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ABSTRACT

The spacetime structure of the spatially uniformly expanding universe is described
in terms of a kind of global space and global time instead of the space and time we
usually recognize. The global space at some instant is a space in which the global time
is equal and the global time is equal to the proper time of any point moving together
with the expansion of the universe which has elapsed since the big bang. The frame
consisting of the global space and time thus defined is not rectangular when drawn
in the usual spacetime framework. In the new frame any expanding universe is open
spatially and the Einstein’s equations give a solution that the space expands eternally
regardless of the mass density of the universe indicating that any expanding universe
is open dynamically as well, as it is the case only when the density is less than the
critical value in the standard model. In fact the critical density has not any particular
meaning in the new frame. Finally it is shown that the equations related to the light
path both in the standard model and in the new frame are similar.

Key words: cosmology:theory — large-scale structure of universe

1 INTRODUCTION

It is an observational fact described as the Hubble’s law
that the universe is expanding in a manner that the speed
of separation of any two points in the space is proportional
to the distance between them. We assume that the fact is
true throughout the whole universe, that is, we accept the
so-called cosmological principle. This fact leads to a view
that the space which we usually recognize as the space at
the same instant as ours is not a space at a single instant nor
the time we regard as the same instant as ours belongs to
this instant if the place is different, suggesting the existence
of a new frame which consists of a kind of global space and
time coordinates.

The global space is so determined as to have the same
value of time throughout that space, in which all the points
are supposed to be comoving with the expansion of the uni-
verse. On the other hand, the global time coordinate for any
point which is moving with the expansion of the universe is
defined as the proper time at that point since the big bang
and thus the assembly of the points which have the same
global time form a global space at the same instant.

The frame is essentially the same as one given by
Ellis & Williams (2000, p. 178). The spaces belonging to dif-
ferent times in this frame are expressed by various hyperbo-
las with the common asymptotes and the time flow lines for
all the points in the space are given by straight lines which
start from the intersecting point of the asymptotes. How-

ever, if we introduce an imaginary angle at the origin, the
spaces become concentric circles, providing us with another
new frame which is much simpler.

Rigorously the pictures of the both frames described
above are valid only in the Milne universe or the massless
universe and a little different pictures must be drawn for
the universe with mass. Anyway, in the both types of the
new frames the space and time coordinates system is not
rectangular but similar to polar coordinates system when
referred to the framework of Minkowski world.

One of the conclusions with the new frame is that the
volume of the space for any expanding universe is infinite
or the universe is open statically and also that the space in
such a universe expands eternally with time thus indicating
that any expanding universe must be open dynamically as
well. This is a case only for a universe whose density is less
than the critical density in the standard model. But in the
new frame this holds always regardless of the density of the
mass and energy.

In Sections 2 to 3, the new framework of the universe
which is essentially the same as that by Ellis & Williams is
introduced in a different way from theirs, and in Section 4
it is shown how another type of new frame with an imagi-
nary central angle can be introduced. Also, in Section 5 it is
shown that any universe is open spatially in the new frame
whichever type we may adopt.

In Sections 6 and 7, the solution of the Einstein’s equa-
tions is studied and compared with that in the standard
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2 Y. Kubo

model of Robertson-Walker spacetime with the result that
the new solution always corresponds to the case where the
density is less than the critical density in the standard
model. This result comes from a fact that in the new frame
the critical density is not critical and no special phenomenon
occurrs at this density.

Finally a further study on the nature of the new frame
shows that the relation between the space and time coor-
dinates is quite similar to that in the ordinary spacetime
and thus the equations for the light path and the redshift,
for example, are almost the same in the new and standard
frameworks.

2 EXPANDING UNIVERSE AND SPECIAL

THEORY OF RELATIVITY

Fig. 1 shows a Minkowski world of which the origin A is an
observer or a galaxy GA at some instant and x0 axis or the
time axis is A1A2, the world line of GA. We suppose that
the galaxy is moving together with the average expansion
of the universe without any deviation. Note that the figure
shows a Minkowski world with a one-dimensional space for
simplicity.

