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Abstract.
We explore, by means of a large ensemble of SPH simulations, how the level of turbulence affects the collapse and fragmentation
of a star-forming core. All our simulated cores have the samemass (5.4M⊙), the same initial density profile (chosen to fit
observations of L1544), and the same barotropic equation ofstate, but we vary (a) the initial level of turbulence (as measured
by the ratio of turbulent to gravitational energy,αturb ≡ Uturb/|Ω| = 0, 0.01, 0.025, 0.05, 0.10 and 0.25) and (b), for fixedαturb,
the details of the initial turbulent velocity field (so as to obtain good statistics).

A low level of turbulence (αturb ∼ 0.05) suffices to produce multiple systems, and asαturb is increased, the number of objects
formed and the companion frequency both increase. The mass function is bimodal, with a flat low-mass segment representing
single objects ejected from the core before they can accretemuch, and a Gaussian high-mass segment representing objects
which because they remain in the core grow by accretion and tend to pair up in multiple systems.

The binary statistics reported for field G-dwarfs by Duquennoy & Mayor (1991) are only reproduced withαturb ∼ 0.05. For
much lower values ofαturb (<∼ 0.025), insufficient binaries are formed. For higher values ofαturb (>∼ 0.10), there is a significant
sub-population of binaries with small semi-major axis and large mass-ratio (i.e. close binaries with components of comparable
mass). This sub-population is not present in Duquennoy & Mayor’s sample, although there is some evidence for it in the pre-
Main Sequence population of Taurus analyzed by White & Ghez (2001). It arises because with largerαturb, more low-mass
objects are formed, and so there is more scope for the binaries remaining in the core to be hardened by ejecting these low-
mass objects. Hard binaries thus formed then tend to grow towards comparable mass by competitive accretion of material with
relatively high specific angular momentum.
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1. Introduction

Turbulence appears to play a crucial role in the structure and
evolution of molecular clouds, in the formation of star-forming
cores within molecular clouds, and in the collapse and frag-
mentation of cores to form protostars.

The main evidence for turbulence in molecular clouds
comes from their apparently fractal substructure (e.g.
Elmegreen & Falgarone 1996; Elmegreen 2002), and from the
almost universal power-law scaling relations between size(L)
line-width (∆v) and mass (M)1 and the almost universal power-
law mass function2 to which this substructure subscribes, over
many orders of magnitude, from the largest molecular cloud
complexes (∼ 102 pc, ∼ 106M⊙), down to the smallest re-
solvable structures (∼ 10−2 pc , ∼ 10−4M⊙) (e.g. Larson 1981;
Myers 1983; Stutzki & Güsten 1990; Hobson 1992; Hobson et
al. 1994; Williams et al. 1994; Elmegreen & Falgarone 1996;
Kramer et al. 1996; Kramer et al. 1998; Heithausen et al. 1998).

Send offprint requests to: Simon.Goodwin@astro.cf.ac.uk
1 L ∝ Mα with 0.35<∼ α <∼ 0.55 , and∆v ∝ Mβ with 0.2 <∼ β <∼ 0.3
2 dN/dM ∝ M−γ with 1.5 <∼ γ <∼ 2.0

Until recently, it had been presumed that molecular clouds
were long lived, being supported against collapse by their inter-
nal turbulence, and this was advanced as the reason for the low
overall efficiency of star formation.. However, it is now recog-
nized that turbulence cannot support clouds for long, because
– even with a frozen-in magnetic field – the turbulence dissi-
pates on a dynamical timescale (Mac Low et al. 1998; Stone
et al. 1998). Instead clouds are presumed to form and disperse
on a dynamical timescale, without ever reaching equilibrium
(Ballesteros-Paredes et al. 1999; Elmegreen 2000; Pringleet
al. 2001; Hartmann et al. 2001).

In this highly dynamical scenario, cores form wherever a
sufficiently dense and coherent converging flow is created by
the turbulent velocity field (Elmegreen 1997; Padoan et al.
1997; Hartmann et al. 2001; Klessen & Burkert 2000, 2001;
Klessen et al. 2000; Padoan & Nordlund 2002; Mac Low
& Klessen 2004). Frequently these cores are not gravitation-
ally bound, and therefore they disperse soon after they form.
However, occasionally they are gravitationally bound, andin
this case they are likely to proceed straight into gravitational
collapse; these are the cores we identify as ‘prestellar’.

http://arxiv.org/abs/astro-ph/0405117v1
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This scenario is in contrast to the idea that prestellar cores
are supported magnetically, and evolve quasistatically byam-
bipolar diffusion, until they become magnetically supercritical
and collapse (e.g. Basu & Mouschovias 1994, 1995a,b; Ciolek
& Mouschovias 1993, 1994, 1995; Morton et al. 1994; Ciolek
& Basu 2000). The main effects of the quasistatic ambipolar
diffusion phase are (i) to give the core more time to lose angu-
lar momentum by magnetic braking, (ii) to organize the mate-
rial so that its subsequent collapse is rather well focussed, and
(iii) to allow turbulence to decay. All three effects mean that
such cores are less likely to form multiple systems. Since most
stars are observed to be in multiple systems (e.g. Duquennoy&
Mayor 1991; Fischer & Marcy 1992; White & Ghez 2001), and
since there is no observational evidence for magnetically sub-
critical cores (e.g. Crutcher 1999; Bourke et al. 2001; Crutcher
at el. 2003), we shall assume that ambipolar diffusion does not
play an important role in the evolution of prestellar cores.For
simplicity, we ignore the magnetic field altogether.

In the highly dynamic scenario the collapse of a prestellar
core is far more likely to lead to fragmentation and the forma-
tion of multiple systems (e.g. Whitworth et al. 1995; Turner
et al. 1995; Whitworth et al. 1996; Klein et al. 2001, 2003;
Bate et al. 2002a,b, 2003; Bonnell et al. 2003; Delgado-Donate
2003, 2004; Goodwin et al. 2004a,b; Hennebelle et al. 2003,
2004). This is because in the highly dynamic scenario prestel-
lar cores are formed non-quasistatically and therefore (a)they
are launched directly into the non-linear regime of gravitational
collapse, and (b) they are likely to have retained some internal
turbulence.

