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Abstract

This paper introduces a systematic treatment of the linear theory of scalar grav-

itational perturbations in the presence of a fully inhomogeneous magnetic field. The

analysis is conducted both in the synchronous and in the conformally Newtonian gauges.

The cosmological plasma is assumed to be composed of cold dark mattter, baryons, pho-

tons, neutrinos. The problem of super-horizon initial conditions for the fluid variables

of the various species and for the coupled system of Boltzmann-Einstein equations is

discussed in the presence of an inhomogeneous magnetic field. The tight coupling ap-

proximation for the Boltzmann hierarchy is extended to the case where gravitating

magnetic fields are included.

http://arxiv.org/abs/astro-ph/0409594v3


1 Introduction

The impact of magnetic fields on the anisotropies of the Cosmic Microwave Background

(CMB) has been a subject of active investigation since the early attempts of Zeldovich

[1, 2], where it was proposed that all the anisotropy in the CMB could be generated by a

magnetic field. Following the development of inflationary cosmology it is now clear that

the explanation of the large-scale temperature anisotropies should be attributed to some

adiabatic (or quasi-adiabatic) mode, which was present outside the horizon prior to the

decoupling of radiation from matter.

The theory of scalar gravitational fluctuations is a well developed subject and it is an

essential tool setting the initial conditions for the evolution of CMB anisotropies. When

initial conditions are set, usually deep within the radiation era (but after neutrino decou-

pling taking place around 1 MeV), the dominant component of the plasma are photons and

(effectively massless) neutrinos. The subdominant component of the plasma is formed by

baryons, electrons, cold dark matter (CDM) particles. CDM particles are only coupled to

gravitational interactions and behave like a perfect relativistic fluid. Also the photons, lep-

tons and baryons, being tightly coupled through Thompson scattering, behave like perfect

relativistic fluids. On the contrary, neutrinos are essentially collisionless and, therefore, do

not really behave like a perfect fluid. Because of this physical difference, neutrinos should

be described through the appropriate Boltzmann hierarchy of their phase-space distribu-

tion. If the dark energy is paramertized in terms of a cosmological term, the gravitational

fluctuations of this sector do not affect the problem of the initial conditions.

If primordial fluctuations of the geometry are present outside the horizon before matter-

radiation equality, they imprint also fluctuations in the density contrasts and peculiar ve-

locities of the different species. The quantitative evolution of the various plasma quantities

is determined by the fluctuations of the geometry by solving the coupled system of Ein-

stein and fluid equations in the radiation-dominated epoch when the relevant modes are

still outside the horizon. Following the classification scheme pioneered by Bardeen [3], the

initial conditions may be classified into adiabatic or isocurvature modes. In the adiabatic

case the total fluctuations in the entropy density of the CDM–photon–lepton–baryon fluid

vanish at large distance scales which is compatible with a constant mode of curvature fluc-

tuations outside the horizon. In the case of isocurvature modes, in the usual terminology,

the fluctuations in the entropy density do not vanish; according to the linear analysis of

the Einstein-fluid system, this is compatible, in some cases, with non-constant modes of

the curvature fluctuations. In spite of this simplified classification, the situation may be

more complicated since different isocurvature modes may be allowed for the different species

present in the plasma. Moreover, it is also quite plausible to have a situation where the ini-

tial conditions are, predominantly, of adiabatic nature, but with a subdominant isocurvature

component.

Although an excellent approximation early on, the tight-coupling assumption breaks
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down at later times, when photons and baryons decouple. In spite of this caveat, a sys-

tematic use of the tight-coupling expansion allows important analytical estimates of the

produced CMB anisotropies [4].

In the theory of the CMB anisotropies, the problem of initial conditions is often presented

in two complementary descriptions, namely the conformally Newtonian and the synchronous

gauges. Both gauges are quite useful for different reasons (see also [6]). The conformally

Newtonian gauge (often dubbed longitudinal) is effective in the discussion of the evolution

of the fluctuations while they are still outside the horizon. However, in such a gauge, the

discussion of the initial conditions for the CMB anisotropies may be rather complicated. For

instance, there are physical isocurvature modes that are singular in the longitudinal gauge

but not in the synchronous gauge. Furthermore, various codes needed for the numerical

calculations of the CMB spectra are formulated within the synchronous coordinate system.

There have been, in the past, controversies concerning the use of the synchronous gauge

[5]. The main caveat was that gauge modes may appear in the synchronous gauge. These

gauge modes, however, can be precisely disentangled from the physical ones [5], so that a

pragmatic approach envisaged some time ago [6] has been to discuss the problem of initial

conditions in both gauges in parallel.

Suppose now that inhomogeneous magnetic fields are present. In this case two major

effects can be envisaged:

• inhomogeneous magnetic fields can gravitate, i.e. they can affect the perturbed Ein-

stein equations, thus becoming sources of the fluctuations of the geometry;

• inhomogeneous magnetic fields can impart different velocity gradients to the baryon–

photon–lepton fluid, but not to the neutrinos and to the CDM components.

Deep within the radiation epoch, large-scale magnetic fields can be treated, in first ap-

proximation, as interacting with a single globally neutral fluid. In fact the two electrically

charged species present in the problem are the electrons and the baryons which are in ther-

mal equlibrium at a common temperature. The typical length scales of interest for the

present discussion are the ones much larger than the typical magnetic diffusivity scale (set

by the finite value of the conductivity) and also much larger than the Silk damping scale

(set by the finite value of the thermal diffusivity scale). Furthermore, for this range of

scales we are not interested in the propagation of high frequency electromagnetic waves

whose specific analysis would clearly require a two-fluid plasma treatment. The one-fluid

plasma description if often dubbed as magnetohydrodynamics (MHD). In MHD, the cur-

rent density, the magnetic field and the electric field are all solenoidal and the Lorentz force

affecting the baryon peculiar velocity modifies the standard tight-coupling approximation.