The length of the segment for every time interval ∆t
along the world line of GA as well as of any point in the space
which is moving together with the expansion of the universe
is ic∆t, where c is the speed of light. We may express this
fact as that the point proceeds along its world line with the
speed c.

Now let the temperature at A, which is represented by
the cosmic background radiation there, be, say 2.7◦K. Let
M1M2 be the world line of a messenger who is dispatched
from GA and is at rest relatively to it at a distance of d
from it. Consider now the case where the messenger observes
the temperature at M, where the time is the same as at
the origin A in the coordinates system at rest relatively to
both the observer GA and the messenger. The result of the
observation is reported to GA and will be received after the
time d/c.

The temperature which is observed by the messenger
will be the same as that which is observed by an observer
GB who is at M at the time of the observation but who
is moving together with the expansion of the universe and
therefore whose world line is B1B2. We have 6 M2BB2 = η =
tan−1(v/c), where v is the speed of GB relative to GA.

The temperature thus observed and reported to GA by
the messenger, however, will not be the same as that ob-
served at A, i.e. 2.7◦K, but it will be, say 3.7◦K, a little
warmer than at A, for the reason as in the following: GB

will say that A is ahead of B concerning time and that GB

did not observe the temperature at the same time as GA but
at the instant when GA was at A′, earlier than A, therefore it
is quite natural that the temperature GB observed is warmer
than at A. Note that A′ is the event at the same instant as
B for GB and 6 ABA′ = η, too.

However, if the roles of A and B are exchanged (in this
case A′ but not A is to play the role of B), GB insists that
the temperature at A′ is the same as at B, 3.7◦K, while GA

will say that the temperature at A′ is 4.7◦K.
This situation can be explained if we consider that the

space with an equal temperature is curved to the direction

Figure 1. Space with an equal temperature. A1A2 and B1B2 are
world lines of points moving together with the expansion of the
universe, but M1M2 is that of a point at rest with respect to the
point with the world line A1A2. The temperature is the same on
the curved line A′′B.

of time in the ordinary spacetime which we recognize in such
a way that the space with the same temperature as at A is
ahead referred to that for B by the amount of a half of AA′,
as well as B is ahead by the same amount referred to the
space with the temperature at A′. Thus the curve A′′B is
the space where the temperature is equal to 3.7◦K.

If we consider that the space with the same tempera-
ture has the same coordinate value of time, it results that
the space having the same value of time is curved in the
spacetime framework which we usually recognize. This pic-
ture results necessarily from the requirements of the special
theory of relativity and of the fact that the universe is ex-
panding, or we can say that the special theory of relativity
requires that the space of the expanding universe at some
instant is curved when expressed in the ordinary spacetime.
In conclusion we should regard the curve A′′B as the true
space of GB but A′B is only the space tangent to the true
space at B.

From this view we should understand that the space-
time of the expanding universe has a structure which can
not be expressed by rectangular Minkowski world but is
represented better by a framework similar to polar coordi-
nates system. This is purely true for the expanding universe
without mass. The mass distribution may distort the frame
considerably but still the frame would be closer to polar
coordinates system rather than to rectangular one.

3 GLOBAL TIME AND SPACE AT SOME

GLOBAL TIME

We now introduce a global time which has a one-to-one cor-
respondence with the temperature. In other words, we define
such a global time as is equal throughout the space where
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New interpretation of expanding universe 3

Figure 2. Space at some global time. The curve AB′′ represents
the space of the universe at some instant concerning the global
time. O is the centre for the curvature of the space. In case of the
Milne universe O corresponds to the big bang as well and OA and
OB′′ correspond to the common proper time at A and B′′ which
has elapsed since the big bang.

the temperature is equal. We will now consider the nature
of the global time.

In Fig. 2, let the extensions of the world lines of GA

and GB intersect at O. Then 6 AOB is η, η being equal to
6 M2BB2 in Fig. 1. Consider that η is small enough and that
Fig. 2 is a Minkowski world with the origin at A. AB′′ is the
space where the global time is equal to that at A.

In the following, let |OA|, |AB|, etc. represent the Carte-
sian lengths of each segment which would be obtained if
the time axis were real. Then they are all real. On the
other hand, denote their distances in Minkowski world by
‖OA‖, ‖AB‖, etc.

