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Are the WMAP angular magnification measurements consistent

with an inhomogeneous critical density Universe?
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ABSTRACT

The propagation of light through a Universe of (a) isothermal mass spheres

amidst (b) a homogeneous matter component, is considered. We demonstrate by

an analytical proof that as long as a small light bundle passes through sufficient

number of (a) at various impact parameters - a criterion of great importance -

its average convergence will exactly compensate the divergence within (b). The

net effect on the light is statistically the same as if all the matter in (a) is

‘fully homogenized’. When applying the above ideas towards understanding the

angular size of the primary acoustic peaks of the microwave background, however,

caution is needed. The reason is that most (by mass) of (a) are in galaxies - their

full mass profiles are not sampled by passing light - at least the inner 20 kpc

regions of these systems are missed by the majority of rays, while the rest of the

rays would map back to unresolvable but magnified, randomly located spots to

compensate for the loss in angular size. Therefore, a scanning pair of WMAP

beams finds most frequently that the largest temperature difference occurs when

each beam is placed at diametrically opposite points of the Dyer-Roeder collapsed

sections. This is themodemagnification, which corresponds to the acoustic peaks,

and is less than the mean (or the homogeneous pre-clumping angular size). Since

space was seen to be Euclidean without taking the said adjustment into account,

the true density of the Universe should be supercritical. Our analysis gives Ωm =

0.278 ± 0.040 and ΩΛ = 0.782 ± 0.040.

1. Introduction

The propagation of light through the inhomogeneous near Universe is an intriguing

phenomeon, especially from the viewpoint of the cosmic microwave background (CMB),

because the subject is sufficiently unfathomable that a large number of papers appeared in

the literature (triggered by the tautological ‘flux conservation’ argument of Weinberg 1976).

Some of the earlier works were cited in section 9.2 of the review of Bartelmann & Schneider
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(2001). The recent controversy persists over whether, in a critical density Universe, the

convergence of rays by mass concentrations is balanced by the divergence in between, so

that the average behavior of the light continues to reflect zero curvature space (see e.g. Holz

& Wald 1998, Claudel 2000, and Rose 2001).

The observational status of the near Universe is that it comprises a smooth component

which harbors ∼ 35 % (Fukugita 2003; Fukugita, Hogan, & Peebles 1998) of the Ωm =

0.27 total matter density (Bennett et al 2003), plus mass clumps with (to zeroth order) a

limited isothermal sphere density profile ρ ∝ 1/r2 for r ≤ some cutoff radius R, which are

the galaxies, groups, and clusters. In the present work we demonstrate that the problem

concerning the mean convergence of light in a Universe of isothermal spheres placed within

an otherwise homogeneous space can be solved analytically.

2. Cross section evolution of a light bundle from the Sach’s optical equations

Let us express the normalized matter density parameter for the near Universe as Ωm =

Ωh+Ωg, where Ωh represents the homogeneous component and Ωg an ensemble of uniformly

but randomly placed isothermal spheres.

The framework of our treatment is the Friedmann-Robertson-Walker (FRW) space-time

as shaped by the homogeneous component of the matter distribution. Upon this metric we

envision a null geodesic directed along the backward light cone from the spatial origin at the

observer, whose clock keeps the present time. The standard solution of the geodesic equation

(Eq. (14.40), Peebles 1993) gives

ṫ = −a0
a

= −(1 + z), (1)

where the dot derivative is w.r.t. the affine parameter λ, a(t) is the (Hubble) expansion

parameter at world time t, and the initial condition ṫ = −1 at z = 0 was applied along with

the notational shorthand c = 1.

Now consider small excursions of the actual light path from a given radial null geodesic.

It is convenient to introduce transverse coordinates ~l = (lα)α=1,2, such that

d~l2 = dlαdl
α = a2r2(dϑ2 + sin2 ϑ dϕ2). (2)

Take in particular a pair of backward null geodesics starting from the origin at the present

time. Let their separation at affine distance λ be δ~l(λ). The rate of change of this separation

is governed indirectly by the Sachs scalar optical equations, which in the (reasonable) limit

of vanishing Weyl tensor read:

θ̇ = −θ2 − 1

2
w2 − 1

2
Rµνu

µuν , (3)

ẇαβ = −2θwαβ . (4)
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where

uµ = ẋµ = (ṫ, 0, 0, ṙ), (5)

and w2 = wαβw
αβ. Here θ is the expansion and wαβ is the shear (the latter is a symmetric

and traceless tensor) - they are quantities which determine the evolution of δ~l(λ) via the null

Raychaudhuri equation

δl̇α = θδlα + wαβδlβ. (6)