Burkert & Bodenheimer (2000) have pointed out that the
internal turbulence in molecular cores can be represented by a
Gaussian random velocity field having a power spectrum of the
form P(k) ∝ kη, with η ∼ −3 to − 4. This not only reproduces
the observed scaling relation between size and linewidth. It also
reproduces the observed rotation of molecular cores. Thus there
is no need to invoke ordered rotation as an additional sourceof
support in molecular cores, and indeed there is no observational
evidence for significant ordered rotation in prestellar cores (e.g.
Jessop & Ward-Thompson 2001).

We have therefore undertaken a numerical study of the
influence of turbulence on the collapse and fragmentation of
prestellar cores. We have taken as our reference point a simple
model of the core L1544, and in the first paper of this series
(Goodwin et al. 2004a, hereafter Paper I) we have shown that
cores with even a low level of turbulent energy routinely spawn
multiple stellar systems. Specifically, in an ensemble of 20sim-
ulations of the collapse of 5.4M⊙ cores having an initial ratio
of turbulent to gravitational energy

αturb ≡
Uturb

|Ω| = 0.05, (1)

80% of the cores form at least two, and in one case ten, ob-
jects (stars and brown dwarfs). In addition, the distributions of
semi-major axis, mass ratio and eccentricity for the resulting
multiple systems are consistent with the distributions forob-
served binary systems (e.g. Duquennoy & Mayor 1991, here-
after DM91). Paper I has also shown that while low levels of
turbulence can easily produce multiple fragmentation, theout-

come of any one simulation depends sensitively on the exact
details of the turbulent velocity field. Consequently a statistical
approach is essential in evaluating the influence of turbulence
on multiple star formation in cores.

In this paper we extend the simulations of Paper I to ex-
amine the effect of different levels of turbulence on star forma-
tion within dense molecular cores. Using exactly the same core
structure as in Paper I we simulate ensembles of between 10
and 20 cores withαturb = 0, 0.01, 0.025, 0.05, 0.10 and 0.25.
We examine the numbers and masses of stars and brown dwarfs
that form and the properties of the multiple systems to which
some of them belong.

We note that these levels of turbulence involve much lower
non-thermal velocities than the earlier work of Whitworth
et al. (1995), Turner et al. (1995), Whitworth et al. (1996),
Klein et al. (2001, 2003), Bate et al. (2002a,b, 2003), Bonnell
et al. (2003), Delgado-Donate (2003, 2004) Goodwin et al.
(2004a,b) Hennebelle et al. , and Hennebelle et al. (2003,
2004). Consequently they may be applicable to scenarios in
which instability develops more quasistatically due to ambipo-
lar diffusion. provided that some turbulence can persist through
(or be regenerated after) the ambipolar diffusion phase, and
provided the subsequent collapse is sufficiently rapid.

In Section 2 we define the initial conditions for the simu-
lations. In Section 3 we describe the code and the constitutive
physics used. In Section 4 we outline the different ensembles
of simulations performed with different values ofαturb, and in
Section 5 we collate the statistics from the different ensembles.
Section 6 discusses the statistics in terms of the underlying
physics, and Section 7 gives our main conclusions.

2. Initial conditions

Molecular cores which are associated with IRAS sources are
presumed to have already formed a protostar, and are classified
as protostellar cores, whereas those which have no associated
IRAS source are classified as starless cores (Beichman et al.
1986). The densest starless cores are presumed to be on their
way to forming stars, and are therefore classified as prestellar
cores (Ward-Thompson et al. 1994). We base our initial condi-
tions on the observed properties of prestellar cores.

The density in a pre-stellar core is approximately uniform
in the inner few thousand au, but further out it decreases as
r−η with 2 <∼ η <∼ 5, and eventually it merges with the back-
ground (e.g. Ward-Thompson et al. 1994; André et al. 1996;
Ward-Thompson et al. 1999; André et al. 2000; Tafalla et al.
2004). A good fit to the density in a pre-stellar core is given by
a Plummer-like profile,

ρ(r) =
ρkernel

(1+ (r/Rkernel)2)2
, (2)

whereρkernel is the central density andRkernel is the radius of
the region in which the density is approximately uniform. We
setρkernel = 3 × 10−18 g cm−3 andRkernel = 5000 au, with the
outer boundary of the core atRcore= 50000 au, so the core has
total massMcore= 5.4M⊙. The core is initially isothermal with
T = 10 K, and uniformly molecular with mean gas-particle
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massm̄ = 4 × 10−24 g. This means that the core has a ratio
of thermal to gravitational energy of

αtherm≡
Utherm

|Ω|
≃ 0.3 . (3)

Thus far, these are exactly the same initial conditions as we
used in Paper I.

Molecular cores show a significant non-thermal contribu-
tion to their line-widths, which is attributable to internal turbu-
lence. Fig. 1 shows the estimated ratios of turbulent to gravita-
tional energy,αturb (see Eqn. (1)), and the estimated masses,
Mcore, for prestellar cores from the Jijina et al. (1999) cata-
logue. These cores were selected as prestellar on the basis of
their having low temperature (< 20 K), no associated IRAS
source and no observed outflow. The shaded area in Fig. 1
shows the region of parameter space that the simulations in this
paper cover, i.e. a 5.4M⊙ core with a range ofαturb from 0 to
0.25.

To model the turbulence, a divergence-free gaussian ran-
dom velocity field is superimposed on the core (cf. Bate et
al. 2002a,b; Bate et al. 2003; Fisher 2004; Bonnell et al.
2003; Delgado-Donate et al. 2003, 2004). The power spec-
trum of the velocity field isP(k) ∝ k−4, so as to mimic the
observed scaling between size and line-width in interstellar
gas clouds (Larson 1981; Burkert & Bodenheimer 2000). The
magnitude of the velocity field is normalized so thatαturb =

0, 0.01, 0.025, 0.05, 0.1 or 0.25 , and at least ten realizations
have been made with each value ofαturb (as summarised in
Table 1).

In each realization the random number seed for the turbu-
lence is different, and hence the detailed structure of the veloc-
ity field is different. It is essential that many different realiza-
tions be performed for a given value ofαturb, because the mix of
protostars and multiple systems which forms depends critically
on the details of the velocity field. Therefore different values
of αturb can only be compared in a statistical sense by perform-
ing an ensemble of different realizations for each representative
value ofαturb.