By looking at the evolution of the brightness of the temperature fluctuations it is rather

clear that, to zeroth order in the tight-coupling expansion, the monopole and dipole equa-

tions are modified. It is known [4] that to zeroth order in the tight coupling expansion
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the CMB is not linearly polarized since, to this order, photons and baryons are so strongly

coupled that the photon distribution is isotropic in the baryon rest frame. The photon dis-

tribution being isotropic, Thompson scattering does not polarize the CMB. To first order in

the tight-coupling expansion the polarization of the CMB is proportional to the quadrupole

of the photon distribution. The quadrupole in the temperature fluctuations is, in turn,

produced by the free streaming of the dipole between collisions. If a Lorentz force term is

present, the evolution of the monopole acquires a further source term and, as a consequence,

all the higher orders in the tight coupling expansion are modified.

Various analyses of the possible impact of magnetic fields on standard CMB physics1

have been proposed up to now (see, for instance, [7] for a short review on this specific

subject). In [8] the analysis of scalar fluctuations of the geometry is made under the

assumption that the Lorentz force vanishes. In MHD this assumption translates into a

specific class of magnetic field configurations. However, even in the case of a force-free

configuration the specific initial conditions used by the authors in order to compute the

CMB anisotropies are not specifically discussed, i.e. no solution for super-horizon sized

fluctuations including large-scale magnetic fields, is presented. Furthermore, no specific

investigation of the impact of gravitating magnetic fields on the tight-coupling expansion

has been attempted. In [9] an interesting analysis of the impact of large-scale magnetic

fields on CMB anisotropies has been performed, mainly for the vector and tensor modes of

the geometry. The scalar fluctuations have not been discussed. In [10] attention is always

paid to vector and tensor modes and the problem of initial conditions is more accurately

specified. It is clear that without a precise specification of the initial conditions for the

CMB anisotropies the numerical analysis is rather difficult to implement since it is unclear

what should be, for instance, the initial values of the lowest multipoles of the phase-space

distribution for the various species. The need of an accurate analysis of the problem of initial

conditions can be also understood by observing that the system of perturbed equations, even

if linear, has many unknowns so different solutions, describing different physical situation

may be possible.

The effect of large-scale magnetic fields on CMB anisotropies may also be discussed in

the case when the magnetic field is not completely inhomogeneous. There could be situations

in which there is an homogeneous component of the magnetic field (for instance along the

ẑ axis. This case is similar to the one originally investigated in [1, 2]. In this framework

bounds on such a magnetic field can be derived [11]. It could also happen that the uniform

magnetic field supports inhomogeneities in the bulk velocity field affecting, consequently,

the CMB anisotropies. One example in this direction are the Alfvén waves, whose effects

and implications have been analysed under different approximations by various authors

[12, 13, 14, 15]. The simplification of having a uniform magnetic field also allowed the

analysis of possible Faraday rotation effect of the CMB polarization plane [16, 17, 18, 19].

1By standard CMB physics we mean that a constant mode of adiabatic (or quasi-adiabatic) fluctuations

is assumed to be present outside the horizon prior to equality.
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The motivation for including a uniform magnetic field relies on the simplicity of the

configuration. However, the magnetic fields produced in the early Universe, as far as we

understand the problem, are unlikely to be produced in a perfectly uniform configuration.

They are most likely to be produced either from the amplification of vacuum fluctuations

of some primordial gauge field or from some phase transitions. In all these cases magnetic

fields are expected to be fully inhomogeneous (see, for instance, [21] for a recent review on

the rôle of large-scale magnetic fields in cosmology and astrophysics).

The purpose of the present study is to give a systematic analysis of the theory of scalar

gravitational fluctuations in the presence of a fully inhomogeneous magnetic field and in the

context of the conventional Bardeen formalism. This analysis is mandatory both to derive

accurate bounds on large-scale magnetic fields from CMB physics and to bring the study

of magnetized initial conditions to the same standard as in the non-magnetized case. To

the best of our knowledge this problem did not receive specific attention in the literature

concerning the linearized theory of scalar fluctuations in the presence of magnetic fields. The

results reported in the present paper are general in the sense that no specific configuration

of the magnetic field is assumed. The only assumption, as previously stressed, is that the

magnetic field is fully inhomogeneous.

It is important to mention that various studies discussing the evolution of large-scale

magnetic field exist in the covariant approach which is somehow complementary to the one

adopted in the present paper. For a full discussion of the problem see [22, 23] and references

therein.

The plan of the present paper is the following. In Section 2 the evolution equations

for gravitating inhomogeneous magnetic fields will be derived in the MHD approximation

and in the context of the conformally Newtonian gauge. In Section 3 the initial conditions

for the CMB anisotropies will be analysed. Solutions for super-horizon-sized fluctuations

will be presented in different cases. Section 4 is devoted to the analysis of the synchronous

gauge description. In Section 5 the tight-coupling expansion will be revisited in the presence

of inhomogeneous magnetic fields. Section 6 contains some concluding remarks. Various

useful technical results have been collected in the appendix even though, in some cases, they

were already present in the literature, but within a different set of conventions or within a

different context.

2 Gravitating inhomogeneous magnetic fields

The treatment of magnetic fields in a globally neutral plasma differs considerably according

to the specific range of scales relevant for the problem under discussion. For instance, the

electromagnetic branch of the spectrum of plasma excitations, in a cold or warm magnetized

plasma, can only be partially addressed within a two-fluid description [24, 25]. Partially

means, in the present context, that the dispersion relations can be obtained but the typical
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damping scales require the solution of the full kinetic system of equations for the different

species (the so-called Vlasov–Landau approach).

The phenomena occurring over much smaller frequencies and over large length scales can

be described on the basis of our knowledge of terrestrial plasma, by an appropriate one-fluid

description, which is provided by MHD [26]. The main idea behind the MHD approximation

is, in short, the following. Starting from a two-fluid description (for instance electron and

baryon fluids) it is possible to define appropriate one-fluid variables. For instance the bulk

velocity of the plasma appearing in the MHD description is, in flat space-time,

~v =
mb~vb +me~ve
mb +me

. (2.1)

which is, in practice, the centre-of-mass velocity of the baryon–electron system. In the spe-

cific case touched by the present discussion, both baryons and electrons are non-relativistic

and in thermal equilibrium Teb.