We have

‖OA‖ = i
d

tan η
= i

cd

v
= i

c

H
, (1)

where H = v/d is the Hubble parameter at A and d =
‖AB‖ = |AB|. If the universe is the Milne one where there
is no mass, v is constant and d = vt, t meaning the time
needed for A and B to separate up to the present distance.
This results t = 1/H , but in the non-Milne universe this is
not true.

Since 6 B′′AB ≃ η/2 in Fig. 2 after the discussion in the
previous section, we have

|BB′′| ≃ 1

2
d · η ≃ 1

2

c

H
η2. (2)

Also we have

‖OB‖2 = ‖OA‖2 + ‖AB‖2 ≃ c2

H2
(−1 + η2). (3)

Hence,

‖OB′′‖ = ‖OB‖+ ‖BB′′‖ ≃ i
c

H

√

1− η2 +
i

2

c

H
η2 ≃ i

c

H
.

(4)
Therefore we have ‖OB′′‖ = ‖OA‖ for η small enough. Note
that H is the Hubble parameter at B′′ as well.

Figure 3. Frame I, a frame to describe the spacetime structure
of the expanding universe. S represents the space at some instant
and l = ic/H. In the Milne universe l = ict̂ also holds and OA
and OC are the world lines of points A and C, respectively, O
corresponding to the big bang. |r| means the Cartesian length of
OC.

OA and OB′′ are a kind of radii of the space AB′′ and
O is their centre. In the Milne universe OA and OB′′ are
also the world lines of A and B′′, respectively, and O is the
origin of the time coordinates, but generally this is not true.

Only in the massless universe the radii of the space and
the world lines of the points in the space are coincident and
O is interpreted as the big bang. And in this case ‖OA‖ =
‖OB′′‖ = icτ , where τ is nothing other than the proper
time which has elapsed since O. Therefore we may define
the global time t̂ in the Milne universe by

t̂ = τ = 1/H. (5)

As for the global time in the universe with mass, we
can only say at this stage that the global time is equal if the
value of H is equal. We will discuss about it later at the end
of Section 6.

Next we consider a hyperbola AC in Fig. 3 which is
given by

(x0)2 + (x1)2 = ‖OA‖2 = − c2

H2
, (6)

x0 being imaginary. OZ1 and OZ2 are the asymptotes of
the hyperbola. Let C(x0, x1) be an arbitrary point on the
hyperbola. Then

‖OC‖2 = − c2

H2
= ‖OA‖2. (7)

Therefore the hyperbola AC is the space with an equal global
time. If 6 AOC = η then tan η = v/c, where v is the speed
of expansion at C relative to A. Here, η is not necessarily
small any longer.

Now we see that Fig. 3 gives a frame which describes
the expanding universe correctly. In the frame, hyperbolas
having the same asymptotes as those for AC correspond to
spaces at different times. The straight lines passing O such
as OA and OC are the radii of the space AC and in the
massless universe they are the world lines of the points in
the space as well. We notice that this frame is essentially
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4 Y. Kubo

the same as one which is given by Ellis & Williams (2000)
for the Milne universe.

Next we will compute the length ŝ of the curve AC in
the Minkowski world. Let the coordinates of C be (x0, x1)
and |OC| be r, as well as ‖OA‖ = ‖OC‖ = ic/H ≡ l. r2 is
obtained from

(x0)2+(x1)2 = −|CY|2+|CX|2 = −r2 cos2 η+r2 sin2 η = l2.
(8)

Thus,

r =
l/i

√

cos2 η − sin2 η
. (9)

From this,

x0 =
l cos η

√

cos2 η − sin2 η
, x1 =

(l/i) sin η
√

cos2 η − sin2 η
, (10)

and

dx0 =
l sin η

(cos2 η − sin2 η)3/2
dη, dx1 =

(l/i) cos η

(cos2 η − sin2 η)3/2
dη.

(11)
Then we have

dŝ =
√

(dx0)2 + (dx1)2 =
l/i

cos2 η − sin2 η
dη, (12)

and thus

ŝ =

∫ η

0

l/i

cos2 η − sin2 η
dη, (13)

ŝ being real.