Each simulation is evolved for 0.30 Myr. We have chosen
this end-time for three reasons. (i) It facilitates comparison
with the αturb = 0.05 simulations reported in Paper I. (ii) In
most simulations, object formation (i.e. sink creation) ceases
around 0.15 to0.20 Myr, and in only one case is a new object
formed after 0.25 Myr. (iii) By this stage,∼ 66 % of the mass
is already in stars and brown dwarves (this fraction decreases
slightly with increasingαturb), and so the remaining diffuse gas
is likely to be affected by negative feedback from the existing
stars and brown dwarves; feedback is not included in these sim-
ulations, although we are currently exploring its effect (Boyd et
al. in preparation).

The properties of the resulting protostars in each ensemble
are compared,both as a function ofαturb, and against the ob-
served properties of young stellar objects. In this latter regard,
the observational samples used for comparison are the local
field G-dwarfs studied by DM91 and the multiple systems in
Taurus studied by White & Ghez (2001; hereafter WG01).

3. Computational method and constitutive physics

The simulations are performed using SPH (Lucy 1977; Gingold
& Monaghan 1977; Monaghan 1992). Our SPH code ()
uses the standard M4 kernel (Monaghan & Lattanzio 1985) and
invokes variable smoothing lengths (so that each particle has
Nneib = 50±5 neighbours). An octal tree is built to facilitate the
computation of gravitational accelerations and the identifica-
tion of neighbours. Gravity is kernel-softened with the particle
smoothing length, and standard artificial viscosity (Monaghan
1992) is included, withαv = 1 andβv = 2.

We use a barotropic equation of state,

P(ρ)
ρ
≡ c2

s(ρ) = c2
0















1+

(

ρ

ρcrit

)2/3












. (4)

Thus at low densities (ρ < ρcrit = 10−13 g cm−3, where radiative
cooling is optically thin) the gas is approximately isothermal
with cs ≃ c0 = 0.2 kms−1, corresponding to molecular gas at
temperatureT = 10 K; and at high densities, (ρ > ρcrit, where
cooling radiation is trapped by the high optical-depth) thegas
behaves adiabatically, with ratio of specific heatsγ ≃ 5/3.
(γ ≃ 5/3 is the appropriate ratio of specific heats because the
rotational degrees of freedom of H2 are not excited until the
temperature rises above∼ 300 K, and our simulations do not
follow the gas dynamics to such high temperatures; see below).
Eqn. (4) reproduces the thermal behaviour of the gas in detailed
one-dimensional simulations of the collapse of 1M⊙ cores (e.g.
Larson 1969; Tohline 1982; Masunaga & Inutsuka 2000).

Whenever a gravitationally bound condensation forms and
the density of an SPH particle within the condensation rises
above 100ρcrit = 10−11 g cm−3, all the particles within 5 au of
that particle are replaced with a sink particle having radius
Rsink = 5 au. (From Eqn. (4), we can estimate that the tempera-
ture of gas atρ = 100ρcrit is∼ 225 K, and so the introduction of
sink particles makes it unnecessary to treat the thermal behavi-
ous of the gas at temperatures above∼ 225 K.) Sink particles
interact with the gas both gravitationally, and by accreting SPH
particles that enter the sink radius and are bound to the sink
(see Bate et al. 1995 for a detailed description of sink particles).
As in Paper I, we refer to sink particles as ‘objects’, and then
more specifically to ‘stars’ when the sink mass is> 0.08M⊙
and ‘brown dwarfs’ when the mass is lower than this.

4. Ensembles of simulations with different αturb

4.1. αturb = 0 (no turbulence)

As reported in Paper I, when a core has no turbulence only one
object forms, very close to the centre of the core. The evolution
follows very closely the semi-analytic model of Whitworth &
Ward-Thompson (2001). In particular, the accretion rate isvery
large early on, and then decreases. After 0.3 Myr the stellar
mass reaches 3.75M⊙. (In this case the ten different realizations
involve different initial SPH particle positions.)

4.2. αturb = 0.01

The ensemble of ten simulations withαturb = 0.01 is virtually
identical to that withαturb = 0.00 (no turbulence). Only one
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Fig. 1. The filled circles give estimated values ofαturb (the ratio of turbulent to gravitational energy, see Eqn. (1)) andMcore (core
mass) for the starless cores in the Jijina et al. (1999) catalogue. The hatched region gives the range of (αturb,Mcore) values used in
this paper (i.e. 0≤ αturb ≤ 0.25 andMcore = 5.4M⊙). The cross (×) and the star (∗) give – respectively – the (αturb,Mcore) values
used by Bate et al. (2002a,b;2003) and Delgado Donate et al. (2003a,b).

star ever forms, and this happens about one free-fall time (∼
0.055 Myr) after the start of the simulation, always close to the
centre of mass of the core. This level of turbulence is apparently
too low to induce multiple fragmentation.

4.3. αturb = 0.025

αturb = 0.025 appears to be approximately the minimum level
of turbulence required for multiple object formation. Of the ten
simulations withαturb = 0.025, eight produce only a single
star (as with lower levels of turbulence), but one simulation
produces six objects, and one produces nine objects.

Specifically, this last simulation produces three
intermediate-mass stars in an hierarchical triple system
embedded in the core (a tight binary with component masses
1.07M⊙ and 0.88M⊙ and semi-major axis 8.6 au, plus a third
star with mass 1.65M⊙ orbiting at∼ 70 au). In addition, the
simulation produces one very low-mass star (0.087M⊙) and
five brown dwarfs (0.034M⊙ to 0.072M⊙), all of which are
ejected from the core.

4.4. αturb = 0.05

Of the twenty simulations performed withαturb = 0.05, four
produce just a single star, and the remaining sixteen produce
71 stars and 16 brown dwarfs between them (between 2 and
10 objects per simulation). Of these 71 stars, 44 remain in the
core in multiple systems, and the rest are ejected from the core.
Of the 16 brown dwarfs, 15 are ejected, and only one remains
in a binary system in the core. The mean number of objects
formed per simulation is 4.55. Further details of this ensemble
of simulations are given in Paper I.

4.5. αturb = 0.10

Of the twenty simulations performed withαturb = 0.10, five
produce just a single star, and the remaining fifteen produce76
stars and 19 brown dwarfs between them (between 3 and 10
objects per simulation). Of these 76 stars, 53 remain in the core
in multiple systems, and the rest are ejected from the core. Of
the 19 brown dwarfs, 17 are ejected and only 2 remain in mul-
tiple systems in the core. The mean number of objects formed
per simulation is 4.75.