The reduced MHD description [26] has been employed in the analysis of different prob-

lems arising in connection with large-scale magnetic fields. For instance, the evolution of

these fields in curved space-times is normally discussed within a MHD approach [27, 28, 29]

(see also for a review [30, 31]). More formal discussions on MHD and on two-fluid de-

scriptions in curved space-times can be found in [32, 33, 34]. Finally, the reduced MHD

description has been used in the analysis of the implications of large-scale magnetic fields

on structure formation [35, 36].

2.1 The perturbed system of Einstein equations

Consider now the Friedmann–Robertson–Walker (FRW) line element written in the confor-

mally flat case

ds2 = a2(η)[dη2 − d~x2], (2.2)

where η is the conformal time coordinate. Since the magnetic fields are fully inhomogeneous,

they will not affect the homogeneous background whose equations are, in the spatially flat

case:

H2 =
8πG

3
a2ρ

∑

λ

Ωλ, (2.3)

H2 −H′ = 4πGa2ρ
∑

λ

Ωλ(1 + wλ), (2.4)

ρ′λ + 3H(ρλ + pλ) = 0, (2.5)

where H = (ln a)′ and the prime denotes a derivation with respect to η. In Eqs. (2.3)–(2.5)

the summation index λ refers to each component of the plasma, i.e. baryons, photons,

neutrinos and CDM particles; wλ = pλ/ρλ and Ωλ are, respectively, the barotropic index

for the given species λ and the energy density (in critical units) for each component of the
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fluid. In view of the subsequent discussions, it is appropriate to define here also the usual

Hubble parameter, i.e. H = ȧ/a, where the overdot denotes a derivation with respect to

the cosmic time coordinate t, which is related to η by the differential relation dηa(η) = dt.

In terms of these definitions we also have H = aH.

Let us now consider the fluctuations of the homogeneous FRW metric (2.2). In this

section the conformally Newtonian coordinate system will be discussed and, therefore, the

metric (2.2) can be consistently perturbed in terms of the two longitudinal scalar degrees

of freedom φ and ψ

δg00 = 2a2φ, δgij = 2a2ψδij . (2.6)

Defining the fluctuations in the Ricci tensor and in the Ricci scalar as δRνµ and δR, the

perturbed Einstein equations,

δRνµ −
1

2
δνµδR = 8πGa2(δT νµ + δτνµ ), (2.7)

relate the fluctuations of the geometry to the fluctuations of the matter sources, δT νµ , and

to the fluctuations of the electromagnetic energy-momentum tensor, δτνµ .

In explicit terms the (00), (0i) and (ij) components of Eq. (2.7) lead, respectively, to

∇2ψ − 3H(Hφ+ ψ′) = 4πGa2[δT 0
0 + δτ00 ], (2.8)

−∂i(Hφ+ ψ′) = 4πGa2(δT i0 + δτ i0), (2.9)
[

ψ′′ +H(2ψ′ + φ′) + (2H′ +H2)φ+
1

2
∇2(φ− ψ)

]

δji

−1

2
∂i∂

j(φ− ψ) = −4πGa2[δT ji + δτ ji ], (2.10)

where

δτ00 =
1

8πa4
( ~E2 + ~B2), (2.11)

δτ i0 =
1

4πa4
~E × ~B, (2.12)

δτ ji =
1

4πa4

[

EiE
j +BiB

j − 1

2
( ~B2 + ~E2)δji

]

, (2.13)

δT 0
0 =

∑

λ

ρλδλ, (2.14)

δT ji = −
∑

λ

wλρλδλδ
j
i +Σji , (2.15)

δT i0 =
∑

λ

(1 + wλ)ρλv
i
λ, (2.16)

where δλ = δρλ/ρλ and viλ are, respectively, the density contrast and the peculiar velocity

for each particle species; Σji is the traceless component of the energy-momentum tensor of

the fluid sources, i.e.

Σji = δT ji − 1

3
δji δT. (2.17)
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According to the usual notation the anisotropic stress can also be written, in Fourier space,

as

Q = ∂j∂
iΣji = −k2

∑

λ

σλ(1 + wλ)ρλ, (2.18)

where σλ denotes the fraction contributed by each species λ to the total anisotropic stress.

Notice, as it will be more extensively discussed later, that the dominant source of anisotropic

stress comes, for temperatures below the MeV, from the neutrinos.

Finally in Eqs. (2.11)–(2.13) the components of the energy-momentum tensor have been

written directly using the rescaled electric and magnetic fields ~E and ~B, which can also be

expressed in terms of the corresponding flat-space fields as

~E(η, ~x) = a2(η)~E(η, ~x), ~B(η, ~x) = a2(η) ~B(η, ~x). (2.19)

In the following the evolution of the different quantities appearing in the right-hand side of

Einstein equations will be discussed in detail.

2.2 Electromagnetic fields and baryons

The Maxwell equations can be studied using the rescaled fields proposed in Eq. (2.19)

~B′ = −~∇× ~E, (2.20)

~∇× ~B = 4π ~J + ~E′, (2.21)

~∇ · ~E = 4πρq, (2.22)

~∇ · ~B = 0, (2.23)

where ρq is the charge density (ρq ≃ 0 in a globally neutral plasma); ~J = a3~j is the Ohmic

current density
~J = σ( ~E + ~v × ~B). (2.24)

In Eq. (2.24), σ is the conductivity that is related to the flat-space conductivity as σ = aσc.

Notice that in the reduced MHD description the Ohm law follows, in the reduced MHD

approach, by taking the difference of the equations describing the momentum conservation

for electrons and for ions. This procedure is rather tricky and, in principle other terms

may appear in the generalized Ohm law such as the thermoelectric term and the Hall term

[24, 21]. These will be neglected here. Finally, as pointed out after Eq. (2.1), the bulk

velocity field appearing in Eq. (2.24) can be identified with the velocity of the baryons.

The evolution for the baryon velocity field can be derived by perturbing the covariant

conservation equation (including the appropriate electromagnetic contribution), i.e.