In Eq. (3) the Ricci tensor Rµν is obtained from the Einstein’s field equations with

the stress energy tensor Tµν having T00 = ρ as the only non-vanishing entry. The solution,

R00 = R33 = 4πGρ, is well known, and may be coupled with Eqs. (5) and (1) to yield an

expression for the Ricci focussing source term as Rµνu
µuν = 8πGρ(1 + z)2. Hence Eq. (3)

may be written as

θ̇ = −θ2 − 1

2
w2 − 3

2
H2

0
Ωh(1 + z)5 (7)

For the present purpose it is only necessary to work with the two scalar variables θ and w2,

the evolution of the latter is according to the equation

d

dλ
(w2) = −4θw2. (8)

which is obtainable from Eq. (4).

In the next step, we suppose that light from a source at affine distance λs passes through

one single isothermal sphere of mass M , centered at λl, and with an impact parameter b (a

physical distance measured at the lensing epoch). The angle of deflection ψ(b) is given by:

ψ(b) =
4GM

R

[

arccos

(

b

R

)

+
R −

√
R2 − b2

b

]

(b ≤ R), (9)

and

ψ(b) =
4GM

b
(b > R). (10)

From Eq. (6) we see that the changes in θ and wαβ due to the presence of the lensing

mass are of the form:

δ(θ + wρρ) = −(1 + z)
dψ(b)

db
, (11)

δ(θ + wφφ) = −(1 + z)
ψ(b)

b
, (12)

where z is the redshift for the epoch of interaction. The factor of (1 + z) arises because of

the relation between δλ and the proper distance. It follows that

δθ = −1 + z

2

[

ψ(b)

b
+
dψ(b)

db

]

, (13)
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Substituting Eqs. (9) and (10) into Eq. (13), we obtain

δθ = 0 for b > R; δθ = −(1 + z)

2

4GM

R
arccos

(

b

R

)

for b ≤ R. (14)

For the shear w2, the calculations are more complicated. Yet the quantity is easily shown to

assume importance only in the strong lensing limit, i.e. in the present context we can ignore

it.

We have to compute the average effect of all the mass inhomogeneities. The number

density of the isothermal spheres (neglecting evolution and assuming uniform distribution

in total density FRW space) is

n = n0(1 + z)3, n0 =
3H2

0
Ωg

8πGM
. (15)

The probability of finding a clump with center at the position (λ, b) to within small ranges

dλ, db is

P (λ, b) dλ db = 2πn0(1 + z)4 dλ b db. (16)

Since the expansion is additive, the globally averaged change of θ with λ is, from Eqs.

(14) and (16),

〈

dθ

dλ

〉

g

= −3H2
0Ωg

4GM
(1 + z)5

∫ R

bmin

2GM

Rb
arccos

(

b

R

)

b db = −3

2
H2

0
Ωg(1 + z)5 (17)

where at the last step the integral was evaluated with bmin ≪ R in mind.

Putting together the effects of both smooth and clumped matter, we find for θ, from

Eqs. (7) and (17) the equation

〈θ̇〉 = −θ2 − 1

2
w2 − 3

2
H2

0Ωh(1 + z)5 − 3

2
H2

0Ωg(1 + z)5. (18)

The contribution from the w2 (shear) term may be estimated by noting that, from Eq. (11)

and (12),

δ(w2) =
(1 + z)2

2

[

ψ(b)

b
− dψ(b)

db

]2

.

Hence, using Eqs. (9), (10) and the fact that, because of the random orientation of ~l, w2 is

additive, we arrive after integration w.r.t. λ at

〈w2〉 ∼ H2

0Ωg

GMxs
R2

. (19)
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where xs is the Euclidean distance to the source as measured at z = 0. When compared

with the last term of Eq. (18), however, we see that the shear from the mass concentrations

remains relatively unimportant until GMxs/R
2 ≥ 1, i.e. violation of the weak lensing

criterion (also the value of w2 for homogeneous matter is zero). As long as the lensing is

weak, then, one may ignore the 2nd term on the right side of Eq. (18). The outcome is that

the expansion of a light bundle depends only on the total matter content, and not on the

degree of homogeneity of space. If space is Euclidean the solution of Eq. (18) is

θ = −(1 + z)H(z) +
(1 + z)2

a0r
=

1

ar

d(ar)

dλ
. (20)

This is in full agreement with the expected value of the angular diameter distance at zero

curvature, viz. a(t)r.