4.6. αturb = 0.25

In the ten simulations withαturb = 0.25, a total of 60 objects are
produced, 49 stars and 11 brown dwarfs, with each simulation
producing between 3 and 10 objects. Of the 49 stars, 36 remain
in the core in multiple systems, and the rest are ejected from
the core. All 11 brown dwarfs are ejected from the core.

5. Statistics

Details of the numbers, masses and multiplicities of the ob-
jects produced in each of the fifty simulations withαturb =

0.05, 0.10 and 0.25 are shown in Table 2. The simulations
with low turbulence (αturb ≤ 0.025) are omitted because al-
most all of them produce only a single object, and therefore
the discussion will now concentrate on the simulations with
αturb = 0.05, 0.10 and 0.25 .

5.1. Numbers of objects and formation timescale

Increasing the level of turbulence has several effects. In the
first instance, it delays somewhat the time at which objects are
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Table 1. For each value ofαturb, we list the number of realizations simulated (Nreal), the mean mass in objects at the end of
the simulations (Mtot/M⊙), the average number of objects formed per simulation

(〈

Nobj

〉)

, the companion probability (cp), the
companion frequency (cf), the multiplicity frequency (mf) and the pairing factor (pf). The companion frequency,cf, is given for
all objects and then seperately for low-mass objects (M < 0.5M⊙) and for high-mass objects (M > 0.5M⊙).

αturb Nreal Mtot/M⊙
〈

Nobj

〉

cp cf mf pf
all low high

0.00 10 3.75 1
0.01 10 3.75 1
0.025 10 3.70 2.3± 0.5
0.05 20 3.57 4.6± 0.5 0.51 0.95 0.30 1.45 0.27 1.71
0.10 20 3.35 4.8± 0.5 0.59 1.39 0.48 2.32 0.32 2.11
0.25 10 3.14 6.0± 0.5 0.62 1.57 0.81 2.38 0.32 2.36

Fig. 2. The average number of objects formed in a core,
〈

Nobj

〉

, as a function of the ratio of turbulent to gravitational energyαturb.
The error bars give the standard deviation (see Eqn. (5).

formed, and at the same time it increases the average number
of objects formed.

With αturb = 0.05, the first object (hereafter the primary
protostar) forms 0.05 Myr to 0.06 Myr after the start of the
simulation, and∼ 95% of all the other objects have formed
by 0.12 Myr. With αturb = 0.25, the primary protostar forms
0.06 Myr to 0.08 Myr after the start of the simulation, and ob-
jects continue forming up to 0.15 Myr; this is because the extra
turbulent energy gives the core extra support, and therefore de-
lays its collapse.

The majority of secondary objects form in a dense disc-
like slab around the primary protostar. The instabilities which
produce these secondary objects are usually seeded – and pro-
pelled into the non-linear condensation regime – by the inho-
mogeneities in the accretion flow onto the slab. Higher levels of

turbulence result in larger inhomogeneities, and hence in more
secondary objects.

For αturb ≤ 0.01 the mean number of objects formed is
〈

Nobj

〉

= 1 (i.e. there are no secondary objects), whereas for

αturb = 0.25 ,
〈

Nobj

〉

= 6 (i.e. there are on average five sec-

ondary objects). Values ofαturb and
〈

Nobj

〉

are listed in Table
1, and plotted on Fig. 2, where the error bars give the standard
deviation, i.e.

±
[

〈

N2
obj

〉

−
〈

Nobj

〉2
]1/2
. (5)
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Table 2. A summary of the results of the simulations withαturb = 0.05, 0.10 and 0.25 , at timet = 0.3 Myr . Column 1 gives the
simulation identifier and Column 2 givesαturb. Column 3 givesMobj, the total mass of objects formed (stars plus brown dwarfs),
Column 4 givesNobj, the total number of objects formed, and Column 5 givesNBD, the total number of brown dwarfs formed.
Column 6 gives the multiplicities of the multiple systems formed, and the final column (Column 7) gives the mass of each
individual object. Those objects which are part of a binary system are distinguished withb, those which are part of a triple system
are distinguished with at, and those which are part of a quadruple system (or in one casea quintuple system) are distinguished
with q.

ID αturb Mobj Nobj Nbd Multiplicity Masses/M⊙

071 0.05 2.94 7 2 Triple 1.31t, 0.61t, 0.52t, 0.27, 0.12, 0.063, 0.048
072 0.05 3.72 4 0 Binary 2.32b, 0.74b, 0.48, 0.18
073 0.05 3.10 10 2 Binary+ Triple? 1.07b, 0.66b, 0.43, 0.34, 0.17, 0.13t, 0.10t, 0.09t, 0.076, 0.040
074 0.05 4.02 3 0 Triple 1.63t, 1.56t, 0.83t

075 0.05 3.69 2 0 Binary 2.63b, 1.06b

076 0.05 3.61 3 1 Binary 2.18b, 1.40b, 0.028
077 0.05 3.75 6 1 Triple 1.60t, 1.16t, 0.64t, 0.18, 0.12, 0.050
078 0.05 3.65 7 2 Triple 1.09t, 1.03t, 0.69t, 0.58, 0.18, 0.045, 0.041
079 0.05 3.81 8 3 Triple 1.27t, 1.16t, 0.69t, 0.39, 0.21, 0.044, 0.030, 0.025
080 0.05 3.63 1 0 Single 3.63
081 0.05 3.69 1 0 Single 3.69
082 0.05 4.01 4 0 Quadruple 1.52q, 0.91q, 0.89q, 0.69q

083 0.05 3.56 4 0 Triple 1.43t, 0.83t, 0.70t, 0.60
084 0.05 3.55 5 0 Binary 1.46b, 1.28b, 0.43, 0.19, 0.18
085 0.05 3.47 8 3 Binary 1.43b, 0.76b, 0.51, 0.47, 0.14, 0.064, 0.045, 0.039
086 0.05 3.94 7 1 Triple 1.23t, 1.03t, 0.73, 0.71t, 0.11, 0.098, 0.027
087 0.05 3.67 2 0 Binary 3.19b, 0.48b

088 0.05 3.35 1 0 Single 3.35
089 0.05 3.61 7 1 Quadruple 1.20q, 0.89q, 0.57, 0.51, 0.29q, 0.11, 0.041q

