBH (de la Cruz,

Chase, & Israel 1970; Price 1972), which includes the magnetic field, leaving only nonzero

monopole parameters M , J , and q, where J (= Ma) is the black-hole angular momentum,

and q is the electric charge, hence the “no-hair theorem” (Misner, Thorne, & Wheeler 1973;

Carter 1973). Also, the problem remains in the model of Koide (2004) as to how such a

superstrong field is created in the popular (or generally accepted) model of stellar evolution.

In any case, the Penrose-Williams processes described in this paper (see also Williams

2002a, 2002b, 2003) may be related to the beamed energy output observed in γ-ray bursts.

It is suspected that these processes, which could “quickly” turn on and off under suitable

conditions, might be important. Particularly, these processes might prove to be invaluable

in explaining the jets in so-called collapsars, i.e, black hole formation in massive stars with

rotation (MacFadyen, Woosley, & Heger 2001), without the needed of a superstrong magnetic

field. Equally, considering an “inactive” and/or perhaps “isolated” rotating black hole, if

its tidal forces encounter and destroy an object of sufficient density, then as the debris

is infalling, these Penrose processes could produce characteristics associated with some γ-

ray bursts: an energetic short-lived burst, collimation, synchrotron emission, as well as the

afterglows in the X-ray (Costa et al. 1997), optical (van Paradijs et al. 1997), and radio (Frail

et al. 1997) regimes. That is, γ-ray and X-ray jets can be produced possibly from Penrose

Compton scattering, and radio to optical synchrotron jet emission from subsequent Penrose

pair production (γγ −→ e−e+) electrons, interacting with the expected intrinsically induced

magnetic field (mentioned above). Details of the application of these Penrose processes to

γ-ray bursts await future investigations.

Note, in general, evaluation in a full-scale relativistic MHD regime is needed to follow the

evolution of the trajectories of the escaping Penrose particles and their interactions with the

intrinsically induced magnetic field and that of the surrounding accretion disk. This indeed

will be a challenge. Yet, with existing MHD 3-D simulations, and since we have analytical

expressions for the trajectories of the escaping particles (see Williams 2002a), such a task

could be accomplished.

Finally, for completeness, even though the Penrose processes present here are quite

efficient (Williams 1995) without a magnetic field, the presence of a disk magnetic field,

however, inside the ergosphere, might increase the efficiency (see Wagh & Dadhich 1989

and references therein). The effects of such a magnetic field, if sufficiently small, might

be represented by a random motion superimposed on the orbital velocities of the charged

particles, say the target electrons in Penrose Compton scattering (see e.g. Williams 1995).
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Fig. 1.— Magnitude of the azimuthal (PΦ = L) and polar (PΘ) coordinate momenta for

escaping vortical trajectories of electrons from Penrose pair production (γγ −→ e−e+) at

rph = 1.074M , and for the bound nonequatorially confined electron particle orbits that cross

the equatorial plane (PΘ ≡ Q1/2): (Pe)Φ vs. Ee and (Pe)Θ vs. Ee, of electron orbits, at

rmb ≃ 1.089M (dashed curve) and at rms ≃ 1.2M (solid curve). (a) Scatter plot displaying

L∓ vs. E∓ of e−e+ pairs after 2000 events (each point represents an escaping electron). The

case shown has initial parameters: Eγ1 = 0.03 MeV, the infalling photon energy; Eγ2 ≃
13.54 MeV, the target photon orbital energy; Lγ2 ≃ 55.6Mme, corresponding azimuthal

coordinate momentum; Q
1/2
γ2 = ±0.393Mme, corresponding polar coordinate momentum

(Pγ2)Θ; and M = 108M⊙. (b) L∓ vs. E∓ superimposed on the orbital parameters Le vs. Ee;

see also Fig. 4. (c) (P∓)Θ vs. E∓ superimposed on the orbital parameters (Pe)Θ vs. Ee.
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Fig. 2.— Magnitude of the azimuthal (PΦ = L) and polar (PΘ) coordinate momenta for

escaping vortical trajectories of electrons from Penrose pair production (γγ −→ e−e+) at

rph = 1.074M , and for the bound nonequatorially confined electron particle orbits that cross

the equatorial plane (PΘ ≡ Q1/2): (Pe)Φ vs. Ee and (Pe)Θ vs. Ee, of electron orbits, at

rmb ≃ 1.089M (dashed curve) and at rms ≃ 1.2M (solid curve). (a) Scatter plots displaying