The chief conclusion of this section may also be obtained by first directly integrating

each percentage angular magnification η = ψ(xs − x)x/[2(1 + z)xsb] over dP = 2πn0[1 +

z(x)]2bdbdx, the latter because of randomly located lenses in an inhomogeneous critical

density Universe. Here x and xs are respectively critical density FRW physical distances at

the present epoch (the same meaning as a(t)r in the line element of Eq. (2) with t = t0), to

a lens and the source. We find

〈η〉 =
∫

ηdP =
3

2
ΩgH

2

0

∫ xf

0

dx [1 + z(x)]
(xs − x)x

xs
, (21)

where xf is the distance to the furthest lens, beyond which space is smooth. Then, it has

been shown (Lieu & Mittaz 2005) that, irrespective of the lensing strength, 〈η〉 is exactly

equal to the demagnification due to the Dyer-Roeder (DR) beam divergence in between these

encounters, Dyer & Roeder (1972). This method of proof, though no less valid, is not as

elegant in that the two counteracting effects have to be calculated separately, and subtracted

from each other afterwards.

3. Interpretation of the results, flux conservation; comparison with observations

We must now understand what the result of section 2 means. In particular, we need

to know when the integration over a cylindrical probability element like that of Eq. (16)

corresponds to observational reality. Among the isothermal spheres of different scales, viz.

galaxies, groups, and clusters, the first encompasses by far the lion’s share of the matter

budget at low z, with ≈ 50 % of the entire matter content clumped into this kind of large

scale structures, i.e.

Ωg ≈
Ωm

2
for galaxies (22)

(Fukugita 2003, and Fukugita, Hogan, & Peebles 1998). Thus, in order to secure the pre-

carious balance between beam convergence and divergence, a light signal must pass through
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sufficient numbers of galaxies - sampling the full range of impact parameters - larger systems

like clusters have too small an associated Ω to play a significant role. From the observed

density of galaxies

n0 = 0.17h−3 Mpc−3 = 0.06 Mpc−3 for h = 0.71 (23)

(Ramella et al 1999) one estimates that throughout the 3 Gpc distance between z = 0 and

z = 1 a typical light ray is within ≈ 40 kpc from only one galaxy. If these isothermal spheres

cutoff at R ≈ 20 kpc (which implies a circular velocity ∼ 250 km s−1 using the value of

M deduced from Eqs. (22) and (23)), then for a separation ∆ ≥ 40 kpc the only ‘clump’

contribution to the beam expansion will come from the shear term w2 of Eq. (19) with R

replaced by ∆ ≈ 40 kpc. This calls for an insignificant correction to θ̇.

The conclusion is that despite the euphoria arising from Eqs. (18) and (20), most

light rays experience to lowest order only the gravity of homogeneous matter. What are

the ramifications? Specifically what will the appearance of features be on a large scale?

Consider a sequence of small and contiguous emission pixels on the outlining contour of an

emitting source. If the ray bundles connecting them and the observer miss the clumps, their

expansion will evolve according to Eq. (18) without the last term and with a negligible

second term. This is precisely the ‘partially loaded’ DR beam. It implies demagnification

of the pixels in question. By Liouville theorem, the pixels remain adjoint, so to prevent the

entire segment from shrinking they must be tangentially sheared and pushed back outwards

by the clumps within. In other words, when the bulk of a randomly located source boundary

is shrunk, it can be restored to original shape only if the enclosed foreground matter acts as

a systematic gravitational lens. Yet this is clearly an absurd scenario. In fact, given that the

clumps are uniformly distributed on either side of any boundary ray, there is no preferential

deflection of the ray, i.e. concerning most of the boundary which is demagnified by the DR

beam, the pixels involved should not on average be mobilized radially inwards or outwards

by shear - this is consistent with the smallness of the w2 term. The situation is quite unlike

a more homogeneous Universe where each ray passes through enough representative matter

and (from section 2) all pixels are magnified, thereby enlarging the boundary without any

center of radial migration.

If under the ‘Poisson regime’ of clump distribution large sections of the main boundary of

an extended source shorten without distortion how may this be reconciled with the expected

source flux? Since lensing conserves surface brightness, a smaller source means less detected

flux, yet from section 2 we saw that on balance the effects of lensing and the DR beam

cancel, i.e. the flux (or source size) should be unchanged by clumping. The answer comes

from that minor fraction of the boundary rays which do go through clumps. From the figures

given in and after Eq. (22), we found that this is ≈ 25 %. The segments involved here are
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substantially enlarged, leading to bulges on randomly located portions of the boundary, such

that the perimeter now acquires sufficient total length to enclose a re-magnified area.