090 0.05 2.62 1 0 Single 2.62
001 0.10 3.78 3 0 Triple 1.49t, 1.15t, 1.13t

002 0.10 2.83 1 0 Single 2.38
003 0.10 3.72 1 0 Single 3.72
004 0.10 3.48 1 0 Single 3.48
005 0.10 2.86 4 1 Binary 1.43b, 0.65b, 0.77, 0.02
006 0.10 2.84 1 0 Single 2.84
007 0.10 3.15 5 0 Triple & Binary 1.76t, 0.72t, 0.47t, 0.10b, 0.10b

008 0.10 3.22 6 2 Quadruple 1.97q, 0.47q, 0.35q, 0.34q, 0.03, 0.06
009 0.10 3.48 8 4 Quadruple 2.28q, 0.49q, 0.26q, 0.25q, 0.05, 0.08, 0.04, 0.04
010 0.10 3.31 8 1 Quadruple 0.76q, 0.74q, 0.58q, 0.57q, 0.08, 0.09, 0.03, 0.46
011 0.10 3.96 12 4 Triple & binary? 0.89t, 0.82t, 0.82t, 0.04b, 0.04b, 0.42, 0.38, 0.03, 0.03, 0.25, 0.12, 0.11
012 0.10 3.60 6 2 Triple 1.34t, 0.92t, 0.79t, 0.50, 0.04, 0.02
013 0.10 3.18 10 3 Quadruple & binary 0.77q, 0.68q, 0.61q, 0.60q, 0.11b, 0.11b, 0.10, 0.05, 0.04, 0.06
014 0.10 3.29 4 1 Binary 1.58b, 1.16b, 0.49, 0.08
015 0.10 2.48 1 0 Single 2.48
016 0.10 3.58 4 0 Triple 1.23t, 1.15t, 1.11t, 0.09
017 0.10 3.41 8 0 Quintuple 1.10q, 0.98q, 0.32q, 0.27q, 0.27q, 0.15, 0.14, 0.17
018 0.10 3.48 4 0 Quadruple 0.98q, 0.94q, 0.79q, 0.77q

019 0.10 3.58 5 1 Triple 1.38t, 1.03t, 1.00t, 0.11, 0.06
020 0.10 3.77 3 0 Triple 1.28t, 1.27t, 1.22t

041 0.25 3.13 6 0 Quadruple 0.79q, 0.71q, 0.68q, 0.36q, 0.33, 0.27
042 0.25 3.14 8 2 Triple & binary 1.92t, 0.41t, 0.30t, 0.10b, 0.18b, 0.07, 0.14, 0.02
043 0.25 2.69 5 1 Triple 0.81t, 0.81t, 0.53t, 0.50, 0.03
044 0.25 3.17 5 0 Quadruple 1.26q, 0.92q, 0.46q, 0.27q, 0.26
045 0.25 3.18 8 2 Quadruple 0.78q, 0.55q, 0.54q, 0.47q, 0.05, 0.04, 0.62, 0.13
046 0.25 3.19 3 0 Binary 1.70b, 0.94b, 0.54
047 0.25 3.31 5 0 Quadruple 1.07q, 0.81q, 0.64q, 0.46q, 0.33
048 0.25 3.36 10 4 Quadruple 0.87q, 0.76q, 0.56q, 0.56q, 0.08, 0.03, 0.02, 0.06, 0.37, 0.10
049 0.25 2.84 3 0 Triple 2.01t, 0.42t, 0.41t

050 0.25 3.37 7 2 Quadruple 0.91q, 0.91q, 0.68q, 0.67q, 0.02, 0.06, 0.12
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Fig. 3. The normalized mass functions forαturb = 0.05 (top), 0.10 (middle) and 0.25 (bottom). The shaded regions show stars in
stable multiple systems, the hashed regions show stars in unstable multiple systems, and the open regions show single stars.
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Fig. 4. The combined (and un-normalized) mass function for all the simulations havingαturb ≥ 0.05, (i.e. αturb =

0.05 (×20), 0.10 (×20) and 0.25 (×10)), this being an approximation to the distribution ofαturb values in the Taurus star formation
region. The error bars give±

√
N uncertainties. The dotted lines show separate fits to the unbound objects (the flat distribution at

low mass) and the bound objects (the log-normal distribution at high mass); parameter fits are given in the main text). Thedashed
line shows the combination of these two separate fits.

5.2. The mass function

The normalized mass functions (MF) for the ensembles with
αturb = 0.05, 0.10 and 0.25 are shown in Fig. 3. In each case
the shaded region shows the MF of objects in multiple systems
and the open region shows the MF of single objects. The hashed
region in the top figure shows an unstable triple that formed
late on in one simulation, and is therefore likely to decay into a
binary and an ejected single (see Paper I for more details).

The MFs are clearly very similar for each value ofαturb, viz.
a high-mass peak of predominantly multiple stars and a low-
mass tail of ejected stars and brown dwarfs. However, asαturb

increases, the MF shifts slightly to lower masses. There aretwo
reasons for this. (a) For higherαturb the overall collapse is de-
layed by the extra turbulent support, and therefore when the
simulations are terminated at 0.3 Myr less mass has been incor-
porated into objects (the mean mass incorporated into objects
is given in the third column of Table 1). (b) For higherαturb,
the accretion flow onto the disc around the primary protostaris
lumpier, so more objects are formed but individually they are
less massive.

The combined mass function for all simulations with
αturb ≥ 0.05 is shown in Fig. 4. The distribution of high-mass
(predominantly bound) stars is well fitted by a log-normal dis-
tribution having mean〈ℓog10[M]〉 = 0.05 and standard devia-
tion σℓog10[M] = 0.04. The distribution of low-mass (predom-
inantly unbound) objects is consistent with being flat in log-
space from our resolution limit at∼ 0.025M⊙ up to∼ 0.5M⊙,
above which it declines. The high-mass (predominantly bound)
stars have an average mass of∼ 1M⊙ because, after ejections
have removed some objects, there are usually two to four stars
left in the core, and they are then able to accrete a total of

∼ 3M⊙ between them. A more massive core would spawn more
massive stars (Goodwin et al. in preparation).

The fraction of objects which are brown dwarfs is
NBD/Nobj ∼ 18%, and there does not appear to be a systematic
dependence on the level of turbulence. This is somewhat higher
than in Taurus (NBD/Nobj ∼ 13%; Briceño et al. 2002), and
somewhat lower than in Orion (NBD/Nobj ∼ 26%; Muench et
al. 2002). The fraction of low-mass objects (M < 0.5M⊙) also
appears to be independent ofαturb, and approximately∼ 50%.