L∓ vs. E∓ and (P∓)Θ vs. E∓ of e−e+ pairs after 2000 events (each point represents an

escaping electron). The case shown has initial parameters: Eγ1 = 0.03 MeV, the infalling

photon energy; Eγ2 ≃ 2146 MeV, the target photon orbital energy; Lγ2 ≃ 8.81 × 103Mme,

corresponding azimuthal coordinate momentum; Q
1/2
γ2 = ±62.28Mme, corresponding polar

coordinate momentum (Pγ2)Θ; and M = 108M⊙. (b) L∓ vs. E∓ superimposed on the orbital

parameters Le vs. Ee; see also Fig. 5. (c) (P∓)Θ vs. E∓ superimposed on the orbital

parameters (Pe)Θ vs. Ee.
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Fig. 3.— Magnitude of the azimuthal (PΦ = L) and polar (PΘ) coordinate momenta for

escaping vortical trajectories of electrons from Penrose pair production (γγ −→ e−e+) at

rph = 1.074M , and for the bound nonequatorially confined electron particle orbits that cross

the equatorial plane (PΘ ≡ Q1/2): (Pe)Φ vs. Ee and (Pe)Θ vs. Ee, of electron orbits, at

rmb ≃ 1.089M (dashed curve) and at rms ≃ 1.2M (solid curve). (a) Scatter plots displaying

L∓ vs. E∓ and (P∓)Θ vs. E∓ of e−e+ pairs after 2000 events (each point represents an

escaping electron). The case shown has initial parameters: Eγ1 = 0.0035 MeV, the infalling

photon energy; Eγ2 ≃ 3.387 MeV, the target photon orbital energy; Lγ2 ≃ 13.86Mme,

corresponding azimuthal coordinate momentum; Q
1/2
γ2 = ±0.125Mme, corresponding polar

coordinate momentum (Pγ2)Θ; and M = 30M⊙. (b) L∓ vs. E∓ superimposed on the orbital

parameters Le vs. Ee. (c) (P∓)Θ vs. E∓ superimposed on the orbital parameters (Pe)Θ
vs. Ee.
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Fig. 4.— Magnitude of the azimuthal (PΦ = L) coordinate momentum for escaping vortical

trajectories of electrons from Penrose pair production (γγ −→ e−e+) at rph = 1.074M

(scatter points), and for the bound nonequatorially confined electron particle orbits that

cross the equatorial plane: (Pe)Φ vs. Ee, of electron orbits, at rmb ≃ 1.089M (dashed curve)

and at rms ≃ 1.2M (solid curve). Panels (a), (b), and (c), showing L∓ vs. E∓, are specific

intervals corresponding to Fig. 1b (see text).
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Fig. 5.— Magnitude of the azimuthal (PΦ = L) coordinate momentum for escaping vortical

trajectories of electrons from Penrose pair production (γγ −→ e−e+) at rph = 1.074M

(scatter points), and for the bound nonequatorially confined electron particle orbits that

cross the equatorial plane: (Pe)Φ vs. Ee, of electron orbits, at rmb ≃ 1.089M (dashed curve)

and at rms ≃ 1.2M (solid curve). Panels (a), (b), and (c), showing L∓ vs. E∓, are specific

intervals corresponding to Fig. 2b (see text).
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Fig. 6.— Penrose pair production (γγ −→ e−e+): scatter plots displaying polar angles, above

and below the equatorial plane (Θ = 90◦), for escaping e−e+ pairs (each point represents an

electron). (a), (b), and (c), showing Θ∓ vs. E∓, are the same as cases presented in Figs. 1,

2, and 3, respectively (see text).