4 ALTERNATIVE FRAME

After Goldstein (1950, p. 191) we now introduce an imagi-
nary angle ζ defined by

sin ζ =
β

i
√

1− β2
, cos ζ =

1
√

1− β2
, (14)

where β = tan η = v/c. Then

tan ζ =
β

i
=

1

i
tan η, (15)

and from this,

dζ =
1

i

1

1− β2

dη

cos2 η
=

1

i

dη

cos2 η − sin2 η
. (16)

Hence, from equations (13) and (16),

ŝ = l

∫ ζ

0

dζ = lζ. (17)

Equations (7) and (17) strongly imply another and sim-
pler frame to describe the spacetime structure of the expand-
ing universe as shown by Fig. 4. We shall call the frame
shown by Fig. 4 Frame II, while the frame given in Fig. 3
Frame I.

In the both frames it is quite natural to call ŝ the
global distance. Meanwhile, η or ζ is the global space co-
ordinate making a counterpart of the global time t̂, proper
to a point moving together with the expansion of the uni-
verse. In Frame II the space at some instant t̂ of the global
time is a circle with the radius l = ic/H , and in the Milne
universe the radii OA and OC are also the world lines of A
and C, respectively, similar to in Frame I.

Figure 4. Frame II, an alternative frame to describe the space-
time structure of the expanding universe. S represents the space
at some instant and it is the hyper-surface of the hyper-sphere.
OA and OC are the radii of the hyper-sphere and l = ic/H. In
the Milne universe l = ict̂ also holds and OA and OC are the
world lines of points A and C, respectively, O corresponding to
the big bang.

The global distance ŝ between two points in the space,
which is real, is proportional to the angular distance ζ. While
η takes the values −45◦ to +45◦, ζ takes the values −i∞ to
+i∞. However, since the angle ζ is imaginary, neither sin ζ
nor cos ζ has periodicity and therefore the circle does not
close as in the case of real radius.

We will see the property of ζ more in detail. We have
from equation (14)

eiζ = cos ζ + i sin ζ =

√

1 + β

1− β
, (18)

or

ζ =
1

2i
[ln(1 + β)− ln(1− β)] . (19)

Now, in the ordinary Minkowski world we consider a system
S1 moving with the speed of ∆u with respect to a system S0,
S2 moving with the speed of ∆u in the same direction with
respect to S1, and so forth. Let the speed of Si relative to S0

be vi. Then, from the formula for the addition of velocities
in the special theory of relativity, we have

∆v = vn − vn−1 = (vn−1 +∆u)

/(

1 +
vn−1∆u

c2

)

− vn−1

=

(

1− v2n−1

c2

)

∆u

/(

1 +
vn−1∆u

c2

)

.

(20)

Dividing the both sides by ∆u and replacing ∆ by d,

dv

du
= 1− v2

c2
. (21)

From this,
∫ u

0

du = c2
∫ v

0

dv

c2 − v2
=

c

2

[

ln
(

1 +
v

c

)

− ln
(

1− v

c

)]

.

(22)
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New interpretation of expanding universe 5

Comparing equations (19) and (22), we have

ζ =
1

ic

∫ u

0

du =
u

ic
. (23)

u is interpreted as the velocity made by summing up all
∆u’s or integrating du in the Galilean sense. While v can
not exceed c, u can be large to any amount. Related to this,
if we write the Hubble’s law as u = Hŝ instead of the usual
expression v = Hd, then the law, which holds only within a
comparatively small distance in the current form, will hold
completely throughout the universe.

5 A NATURE OF THE SPACE IN THE NEW

FRAME

So far we considered only a one-dimensional space. So the
space at some instant was a hyperbola in Frame I and a circle
with imaginary radius and imaginary central angle in Frame
II. When we consider a two-dimensional space in Frame I,
the space passing A comes to a hyperboloid which is made
by rotating the hyperbola in Fig. 3 around the axis OA. The
set of the points with distance ŝ from A make a circle with
the radius ‖YC‖.

Similarly, if we proceed to the actual three-dimensional
space, the space passing A comes to a hyher-hyperboloid
and the set of the points with distance ŝ from A form a
spherical surface with the radius ‖YC‖.