5.3. Companion star frequencies

In analyzing the multiplicity of the objects formed in our simu-
lations, we define ‘systems’ to include single objects, and ‘mul-
tiple systems’ to include only systems containing more than
one object. The primary is the most massive star in a system;
in a single it is the only star. Thus, ifS is the number of single
objects andB, T , Q andQ′ are the numbers of binary, triple,
quadruple and quintuple systems, respectively, the total num-
ber of objects is (S +2B+3T +4Q+5Q′+ ...), the total number
of systems is (S + B + T + Q + Q′ + ...) (which is the same as
the total number of primaries), and the total number of multiple
systems is (B + T + Q + Q′ + ...).

Many different statistics have been introduced as mea-
sures of stellar (and brown dwarf) multiplicity (e.g. Reipurth &
Zinnecker 1993), and they all reflect slightly different things3.
They can be divided into two groups.

3 Unfortunately, the different measures usually have more than one
name. For consistency we have adopted the nomenclature proposed by
Reipurth & Zinnecker 1993.
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The first group of measures is normalized to the total num-
ber of objects, and is useful because it is straightforward to
derive these measures for a subset of objects (for example, low-
mass stars, in the range 0.08M⊙ < M < 0.5M⊙). The compan-
ion probability (Reipurth & Zinnecker 1993),

cp =
2B + 3T + 4Q + 5Q′ + ...

S + 2B + 3T + 4Q + 5Q′ + ...
, (6)

gives the probability of an object having at least one compan-
ion, or equivalently the fraction of objects which is in multi-
ple systems. However, it gives no indication of whether objects
with companions are in binaries, or triples, or higher multiples.
Therefore we prefer the companion frequency,

cf =
2B + 6T + 12Q + 20Q′ + ...

S + 2B + 3T + 4Q + 5Q′ + ...
, (7)

which gives the mean number of companions per object.
The second group of measures is normalized to the total

number of systems or the total number of multiple systems.
The multiplicity frequency (RZ93),

mf =
B + T + Q + Q′ + ...

S + B + T + Q + Q′ + ...
, (8)

gives the fraction of systems which is multiple. The pairing
factor (RZ93),

pf =
B + 2T + 3Q + 4Q′ + ...

B + T + Q + Q′ + ...
, (9)

gives the mean number of orbits per multiple system, or equiva-
lently the mean number of companions per primary in multiple
systems.

Table 1 records the values of all these measures for cores
havingαturb = 0.05, 0.10 and 0.25. We have also calculated the
companion frequency,cf, separately for the low-mass objects
(< 0.5M⊙) and the high-mass objects (> 0.5M⊙). The fraction
of objects in multiple systems (i.e. the companion probability,
cp) increases steadily with increasingαturb. The mean num-
ber of companions (i.e. the companion frequency,cf) increases
even more rapidly with increasingαturb. cf is always larger
for high-mass objects than for low-mass objects (i.e. thereare
fewer low-mass objects in multiples than high-mass objects),
but the rate of increase ofcf with increasingαturb is greater for
the low-mass objects.

The smaller companion frequency for low-mass objects is
due to the fact that low-mass objects have usually been ejected
from the core before they could accrete much mass (that is why
they have low mass), and ejected stars tend to be singles. Stars
that end up in stable multiples also tend to remain in the core,
and therefore they grow to larger masses by continuing to ac-
crete.

The multiplicity of low-mass stars increases with increas-
ing αturb, because a greater number of higher-order multi-
ples is formed in cores with higherαturb. For example, when
αturb = 0.05, only 10% of simulations produce quadruples, but
this fraction rises to 60% forαturb = 0.25. In higher-order mul-
tiples, the low-mass objects tend to be outlying members. They
are less able to accrete from the remaining gas, and they tend
to remain low-mass.

5.4. Separations

Fig. 5 shows the cumulative distribution functions (CDFs) of
the semi-major axes of multiple systems, for different initial
levels of turbulence,αturb = 0.05, 0.10 and 0.25. For com-
parison the gaussian fit to the DM91 local G-dwarf sample is
plotted as a dashed line.

As noted in Paper I, the semi-major axis distribution for
theαturb = 0.05 ensemble is consistent with the DM91 obser-
vations. In contrast, the semi-major axis distributions for the
αturb = 0.10 and 0.25 ensembles both have too many hard bi-
naries (a < 20 au), and both are rejected by the KS test as be-
ing drawn from the DM91 fit, at> 90% confidence. A similar
excess of hard binaries is predicted by the core fragmentation
simulations of Delgado-Donate et al. (2003, 2004), which in-
voke even higher levels of turbulence (αturb = 1), and by the
N-body simulations of Sterzik & Durisen (2003).

As described in Paper I, hard binaries are formed primarily
by few-body interactions, including those which eject low mass
objects. Consequently, in simulations where larger numbers
of objects are formed, the binaries are on average harder (re-
gardless ofαturb). For example, when few objects are formed,
say Nobj ≤ 3, the average separation of binaries is> 100 au,
whereas whenNobj = 4 the average separation is∼ 30 au, and
whenNobj ≥ 5 it is ∼ 20 au. Fig. 6 shows the semi-major axes
of all systems plotted against the number of objects formed in
that simulation. There is clearly a trend of decreasing semi-
major axis with increasing number of objects.

Since the gravitational forces between objects are kernel
softened with a smothing lengthh equal to the sink radius
Rsink = 5 au, orbits with small semi-major axes (a < 5 au) are
also softened. It follows that the distribution of semi-major axes
below 5 au is distorted. Given that the code conserves angular
momentum very accurately, we infer that these already hard or-
bits should be even harder. Forαturb = 0.10 and 0.25 this would
exacerbate the difference between the numerically derived dis-
tribution of semi-major axes and the observations of DM91.
Conversely, forαturb = 0.05, it would improve the agreement
with the DM91 distribution.

5.5. Mass ratios

Fig. 7 shows the distribution of binary mass ratios,q = M2/M1,
for all simulations havingαturb ≥ 0.05. Note that highq means
q ∼ 1, i.e. components of comparable mass.

Forαturb = 0.05, the distribution of mass ratios is quite flat,
and reminiscent of the observed distribution for local G dwarfs
(DM91; Mazeh et al. 1992).