∂µδT
µν
b + δΓνµαT

µα
b ++Γ

ν
µαδT

µα
b + δΓµβµT

βν
b + Γ

µ
βµδT

βν
b − F ναjα = 0, (2.25)

where T
µν
b and δT µνb are, respectively, the energy-momentum of the baryons and its first-

order fluctuation; F να is the Maxwell field strength and jα is the current density. An
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analogous notation is used for the Christoffel symbols computed on the background (denoted

by an overline) and for their first-order fluctuations. Thus, defining θb = ~∇·~vb, the evolution
equation for the peculiar velocity of the baryons and for the density contrast reads:

θ′b = −Hθb − c2s∇2δb −∇2φ+
4

3

Ωγ
Ωb

anexeσT(θγ − θb) +
~∇ · [ ~J × ~B]

a4ρb
, (2.26)

δ′b = 3ψ′ − θb. (2.27)

where xe is the ionization fraction of the plasma, σT the Thompson cross section; Ωγ Ωb

are, respectively, the energy densities, in critical units, for photons and baryons. At this

point we can also define the differential optical depth for Thompson scattering:

τ ′ = xeneσTa(η). (2.28)

Equations (2.20)–(2.23), together with Eqs. (2.24) and (2.26), can be studied in the

MHD approximation. Since the plasma is globally neutral (ρq ≃ 0), the charge density of

the electrons will be exactly compensated by the baryons and, according to Eq. (2.22), the

electric field will be solenoidal. Moreover, for sufficiently small frequencies, the displacement

current can be neglected in Eq. (2.21). This implies that also the Ohmic current will be

solenoidal, i.e.

~∇ · ~J = 0, ~J =
1

4π
~∇× ~B. (2.29)

As a result, the Ohmic electric field vanishes exactly in the limit of vanishing conductivity,

i.e. since

~E ∼
~J

σ
=
~∇× ~B

σ
, (2.30)

the electric fields appearing in Eqs. (2.11) and (2.13) lead to a contribution that is sup-

pressed as 1/σ2. Similarly, the electric field appearing in Eq. (2.12) leads to a contribution

that is suppressed as 1/σ.

Recalling, as previously defined, that σ = σca, for temperatures T < 1 MeV the con-

ductivity can be expressed as [24, 21]

σc ≃
1

αem

(

Teb
me

)1/2

, (2.31)

where Teb, as previously defined, is the common temperature of electrons and baryons. The

finite value of the conductivity sets a typical diffusion scale for the evolution of the magnetic

fields which is typically of the order of

Lσ(T ) =
σ
−1/2
0 g

1/4
∗

72.2

(

Teb
MP

)1/2(Teb
me

)

−1/4

LH(T ), (2.32)

where Lσ is the physical diffusion scale, LH ≃ H−1 is the Hubble radius and g∗ the number

of relativistic degrees of freedom. Since, in our problem eV < Teb < MeV, Lσ ≪ LH which
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means that the finite value of the conductivity only affects scales which are much smaller

than the Hubble radius.

Similar, but quantitatively different, remarks can be made for the thermal diffusivity

[21]. For temperature smaller than the temperature of neutrino decoupling, photons are the

most efficient source of momentum transfer and the thermal diffusivity scale can be written

as
L
(γ)
diff(T )

LH(T )
≃ 1.03 × 10−5

(

Ωbh
2
0

0.02

)

−1/2( xe
0.5

)

−1/2( g∗
10.75

)1/4
√

MeV

Teb
, (2.33)

where, according to previous definitions (see Eq. (2.26), xe is the ionization fraction, Ωb

the energy density of baryons in critical units.

2.3 Cold dark matter

The evolution of the CDM particles follows from the fluctuations of the covariant conserva-

tion equation whose first-order fluctuation leads, in Fourier space, to

θ′c +Hθc = k2φ, (2.34)

δ′c = 3ψ′ − θc. (2.35)

where, following the previous notation θc = ∂iv
i
c and δc = δρc/ρc.

2.4 Photons and massless neutrinos

For the neutrinos the evolution equations follow only partially from the energy-momentum

conservation. In fact neutrinos at early times after neutrino decoupling (occurring around

1 MeV) obey the collisionless Boltzmann equation (see the appendix for a more detailed

discussion). To describe neutrinos during and after horizon crossing requires a Boltzmann

hierarchy for δν , θν and for the higher multipole moments, i.e. ℓ ≥ 2, of the neutrino phase-

space density Fνℓ. With this caveat in mind, after neutrino decoupling, at temperatures of

about 1 MeV, massless neutrinos obey, in Fourier space, the following set of equations (see

the appendix for a swift derivation within the metric conventions adopted in Eqs. (2.2) and

(2.6))

δ′ν = −4

3
θν + 4ψ′, (2.36)

θ′ν =
k2

4
δν − k2σν + k2φ, (2.37)

σ′ν =
4

15
θν −

3

10
kFν3, (2.38)

where σν = Fν2/2 is the quadrupole moment of the (perturbed) neutrino phase-space

distribution and, as introduced above, Fνℓ is the ℓ-th multipole.
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The photon and neutrino evolution equations differ in the presence of an anisotropic

stress term σν . Because of their frequent scattering by charged leptons and baryons, photons

are unable, at early times, to develop a quadrupole moment in their velocity distribution.

As a consequence, when a mode enters the horizon, the photons behave as a perfect fluid,

while the neutrinos free stream, creating inhomogeneities in the energy density, pressure and

momentum density. This is the physical reason why the anisotropic stress term appearing

in Eq. (2.15) is effectively dominated, at early times, by the neutrino contribution. Also

for the photons it is more appropriate to discuss the full Boltzmann hierarchy, especially in

the light of the subsequent analysis of the tight-coupling approximation. This analysis will

be summarized in the appendix. In the fluid approximation the evolution equations of the

photons are given by the covariant conservation of the energy-momentum tensor, i.e.