‖YC‖ is given from equation (10) as

‖YC‖ = x1 =
(l/i) sin η

√

cos2 η − sin2 η
=

(l/i)β
√

1− β2
= l sin ζ. (24)

If ζ and l are written as iζ̄ and il̄, respectively, then, from
equation (17),

‖YC‖ = il̄ · i sinh ζ̄ = l̄ sinh
ŝ

l̄
. (25)

Then the area S of the spherical surface consisting of the
points whose distance from A is ŝ is given by

S = 4π

(

l̄ sinh
ŝ

l̄

)2

, (26)

S being real. This is the very definition for that the three-
dimensional space is open.

In Frame II we can see equation (24) more directly. In
this frame, spaces of two-dimension and three-dimension are
a spherical surface and the hyper-surface of a hyper-sphere
with an imaginary radius, respectively. ‖YC‖, which is real,
is the radius of the circle for the two-dimensional space, and
of the spherical surface for the three-dimensional space, each
consisting of the points whose global distance from A is ŝ.

We can adopt the above discussion not only to the mass-
less universe but also to the universe with mass as well.
Therefore it is concluded that any expanding universe is
open spatially, that is, the volume of any such a universe is
infinite.

6 EINSTEIN’S FIELD EQUATIONS AND THE

EVOLUTION OF THE RADIUS l

In the Milne universe, l = ic/H evolves in such a way as
l = ict̂. However, when there is mass or energy, l will not

evolve like that and in that case we have to solve Einstein’s
field equations to know how l behaves with respect to time
t̂.

We start from the Einstein’s field equations in Frame
II. We write the line element, which is given by

−c2dτ 2 = −c2dt̂2 + l(t̂)2(dζ2 + sin2 ζdθ2 + sin2 ζ sin2 θdφ2),
(27)

where τ, t̂, θ and φ are real but l and ζ are imaginary. l
is considered to be a function of t̂. l means the radius of
hypersphere for the space at time t̂, or l = ŝ/ζ.

On the other hand, the line element with Frame I is, as
seen from Fig. 3,

−c2dτ 2 =(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

=[id(r cos η)]2 + [d(r sin η cos θ)]2

+ [d(r sin η sin θ cos φ)]2

+ [d(r sin η sin θ sin φ)]2.

(28)

After some calculations and putting r = l̄/
√

cos2 η − sin2 η
due to equation (9), we have

−c2dτ 2 =− c2dt̂2

+ l̄(t̂)2
(

dη2

cos2 2η
+

sin2 η

cos 2η
dθ2 +

sin2 η sin2 θ

cos 2η
dφ2

)

.

(29)

However, due to equation (15), we see that equation (29) is
equivalent to equation (27).

After the ordinary calculations, the Einstein’s field
equations for the line element written as equation (27) give

3

l2
(c2 + l̇2)− Λc2 = 8πGρ, (30)

l̇2 + 2ll̈ + c2 − Λl2c2 = −8πG

c2
l2p, (31)

where G is the universal gravitational constant, ρ and p are
the density and the pressure, respectively, both considered
constant spatially throughout the universe, and Λ is the cos-
mological constant. The dots over the variables represent the
differentiation with respect to t̂.

Now we limit our discussion to the case of Λ = 0 and
p = 0. Then we have from equations (30) and (31),

−2¨̄l

l̄
=

8π

3
Gρ. (32)

Let

M =
4π

3
l̄3ρ. (33)

M can not be regarded as the total mass of the universe, but
we may suppose M to be a constant. Then from equations
(32) and (33),

1

2
˙̄l2 − GM

l̄
= E, (34)

E being a constant. But from equation (30),

1

2
˙̄l2 − GM

l̄
=

1

2
c2, (35)

thus E = c2/2.
We see from equation (35) that the universe continues

c© 0000 RAS, MNRAS 000, 000–000



6 Y. Kubo

Figure 5. Relation between t̂ and l̄. The unit of t̂ is 1/H0 and
that of l̄ is c/H0, H0 being the Hubble constant. The numeral on
each curve shows the value of Ω0 = (ρ/ρcr)0. The upper end of
each curve corresponds to the present time. Ω0 = 1 has not any
special meaning.

to expand eternally once it expands, or the universe is open
dynamically regardless of the mass density.