For α = 0.10 and 0.25, the distribution is dominated by
high-q close binaries. All binaries in these ensembles have
semi-major axesa < 100 au (the high-a tail is produced by
wider orbits in higher-order systems), and 64% of these have
q > 0.8. This is very similar to the mass ratio distribution ob-
served in Taurus-Auriga by WG01, who found that over∼ 60%
of binaries with separations< 100 au hadq > 0.8. In our sim-
ulations, systems with high mass ratio tend to be close (all
systems withq > 0.7, and most systems withq > 0.4, are
binaries witha < 20 au), but the reverse is not always true:
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Fig. 5. The histograms show the cumulative distribution functionsof semi-major axes for the ensembles withαturb =

0.05 (top), 0.10 (middle)and 0.25 (bottom). The dashed line shows the guassian fit to the DM91period distribution.
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Fig. 6. For each binary system, the semi-major axis,a is plotted against the number of objects formed in that simulation,Nobj,
with open circles for forαturb = 0.05, filled circles forαturb = 0.10, and stars forαturb = 0.25. The average semi-major axis,
ā, decreases with increasingNobj, due to dynamical hardening. To the left of the dashed line ata = 5 au thea-values are upper
limits, due to gravity softening.

Fig. 7. The distribution of mass ratios for simulations withαturb = 0.05 (filled),αturb = 0.10 (hashed) andαturb = 0.25 (open).
(Note that the number of simulations in theαturb = 0.25 ensemble is only half of the number in the other ensembles.)

in other words, there are a few close binaries with low mass
ratios. Close binaries are presumed to acquire high mass ra-
tios because the material accreting onto the system has high
specific angular momentum, and is therefore more readily ac-
commodated by the secondary (Whitworth et al. 1995; Bate &
Bonnell 1997; Paper I).

5.6. Eccentricities

Fig. 8 shows the CDF of eccentricity for all the simulations
havingαturb ≥ 0.05 and the linear fit to the observed distribu-
tion proposed by DM91. The two distributions are consistent.
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Fig. 8. The cumulative distribution function of eccentricities for all simulations withαturb ≥ 0.05. The dashed line shows the
DM91 fit of a linearly increasing eccentricity distribution.

6. Discussion

6.1. Minimum level of turbulence for multiple formation

When the initial level of turbulence is low,αturb ≤ 0.01, it
seems that a core can only spawn a single central star. Even
for αturb = 0.025, the core is unlikely to spawn a multiple sys-
tem. We therefore focus our discussion on the higher levels of
turbulence,αturb = 0.05, 0.10 and 0.25, for which multiple star
formation is the norm. In this range a number of significant
systematic trends are evident.

6.2. Time-scale for star formation

As αturb increases from 0.10 to 0.25, the average timescale for
star formation increases somewhat, due to the extra support
which turbulence affords the core. Forαturb = 0.05, the pri-
mary protostar forms after 0.05 Myr, and most of the secondary
protostars have formed by 0.12 Myr. Forαturb = 0.10 and 0.25,
the primary protostar forms after 0.06 Myr, and most of the sec-
ondary protostars have formed by 0.15 Myr. In only one case
(run 073) do objects form after 0.25 Myr, and so it appears that
the fragmentation phase is almost always over by the end of the
simulations at 0.3 Myr. After the end of the simulations accre-
tion will be on-going. However, feedback from the protostars is
expected to become very important, possibly dispersing a sig-
nificant fraction of the gas not already in stars or discs around
them.

6.3. Number of objects formed

As αturb increases from 0.10 to 0.25, the average number of
objects formed,

〈

Nobj

〉

, increases from 4.6 ± 2.6 to 6.0 ± 2.0
(see Fig. 2). This is because a higher level of turbulence gen-

erates more density contrast – i.e. more numerous and more
compressed lumps – and therefore more protostars.

6.4. Masses of objects formed

As αturb increases from 0.10 to 0.25, the average mass of the
objects formed decreases slightly (see Fig. 3). There are two
factors involved here. First, as noted above a higher level of tur-
bulence means that more objects are formed. Second, a higher
level of turbulence means that the core has more support, and
therefore a smaller fraction of its mass has condensed out after
0.3 Myr.

6.5. The bimodal mass function

Apart from this slight decrease in average mass with increasing
turbulence, the form of the mass function appears to be inde-
pendent ofαturb. Specifically, the mass function is bimodal: the
lower-mass stars (which tend to be single stars ejected fromthe
core) subscribe to a flat segment of the mass function; and the
higher-mass stars (which tend to be those remaining in the core
and pairing up in multiple systems) subscribe to a Gaussian
segment of the mass function (see Fig. 4).

The critical mass seperating the two modes in the mass
function, Mcrit ∼ 0.5M⊙, arises because of the interplay be-
tween ejection by dynamical interaction and growth by accre-
tion. Anosova (1986) has shown that the decay time for small-
N systems is

tdecay∼ 100tcross∼ 17
( R
au

)3/2 (

M
M⊙

)−1/2

yr, (10)

and the ensemble of low-mass secondaries which forms in
our cores typically hasR ∼ 200 au andM ∼ 1 to 2M⊙, so
tdecay ∼ 3 to 5× 104 yr. The accretion rate is∼ 10−5M⊙ yr−1,
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and so the objects which get ejected have masses<∼ 0.5M⊙.
The probability of ejection is only weakly dependent on mass,
∝ M−1/3 (Anosova, 1986), and so the ejected objects have a flat
mass function. In contrast, the two or three objects which sur-
vive the dynamical decay phase remain embedded in the centre
of the core and compete for the gas which continues to fall into
the centre, so they grow to∼ M⊙.

6.6. Companion star frequency

As αturb increases from 0.10 to 0.25, the companion star fre-
quency increases slightly for intermediate-mass stars (0.5M⊙
to 5M⊙), and quite markedly for low-mass objects (< 0.5M⊙).

6.7. Distribution of semi-major axes

For αturb = 0.05, the distribution of semi-major axes is broad
and indistinguishable from the distribution inferred for local
G-dwarfs by DM91. There is a lack of very close systems with
a < 5 au. This is due to the fact that sinks have a finite size
and their mutual gravity is softened; therefore our code cannot
resolve very close systems.

In contrast, forαturb = 0.10 and 0.25, there are many more
close systems (5 au<∼ a <∼ 20 au) than in the DM91 sample (see
Fig. 5), and this discrepancy would not be alleviated if the code
were able to resolve very close systems.