δ′γ = −4

3
θγ + 4ψ′, (2.39)

θ′γ =
k2

4
δγ + k2φ+ aneσT(θb − θγ). (2.40)

At early times the characteristic time for the synchronization of the photon and baryon

velocities is τbγ ∼ (neσT)
−1, which is small with respect to the expansion time and to the

oscillation period. Thus the tight-coupling between photons and baryons means that, in the

first approximation, σT → ∞ and θγ ≃ θb. A more detailed analysis of the tight coupling

expansion is postponed to Section 5.

3 Large-scale solutions

The full system of scalar fluctuations in the longitudinal gauge will now be consistently

discussed and solved. From Eq. (2.8) we obtain, in Fourier space2 and using Eq. (2.3):

−3H(Hφ+ ψ′)− k2ψ =
3

2
H2[(Rνδν + (1−Rν)δγ) + ΩB(k) + Ωbδb +Ωcδc], (3.1)

where, for Nν species of massless neutrinos,

R =
7

8
Nν

(

4

11

)4/3

, Rν =
R

1 +R
, Rγ = 1−Rν , (3.2)

so that Rν and Rγ represent the fractional contributions of photons and neutrinos to the

total density at early times deep within the radiation-dominated epoch.

In Eq. (3.1) the contribution of the magnetic energy density has been parametrized, in

Fourier space, as

ΩB(k, η) =
ρB
ρ

=
1

8πρa4

∫

d3p Bi(|~p− ~k|)Bi(p). (3.3)

2In order to avoid possible confusions with subscripts referring to the different species of the plasma we

will avoid to introducing a further subscript labelling the Fourier mode.
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The appearance of convolutions in the expressions of the magnetic energy density is a

direct consequence of the absence of a uniform component of the magnetic field whose

background contribution, as repeatedly stressed, is vanishing. Notice also that ρ appearing

in Eq. (3.3) is the energy density of the dominant component of the fluid, so, for instance,

in the radiation-dominated epoch ρ ≡ ρr, a
4ρr ∼ constant and ΩB ≃ constant.

From Eq. (2.9), using the same notation as in Eq. (3.1), the following simplified equation

can be obtained for the momentum constraint

k2(Hφ+ ψ′) =
3

2
H2

[

4

3
(Rνθν + (1−Rν)θγ) +

FB(k)

4πσa4ρ
+ θbΩb + θcΩc

]

, (3.4)

where FB(k, η) is the Fourier transform of the generalized Lorentz force, i.e.

~∇ · [(~∇× ~B)× ~B] =

∫

d3kFB(k)e
i~k·~x, (3.5)

where FB(k) is given by the following convolution

∫

d3p[(~k · ~p)Bj(p)Bj(|~k − ~p|)− (ki − pi)Bj(|~k − ~p|)Bj(|~k − ~p|)Bj(p)]. (3.6)

Notice that a consistent treatment of fully inhomogeneous magnetic fields implies that

ΩB ≪ 1,
FB

4πk2ρa4
≪ 1, (3.7)

in order not to over-close the Universe.

In the ideal MHD limit3, i.e. σ → ∞, the contribution of FB(k) disappears from Eq.

(3.4). This occurrence is not general: it will be shown in a moment that, even in the ideal

MHD limit, the generalized Lorentz force does contribute both to the baryon evolution

equation and to the anisotropic stress. In fact the evolution equation for the baryons

becomes, in Fourier space and with the conventions used so far

θ′b +Hθb = k2φ+
FB(k)

4πa4ρb
. (3.8)

By taking the trace of Eq. (2.10) it is easy to obtain

ψ′′ + (2ψ′ + φ′)H+ (2H′ +H2)φ− k2

3
(φ− ψ) =

1

2
H2[(Rνδν + (1−Rν))δγ +ΩB(k)], (3.9)

where the contribution of the other species vanishes since both baryons and CDM particles

have a vanishing barotropic index, i.e. wb = wc = 0.

3Notice that, so far, different quantities have been denoted by σ (with different indices), namely the

Thompson cross section (i.e. σT), the conductivity (i.e. σ) and the fractional contribution of each species λ

to the anisotropic stress (i.e. σλ). Since all the quantities are properly defined and used, there should be no

confusion. We felt that it would be even more confusing if we changed the usually accepted notations for

these three important quantities.
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By taking now the difference between Eqs. (2.10) and (3.9), we can get the equation for

the anisotropic stress, i.e. for the perturbed components i 6= j of the Einstein equations:

∂i∂
j(φ− ψ)− 1

3
∇2(φ− ψ) = 8πGa2ρ

{

Σji +
1

4πρa4

[

BiB
j − 1

3
~B2δji

]}

. (3.10)

Applying now the differential operator ∂j∂
i to Eq. (3.10), the following relation can be

obtained

∇4(φ− ψ) = 12πGa2
[

Q+
1

4πa4ρ
(∂iBj∂

jBi − 1

3
∇2 ~B2)

]

(3.11)

where, following the conventions of Eq. (2.18),

Q = ∂i∂
jΣij = −k2σν(pν + ρν) = −4

3
k2ρν . (3.12)

In order to write Eq. (3.12) in an explicit form it has been assumed that the only anisotropic

stress arising from the fluid sources is the one related to the quadrupole moment of the

neutrino phase-space density. Going to Fourier space, Eq. (3.11) becomes

k2(φ− ψ) =
9

2
H2

[

−4

3
σν − σB(k)

]

, (3.13)

having defined

σB =
ΩB(k)

3
− FB(k)

4πa4ρk2
. (3.14)

The quantity σB can be interpreted as the anisotropic stress arising thanks to the inhomo-

geneous magnetic field and, in the force-free case, σB = ΩB/3.

In order to discuss the initial conditions for the CMB anisotropies, the usual procedure

is to solve the system of equations for the fluctuations while the Fourier modes of the

various fields are outside the horizon, i.e. kη < 1. Different sorts of initial conditions are,

in principle, possible. An interesting situation arises when both ψ and φ are, in the first

approximation, constant outside the horizon during the radiation-dominated epoch. In this

case, and in the absence of magnetic fields, it is known that the system of scalar metric

perturbations admits an adiabatic mode. Adiabatic means, in the present context, that the

total fluctuations in the entropy density of the CDM–baryon–radiation fluid vanish at large

length scales. This condition implies specific relations between the various density contrasts

deep within the radiation-dominated epoch, i.e.