We apply the above development to the CMB observations, which have conventionally

been modeled in terms of a critical density FRW Universe, even though during the ‘last

leg’ of the light propagation, the matter at low redshift is anything but smooth. In a more

accurate picture, we assume that within z = 1 some of the matter is clumped into galaxies,

which have properties as given in Eqs. (15), (22) and (23), since galaxies exhibit no evidence

for significant evolution up to this redshift (Ofek, Rix, & Maoz 2003). At earlier epochs, the

effect of mass clumping is completely ignored, i.e. the Universe is treated as homogeneous,

and the possibility of masses missed by the propagating light above z = 1 will not be taken

into account. This understates the outcome of our analysis, which is: the angular scale of

temperature variation like the CMB primary acoustic peaks (hereafter PAPs in short) must

in the circumstance demagnify by the percentage expected from a ‘half-loaded’ DR beam

between z = 0 and z = 1. From the reasoning at the end of section 2, we see that the

required quantity is 〈η〉 of Eq. (21) with Ωg = Ωm/2, xf = 3.3 Gpc (zf = 1), and xs = 14.02

Gpc. The percentage of shrinking is then 〈η〉 = 10 %.

When a pair of WMAP TT cross correlation beams surveys the CMB sky to measure

temperature differences at some beam separation, it most frequently finds that the largest

temperature difference occurs when each beam is placed at diametrically opposite points of

the DR collapsed contour sections. This is the mode magnification, and corresponds directly

to the acoustic peaks. Some of the time, however, the maximum temperature difference is

seen at larger angular separations, when e.g. one beam is on a point of the DR demagnified

section while the other is on a bulge (or lensed section). This makes the distribution skewed.

As a result, the mean magnification remains at the pre-clumping value. Yet the mean is

not relevant, for it is the peak position that determines the total density of the Universe.

Although each beam cannot resolve the lensed and unlensed sections of the contour (e.g.

the former is ≈ 0.1 arcmin in size for a galaxy lens of R ≈ 20 kpc, while the beam width

is ∼ 30 arcmin for WMAP), that does not change the conclusion. All it means is that the

skewed distribution becomes blurred after convolution with the beam, the mode stays at its

DR demagnified position.

We determined, as is illustrated in Figure 1, the CMB parameters required to match

the data from WMAP’s TT cross correlation power spectrum, after including the effect

of a 10% systematic shift (towards smaller sizes relative to the pre-clumping value) in the

spherical harmonic number of all structures within the harmonic range of the PAPs. Since

the observed angular size is Euclidean, one now expects the best fit total density to be

supercritical. They are found at Ωm = 0.278 ± 0.040 and ΩΛ = 0.782 ± 0.040, i.e. Ω = 1.06.
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Given our estimate of the bias by which the PAP positions represent the true mean density

of the Universe, we also fitted the WMAP data with a smaller bias, 〈η〉 = 5 %. The figures

so obtained are Ωm = 0.275 ± 0.040 and ΩΛ = 0.755 ± 0.040, i.e. Ω = 1.03. The other,

perhaps even more interesting, point is that the skewness of the angular size distribution

induced by galaxy lensing, which separates the peak from the mean at this ≈ 10 % level, is

not apparent in the WMAP data, because the PAPs are symmetric gaussians.

Authors are indebted to Tom Kibble for helpful discussions.
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Note added in Proof (though too late to appear in the ApJL article itself): Lyman Page

was among several who questioned whether the galaxy lensing bias effect we discussed could

still lead to an acceptable match between the Ω = 1 standard model and the WMAP data,

if we are prepared to adjust the value of the Hubble constant H0. The answer is no. In fact,

such an undertaking yielded a minimum χ2 of 401.8 for 28 degrees of freedom - a completely

unacceptable fit. The best fit values of H0 and σ8 then become 72.6 and 0.845 respectively.

discussed
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Fig. 1.— Re-interpreting the WMAP TT power spectrum, taking account of the fact that

the angular size of large structures as determined with the cross correlation beam are un-

derestimated by 10 % w.r.t. the homogeneous (pre-clumping) benchmark. Our approach

involved using the CMBFAST code to generate a model spectrum, then shifting it by 10 %

to the right (i.e. towards higher values of l, or smaller size) and adjusting the parameters

so that the match with the data is secured. The new parameters are Ωm = 0.278 ± 0.040,

ΩΛ = 0.782 ± 0.040, spectral slope = 0.975 ± 0.030, and Hubble constant h = 0.72 ± 0.03.

Goodness of fit is χ2 = 41.7 for 38 degrees of freedom. This model, when used to make pre-

dictions for a homogeneous Universe, is shown on the plot as the dot-dashed curve. When

shifted by 10 % to account for the effect of inhomogeneities as discussed above, it becomes

the dashed curve.