Solving equation (35) with the condition that l̄ = 0 at
t̂ = 0, we have

ct̂ =
√

l̄(l̄ + 2GM/c2) +
GM

c2
ln

√

l̄ + 2GM/c2 −
√
l̄

√

l̄ + 2GM/c2 +
√
l̄
. (36)

Now we notice that the equation

l = i
c

H
(37)

holds for any universe as we saw in Section 3. Then from
this equation and equation (33), we have

2GM

c2 l̄
=

8πG

3H2
ρ =

ρ

ρcr
= Ω, (38)

where ρcr =
3H2

8πG
is the so-called critical density, and there-

fore we have

ct̂ = l̄

[√
1 + Ω +

Ω

2
ln

√
1 + Ω− 1√
1 + Ω+ 1

]

. (39)

Though ρcr is called the critical density in the standard
model, Ω = 1 is not any particular point in equation (39)
and ρcr is not critical in the new frame.

By equations (37) and (38) and with the observed value
of H0 we can obtain l̄0 and M for some value of Ω0, the
subscript 0 signifying the value for the present time. Then
we can obtain the evolution of l̄ with respect to t̂ for various
values of Ω0 from equation (39).

The result is shown in Fig. 5. As inferred above, the
critical density has not any meaning in the new frame. With
this density the universe (ŝ-t̂ spacetime) is not flat and the
age of the universe is about 0.53/H0, different from 2/(3H0)
which is the case in the standard model. The age of the

Figure 6. A possible interpretation on the relation between l and
t̂ in the universe with mass. OA is the radius of curvature of the
space S and OA= l = il̄ is imaginary. Meanwhile, O′A is the time
flow for A and O′ corresponds to the big bang, α being 45◦. O′A

= ict̂ is also imaginary and, if OO′ is real, we have ˙̄l > c and so
l̄ > ct̂.

universe 2/(3H0) occurs, on the other hand, when Ω0 ≃ 0.46,
although this age is not especially significant.

Meanwhile, as for the evolution of the value Ω it is in-
versely proportional to l̄ from equation (38), thus it was
larger than unity in the past for any Ω0 other than 0.

Now we will discuss about the relation between l and t̂.
In Figs. 3 and 4, OA and OC are equal to l in any universe
but they are not equal to ict̂ except in the Milne universe.
Then where is the zero point of t̂ or the big bang for the uni-
verse with mass in these figures? A possible interpretation
on the difference between l and ict̂ is given in Fig. 6.

In the figure, S is the space at some instant. Note that
it is expressed in Frame II and as a one-dimensional space
for simplicity. O is the centre of the curvature of the space.
OA, the radius of curvature of S , is l and it is imaginary. On
the other hand, the time flow of A is given by O′A, O′ being
the big bang. α = 45◦ and the curve O′A approaches to the
horizontal direction asymptotically. Then O′A is imaginary

and if OO′, which changes with time, is real we have ˙̄l > c
and so l̄ > ct̂. A moves along the curve O′A with the speed
c. The tangent to the curve O′A at A and OA are both
perpendicular to the space S and that makes us feel they are
the same. So we will not be able to distinguish any universe
from the Milne universe with the same value of H from an
instantaneous observation.

7 COMPARISON WITH

ROBERTSON-WALKER MODEL

We notice equation (27) is very similar to the line element
in the Robertson-Walker spacetime which is regarded as the
basis of the standard model of the universe. The Robertson-
Walker line element is written as

−c2dτ 2 = −c2dt2 + a(t)2
(

dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)

(40)

c© 0000 RAS, MNRAS 000, 000–000



New interpretation of expanding universe 7

(Peebles 1993, p. 74, e.g.), where a(t) is the expansion pa-
rameter which takes the value of unity for the present in-
stant.