δc ≃ δb ≃ 3

4
δν ≃ 3

4
δγ . (3.15)

In the following, after reviewing the specific analytic form of the adiabatic solution, new

solutions, arising in the presence of an inhomogeneous magnetic field, will be illustrated.
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3.1 The standard adiabatic scenario

If the magnetic fields are absent, i.e. FB = ΩB = 0 the standard system of equations is

recovered and the initial conditions for the various fields can be found by solving, simul-

taneously, the baryon–photon system (i.e. Eqs. (2.26)–(2.27) and Eqs. (2.39)–(2.40)), the

CDM and neutrinos equations (i.e. Eqs. (2.34)–(2.35) and Eqs. (2.36)–(2.38)) together

with the perturbed Einstein equations whose specific form has been derived above from Eq.

(3.1) to Eq. (3.13). In the following, only the final result will be given:

δb = δc = −3

2
φ0 −

(

525 + 188Rν + 16R2
ν

)

60 (25 + 2Rν)
φ0k

2η2, (3.16)

δγ = δν = −2φ0 −
(

525 + 188Rν + 16R2
ν

)

45 (25 + 2Rν)
φ0k

2η2, (3.17)

φ = φ0 −
(

75 + 14 Rν − 8 R2
ν

)

90 (25 + 2Rν)
φ0k

2η2, (3.18)

ψ =

(

1 +
2

5
Rν

)

φ0 −
(

75 + 79Rν + 8R2
ν

)

90 (25 + 2Rν)
φ0k

2η2, (3.19)

θν =
φ0
2
k2η − (65 + 16Rν)

36 (25 + 2Rν)
φ0k

4η3, (3.20)

θb =
φ0
2
k2η −

(

75 + 14 Rν − 8 R2
ν

)

360 (25 + 2Rν)
φ0k

4η3, (3.21)

θc =
φ0
2
k2η −

(

75 + 14 Rν − 8 R2
ν

)

360 (25 + 2Rν)
φ0k

4η3, (3.22)

θγ =
φ0
2
k2η − (25 + 8Rν)

20 (25 + 2Rν)
φ0k

2η2, (3.23)

σν =
φ0
15
k2η2 − (65 + 16Rν)

540 (25 + 2Rν)
φ0k

4η4, (3.24)

where the overline in the various quantities has been introduced for future notational con-

venience. Concerning this solution, a few comments are in order:

• while the leading order of the solution is usually quoted (see for instance [6, 37]), the

second is useful in the present case, in order to check what happens at the horizon

crossing of a given mode (i.e. kη ∼ 1) and in order to compare with the situation

where the magnetic field is present;

• while to leading order all the peculiar velocities of the plasma coincide, to next-to-

leading order they are different;

• the adiabaticity condition given in Eq. (3.15) holds not only to leading order but also

to next-to-leading order in |kη|2.
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3.2 Force-free case

Consider now the case when the magnetic field is force-free, and suppose, as previously

discussed, that the solution at large scale is, in the first approximation, a constant mode

for the longitudinal fluctuations of the metric. Then, the solution can be parametrized as

φ ≃ φ0 + Cφk
2η2, ψ ≃ ψ0 +Cψk

2η2. (3.25)

We are interested in the solution of the system deep in the radiation epoch where a(η) ∼ η

and the dominant component of the fluid energy-momentum tensor consist of photons and

neutrinos, i.e. Ωb ≪ 1 and Ωc ≪ 1. From Eq. (3.1), the density contrasts for photons and

neutrinos can be written as

δγ = −2φ0 − ΩB +Aγk
2η2, (3.26)

δν = −2φ0 − ΩB +Aνk
2η2, (3.27)

where the constants Aγ and Aν are related to Cφ and Cψ by the following algebraic equation

Cφ + 2Cψ +
ψ0

3
= −1

2
[RνAν + (1−Rν)Aγ ]. (3.28)

Inserting Eqs. (3.25) together with Eq. (3.26) into Eqs. (2.39) and (2.40), the following

parametrization for the peculiar velocity of the photons can be derived

θγ = k2
[

φ0
2

− ΩB

4

]

η +Dγk
4η3 (3.29)

together with two algebraic relations determining the constants

3Dγ =
Aγ
4

+ Cφ, (3.30)

Aγ = −φ0
3

+
ΩB

6
+ 4Cψ. (3.31)

With a similar procedure the baryon and CDM fluids can be analysed: from Eqs. (2.26)–

(2.27) and Eqs. (2.34)–(2.35), the solution can be written as follows

θb =
k2φ0
2

φ0η +Dbk
4η3, (3.32)

θc =
k2φ0
2

φ0η +Dck
4η3, (3.33)

and

δb = −3

4
(2φ0 +ΩB) +Abk

2η2, (3.34)

δc = −3

4
(2φ0 +ΩB) +Ack

2η2. (3.35)
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The constants appearing in Eqs. (3.32)–(3.35) should satisfy

Ab,c = 3Cψ − φ0
4
, (3.36)

4Db,c = Cφ, (3.37)

where the notation Ab,c and Db,c means that the relations hold, separately, for the baryon

and CDM integration constants.

The anisotropic stress σν appears both in Eqs. (2.37) and (2.38) and in Eq. (3.13),

determining the difference between the two longitudinal fluctuations of the metric. Hence,

from Eqs. (3.13) and (2.36)–(2.37) the neutrinos fluid variables are determined to be

σν =
k2η2

6Rν
(ψ0 − φ0)−

ΩB

4Rν
+
Dν

15
k4η4, (3.38)

θν = k2
[

φ0
2

− ΩB

4

Rν − 1

Rν

]

+Dνk
4η3, (3.39)

δν = −(2φ0 +ΩB) = Aνk
2η2, (3.40)

subject to the constraints

3Dν −
Aν
4

= Cφ −
φ0
15

+
ΩB

30

Rν − 1

Rν
, (3.41)

Aν = −φ0
3

+
ΩB

6

Rν − 1

Rν
+ 4Cψ, (3.42)

Cφ − Cψ = −2

5
Dν . (3.43)

The lowest order of Eq. (2.38) also implies

ψ0 = φ0

(

1 +
2

5
Rν

)

− ΩB

5
(Rν − 1). (3.44)

Up to now all the evolution equations for the fluid variables have been consistently solved

in terms of a set of unknown constants satisfying a set of (algebraic) consistency conditions.