Much of the hardening which produces close binaries is due
to dynamical interactions with other objects, in particular with
the low-mass objects which get ejected in the process. The ex-
cess of close systems produced by higher levels of turbulence
may therefore be due to the greater number of objects formed,
and hence the greater potential for dynamical interactions, as
suggested by Fig. 6.

6.8. Distribution of mass-ratios

Forαturb = 0.05, the distribution of mass ratios is flat and indis-
tinguishable from the distribution for local G-dwarfs reported
by DM91. In contrast, forαturb = 0.10 and 0.25, there is an
excess of systems having high mass-ratio, i.e. components of
comparable mass (see Fig. 7). Many of these systems with high
mass-ratio arise because the binary system has accreted mate-
rial with relatively high specific angular momentum, and this
material can more easily be accommodated by the secondary
(e.g. Whitworth et al. 1995).

6.9. Close systems with comparable components

For αturb = 0.10 and 0.25, the systems with high mass-ratio
tend also to be close, and it is this sub-population of high–
mass-ratio close binaries which is the main difference between
the distributions of semi-major axis and mass-ratio for thepro-
tostars formed in these simulations, and the distributionsof
semi-major axis and mass-ratio for local G-dwarfs as reported
by DM91. A similar excess of close systems with comparable
components was found by Delgado-Donate et al. (2003, 2004),

who simulated the collapse and fragmentation of cores with
even higher levels of turbulence (αturb = 1).

Taken at face value, this suggests that the local population
of G-dwarfs must have been formed in cores with low turbu-
lence (αturb ∼ 0.05). However, this conclusion rests on the as-
sumption that the spherically symmetric 5.4M⊙ core and the
Pk ∝ k−4 turbulence spectrum which we have adopted, are rep-
resentative of the cores forming G-dwarfs, and there is no firm
basis for this assumption. An alternative explanation is that a
significant population of close, high–mass-ratio systems has es-
caped detection, but we believe this to be unlikely.

A significant contrast to this is found in Taurus. Here WG01
find that binaries in the separation range 10 au<∼ a <∼ 100 au
do indeed have significantly higher mass ratios than wider bi-
naries. Therefore they are compatible with formation in cores
having higher levels of turbulence,αturb = 0.10 to 0.25. We
have discussed the origin of the mass function and the binary
statistics in Taurus in Goodwin et al. (2004b).

7. Conclusions

We have explored the influence of turbulence on the fragmenta-
tion of dense molecular cores, by means of a large ensemble of
simulations. In this ensemble, we consider a spherically sym-
metric 5.4M⊙ core with a Plummer-like density profile; this is
a good representation of observed cores like L1544. We seed
the core with a turbulent velocity field having power spectrum
P(k) ∝ k−4. The number of objects that forms, and the proper-
ties of the resulting multiple systems depend both on the level
of turbulenceαturb, and on the details of the turbulent veloc-
ity field. Therefore for each value ofαturb we we have simu-
lated many different realizations by changing the random num-
ber seed for the turbulent velocity field. The main conclusions
are

(i) The formation of multiple systems requiresαturb >∼
0.025; a core withαturb = 0.025 has a∼ 20% chance of forming
a multiple system, and a core withαturb >∼ 0.25 almost always
forms a multiple system.

(ii) As αturb is increased, the average time-scale for object
formation increases, the average number of objects formed in-
creases, the companion frequency increases (particularlyfor
the lower-mass objects), and the average mass of objects de-
creases.

(iii) The mass function has a bimodal form. The low-
mass objects, which are usually single because they have been
ejected from the core before they could grow above 0.5M⊙,
subscribe to a flat segment of the mass function. The high-mass
stars, which have usually stayed embedded in the core, grown
by accretion and paired up with one another in multiple sys-
tems, subscribe to a Gaussian segment of the mass function.
Typically 20% of objects are brown dwarfs (M < 0.08M⊙),
and 50% are low-mass stars (0.08M⊙ < M < 0.5M⊙).

(iv) For αturb >∼ 0.10, there is a significant subpopulation
of binary systems having small semi-major axes and high mass
ratios, i.e. close systems with components of comparable mass.
This subpopulation is also found in the simulations of Delgado-
Donate et al. (2003, 2004) who treat the extreme caseαturb =

1. It is not present in the sample of local G-dwarfs observed
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by DM91, but there is some evidence for it in the Taurus pre–
Main-Sequence sample observed by WG01.

(v) The ensemble of simulations for cores withαturb =

0.05 reproduces the binary statistics of the DM91 sample
(companion-star frequency and distributions of semi-major
axis, eccentricity and mass-ratio) very well. Therefore ifthe
other core parameters, which we have not varied (e.g. mass),
are representative of the cores forming local G dwarfs, we in-
fer that these cores must have had finite but low levels of tur-
bulence,αturb ∼ 0.05.

(vi) Both the mass function, and the binary statistics, for the
WG01 sample of pre-MS stars in Taurus are reproduced by a
mix of simulations withαturb = 0.05 (20 realizations), 0.10 (20
realizations), and 0.25 (10 realizations), as shown by Goodwin
et al. (2004b).
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MNRAS, 340, 870
Hennebelle, P., Whitworth, A. P., Cha, S.-H. & Goodwin, S. P.2004,

MNRAS, 348, 687
Hobson, M. P., 1992, MNRAS, 256, 457
Hobson, M. P., Jeness, T., Padman, R. & Scott, P. F., 1994, MNRAS,

266, 972
Jessop, N. E. & Ward-Thompson, D., 2001, MNRAS, 323, 1025
Jijina, J., Myers, P.C. & Adams, F.C. 1999, ApJS, 125, 161
Klein, R. I., Fisher, R. & McKee, C. F. 2001, in ’The Formationof

Binary Stars, Proceedings of IAU Symp. 200’, eds. H. Zinnecker
& R. D. Mathieu, p 361

Klein, R. I., Fisher, R., Krumholz, M. R. & McKee, C. F. 2003,
RMxAC, 15, 92

Klessen, R. S. & Burkert, A., 2000, ApJSS, 128, 287
Klessen, R. S. & Burkert, A., 2001, ApJ, 549, 386
Klessen, R. S., Heitsch, F. & Mac Low, M.-M. 2000, ApJ, 535, 887
Kramer, C., Stutzki, J. & Winnewisser, G., 1996, A&A, 307, 915
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