We may consider that equations (27) and (40) repre-
sent the same physical quantity expressed by different ex-
pressions. In comparing them we first notice that there is no
common variable to the both equations other than θ and φ.
As for t and t̂, maybe they are the same at the observer’s
place or the origin of the space coordinate but not at other
places. And as for the other variables we have the following
relations:

a(t)2r2 = l(t̂)2 sin2 ζ (41)

and

a(t)2
dr2

1− kr2
= l(t̂)2dζ2. (42)

From these, if we assume that k is a constant, we have

r = l0 sin ζ, a(t) =
l(t̂)

l(t̂0)
=

l(t̂)

l0
, k =

1

l20
. (43)

Due to the last one of these equations, we can have
k = −1 by choosing the unit of l and r appropriately, but
never k = 0 nor k = +1. Only with k = −1, a(t) behaves
in the same way as l/l0. This result is accordant with the
conclusion which we have had above that l̄ = l/i continues
to increase eternally regardless of the density of the universe.

Next we consider some problems related to the path of
light in the new frame and compare them with those in the
standard model. Considering such a light as dθ = dφ = 0 in
equation (27), we have

cdt̂ = ldζ. (44)

First we examine the relation between the radius l and the
redshift z. As for the light which was emitted from the point
ζ at the time t̂1, when l = l1, and is received at ζ = 0 at t̂0,
when l = l0, we have from equation (44)

ζ = −c

∫ t̂0

t̂1

dt̂

l
. (45)

Similarly, as for the light which was emitted from the same
place as above at t̂1 + ∆t̂1 and is received at t̂0 + ∆t̂0, we
have

ζ = −c

∫ t̂0+∆t̂0

t̂1+∆t̂1

dt̂

l
. (46)

From these two equations we have

∆t̂1
l1

=
∆t̂0
l0

. (47)

Then

1 + z =
λ0

λ1

=
∆t̂0

∆t̂1
=

l0
l1
. (48)

This is compared with the following equation in the standard
model:

1 + z =
λ0

λ1

=
a0

a1

(49)

(Peebles 1993, p. 96, e.g.). The similarity of equations (48)
and (49) is a natural result from equations (43).

Next if we define s by

s = a(t)

∫ r

0

dr

1− kr2
, (50)

the behavior of s with respect to t is the same as that of ŝ
with respect to t̂ except for the scale factors of ŝ and s. As a
result, the expression for the path of light is the same both
in s-t frame and ŝ-t̂ frame. For example, in the latter frame,
the equation for the path of the light which was emitted at
ŝ at the time t̂ and reaches ŝ = ζ = 0 at t̂ = t̂0 is written as

ŝ = −lζ = l

∫ 0

ζ

dζ = cl

∫ t̂0

t̂

dt̂

l
= cl̄

∫ l̄0

l̄

dl̄

l̄
√

c2 + 2GM/l̄

= l̄

[

cosh−1

(

c2

GM
l̄ + 1

)]l̄0

l̄

= l̄

[

cosh−1

(

2

Ω
+ 1

)]l̄0

l̄

.

(51)

Also the horizon ŝH at the present moment is given by

ŝH0
= l̄0

[

cosh−1

(

2

Ω
+ 1

)]l̄0

0

=
c

H0

cosh−1

(

2

Ω0

+ 1

)

.

(52)
We have similar expressions for the standard model if

we replace ŝ and t̂ by s and t, respectively. It should be
noticed, however, that the quantity s which corresponds to
ŝ in the standard model is not a(t)r but is the quantity given
by equation (50). Besides, we know very little about t for
the universe with mass. While we have a distinct definition
of ŝ and t̂ as we saw in the present study, we cannot say we
know s and t with the same clarity.

REFERENCES

Ellis G. F. R. & Williams R. M., 2000, Flat and Curved
Spacetimes, 2nd edn. Oxford Univ. Press, Oxford

Goldstein H., 1950, Classical Mechanics. Addison-Wesley
Publishing Company, Reading, MA

Peebles P. J. E., 1993, Principles of Physical Cosmology.
Princeton Univ. Press, Princeton, NJ

c© 0000 RAS, MNRAS 000, 000–000


	Introduction
	Expanding Universe and Special Theory of Relativity
	Global Time and Space at some Global Time
	Alternative Frame
	A Nature of the Space in the New Frame
	Einstein's Field Equations and the Evolution of the Radius l
	Comparison with Robertson-Walker Model