From the remaining two Einstein equations (3.4) and (3.9), two further constraints on the

various constants can be obtained, namely

Cφ + 2Cψ = 2DνRν + 2(1−Rν)Dγ , (3.45)

6Cψ + Cφ = − 2

15
Rνφ0 +

ΩB

15
(Rν − 1) +

1

2
[AνRν + (1−Rν)Aγ ]. (3.46)

Since two of the algebraic equations are not independent, the system of ten algebraic equa-

tions in ten unknowns becomes

Ab = Ac = −
[

69− 61Rν − 8R2
ν

60 (25 + 2Rν)
ΩB +

525 + 188Rν + 16R2
ν

60 (25 + 2Rν)
φ0

]
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Aγ = −
[

−237 + 152Rν + 16R2
ν

90 (25 + 2Rν)
ΩB +

(

525 + 188Rν + 16R2
ν

)

45 (25 + 2Rν)
φ0

]

,

Aν = −
[

375− 207Rν − 152R2
ν − 16R3

ν

90Rν (25 + 2Rν)
ΩB +

(

525 + 188Rν + 16R2
ν

)

45 (25 + 2Rν)
φ0

]

,

Cφ = −
[

6− 8Rν + 2R2
ν

45 (25 + 2Rν)
ΩB +

75 + 14Rν − 8R2
ν

90 (25 + 2Rν)
φ0

]

,

Cψ = −
[

69− 61Rν − 8R2
ν

180 (25 + 2Rν)
ΩB +

(

75 + 79Rν + 8R2
ν

)

90 (25 + 2Rν)
φ0

]

,

Dγ = −
[

(25 + 8Rν)

20 (25 + 2Rν)
φ0 −

(7 + 8Rν)

40 (25 + 2Rν)
ΩB

]

,

Dν = −
[

45− 29Rν − 16R2
ν

72Rν (25 + 2Rν)
ΩB +

(65 + 16Rν)

36 (25 + 2Rν)
φ0

]

,

Db = Dc =
φ0
2
k2η −

[

6− 8Rν + 2R2
ν

180 (25 + 2Rν)
ΩB +

75 + 14Rν − 8R2
ν

360 (25 + 2Rν)
φ0

]

. (3.47)

Recalling the form of the standard solution reported in Eqs. (3.16)–(3.24), and using

the results obtained so far, the full solution can be written as

δb,c = δb,c −
3

4
ΩB −

[

69 − 61R− 8R2
ν

60 (25 + 2Rν)

]

ΩBk
2η2, (3.48)

δγ = δγ − ΩB +

[

237 + 152Rν + 16R2
ν

90 (25 + 2Rν)

]

ΩBk
2η2, (3.49)

δν = δν − ΩB −
[

375− 207Rν − 152R2
ν − 16R3

ν

90Rν (25 + 2Rν)

]

ΩBk
2η2, (3.50)

φ = φ−
[

6− 8Rν + 2R2
ν

45 (25 + 2Rν)
ΩB

]

k2η2, (3.51)

ψ = ψ −
[

69− 61Rν − 8R2
ν

180 (25 + 2Rν)
ΩB

]

k2η2, (3.52)

θγ = θγ −
[

ΩB

4
k2η +

(7 + 8Rν)

40 (25 + 2R)
ΩB

]

k4η3, (3.53)

θν = θν −
ΩB

4

Rγ
Rν

k2η −
[

45− 29Rν − 16R2
ν

72Rν (25 + 2Rν)
ΩB

]

k4η3, (3.54)

θb = θc = θb −
[

6− 8Rν + 2R2
ν

180 (25 + 2Rν)
ΩB

]

k4η3, (3.55)

where the overline in the various quantities in the left-hand side denote the adiabatic solution

derived above.

Concerning these results, the following comments are in order:

• unlike the standard case, the difference between the two constant modes of the longi-

tudinal fluctuations of the metric is also determined by the magnetic energy density;
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in the limit ΩB → 0, the standard expression (obtained in the previous subsection) is

recovered;

• the adiabaticity condition is enforced to lowest order in kη, but it is violated at the

next-to-leading order;

• the force-free approximation neglects, by assumption, the Lorentz force and this is the

rationale for the equality, for instance, between θb and θc: in the absence of Lorentz

force the magnetic field does not impart gradients to the baryonic component of the

fluid;

• the presence of magnetic fields introduces a further source of anisotropic stress as it

can be appreciated from the chain of (first-order) relations ψ−φ ≃ ψ−φ−ΩB(Rν−1)/5

which follows from Eq. (3.44).

Since the adiabaticity condition is only realized to lowest order in kη it is legitimate to name

the solution presented in Eqs. (3.48)–(3.55) quasi-adiabatic. The corrections to adiabaticity

are of order ΩBk
2η2, so they are suppressed outside the horizon and also, by virtue of Eq.

(3.7), by ΩB. Notice that three regimes emerge naturally. The quasi- adiabatic regime where

ΩB(k) ≤ φ0(k), the isocurvature regime ΩB(k) > φ0(k) and the fully adiabatic regime, i.e.

ΩB(k) ≪ φ0(k).

The force-free limit may be (approximately) realized in nature in some specific (but

rather interesting) cases. For instance, it could happen that magnetic fields are generated

in a so-called maximally helical configuration. Recall, in fact, that given a magnetic field

configuration, in a MHD description, it is always possible to define the related magnetic

helicity [26], which is
∫

d3x ~A · ~B. (3.56)

Now, at finite conductivity, the evolution of the magnetic helicity can be written as

d

dη

∫

d3x ~A · ~B = − 1

4πσ

∫

d3x ~B · ~∇× ~B, (3.57)

where the expression appearing in the right-hand side is called magnetic gyrotropy [26] and

measures the number of contact points in the magnetic field lines. Clearly, if the magnetic

gyrotropy is maximal, the orthogonal combination, namely the Lorentz force ~∇× ~B × ~B ,

will be minimal or even zero. Maximally helical configurations can be very relevant in the

development of MHD turbulence [26] and have been extensively studied in a cosmological

context. (see also [21] for a general discussion and [38] for a recent paper). In particular it

should be noticed that helical configurations can be produced at the electroweak time by

coupling the hypercharge field to a pseudo-scalar [39] (see also [40]).
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3.3 Contribution of the Lorentz force

Consider now the case when the magnetic field is not force-free. The major difference with

the force-free case is that the evolution equation for the peculiar velocity of the baryons

receives a contribution from the magnetic field gradient. Because of the tightly coupled

dynamics of baryons and photons, also the photon peculiar velocity will be modified. Since

photons are related to neutrinos by the Einstein equations, the whole solution will be

modified.

Equation (2.26) can be written, after multiplying both sides by the scale factor a(η), as

(aθb)
′ = k2φ0a+

FB

4πρba3
, (3.58)

where it has been assumed that φ has, to lowest order, a constant solution denoted, as

usual, by φ0. The second term in the right-hand side of Eq. (3.58) is then constant and

direct integration gives

θb =
φ0
2
k2η +

FB

4πρba3
. (3.59)

From Eq. (2.27), using Eq. (3.59), the density contrast can be determined up to a constant,

which is fixed from the adiabaticity condition:

δb = −3

2
φ0 −

3

4
ΩB − FB

4πρba3
η. (3.60)

The Hamiltonian constraint of Eq. (3.1) and the equation for the peculiar velocity of the

photons imply

δν ≃ δγ ≃ −2φ0 − ΩB, (3.61)

θγ =

(

φ0
2

− ΩB

4

)

k2η. (3.62)

The CDM equations (2.34) and (2.35) will then turn out to be

δc ≃ −2φ0, θc =
φ0
2
k2η. (3.63)

The anisotropic stress of the neutrinos can be determined by solving Eq. (3.13):

σν =
k2η2

6R
(ψ0 − φ0)−

3

4

σB
Rν

. (3.64)

Inserting eq. (3.64) into Eq. (2.37) the peculiar velocity of the neutrino fluid can be

determined to be

θν =

(

φ0
2

− ΩB

4
+

3

4

σB
Rν

)

k2η. (3.65)

Finally from Eq. (2.38), using Eq. (3.64), the difference between the two longitudinal

fluctuations of the metric can be derived:

ψ0 = φ0

(

1 +
2

5
Rν

)

− Rν
5
ΩB +

3

5
σB. (3.66)
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The momentum constraint derived in Eq. (3.4) is satisfied by virtue of the following identity

σBk
2η − ΩB

3
+ Ωb

FB

4πρba3
= 0. (3.67)

Notice also that the contribution of the Lorentz force is suppressed, for k → 0 with respect

to ΩB since, roughly, FB ∼ k2ΩB.

4 Synchronous gauge description

In the longitudinal description, the gauge freedom is completely specified and, hence, the

so-called gauge modes are absent4. As a consequence [41], in the longitudinal gauge the

metric fluctuations correspond directly to a particular set of gauge-invariant combinations,

namely the Bardeen potentials [3]. Having said this, it is important to appreciate that

longitudinal and synchronous descriptions should be regarded as complementary and not as

opposite. The synchronous description, for instance, is more convenient when modes based

on anisotropic stresses are discussed, as in the case of the present analysis. Furthermore, the

known (old) problem of spurious gauge modes is completely settled by now since the work

of Press and Vishniac [5]. In some specific calculations it turns out to be useful to profit

from the extra gauge freedom inherent in the synchronous description . There are examples

in the literature of isocurvature modes that are divergent, at early times, in the longitudinal

gauge, but which are perfectly physical and regular in the synchronous coordinate system

[37]. Finally, it is important to consider the formulation of the problem of initial conditions

in the synchronous gauge, since various numerical codes solving the Boltzmann hierarchy

use, indeed, the synchronous description.

In the synchronous description the line element can be consistently perturbed in the

form:

ds2 = a2(η)dη2 − a2(η)(δij − hij)dx
idxj , (4.1)

where the perturbed element of the metric is given by

δgij = a2hij , δgij = −h
ij

a2
. (4.2)

Sometimes the parametrization δgij = 2a2(ψsδij + ∂i∂jEs) is also employed [41]. The

connection between the two parametrizations is immediate by separating, in Fourier space,

the trace of the perturbation from its traceless part:

hij(η, ~x) =

∫

d3kei
~k·~x

[

k̂ik̂jh(k, η) + 6ξ(k, η)

(

k̂ik̂j −
1

3
δij

)]

, (4.3)

4According to the usual nomenclature, gauge modes are those modes arising when gauge freedom is not

completely fixed, as in the synchronous gauge.
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where k̂i = ki/|~k|. Clearly, by performing an infinitesimal gauge transformation the δg00
and δg0i parts of the metric (which are not perturbed in the synchronous parametrization)

also transform. The gauge modes can be exactly identified by requiring that δg00 = 0 and

δgij = 0, for gauge transformations that preserve the synchronous nature of the coordinate

system. The first gauge mode corresponds to a spatial reparametrization of the constant-

time hypersurfaces. As a consequence, in this mode the metric perturbation is constant

and the matter density unperturbed. The second gauge mode corresponds to a spatially

dependent shift in the time direction.

With the notation of Eqs. (4.2) and (4.3), the perturbed Einstein equations become

k2ξ − H
2
h′ =

3

2
H2[Rνδν + (1−Rν)δγ +ΩB +Ωbδb +Ωcδc], (4.4)

k2ξ′ = −3

2
H2

[

FB

4πσρ
+

4

3
(Rνθν + (1−Rν)θγ) + Ωbθb +Ωcθc

]

, (4.5)

h′′ + 2Hh′ − 2k2ξ = 9H2
[

1

3
(Rνδν + (1−Rν)δγ) +

ΩB

3

]

, (4.6)

h′′ + 6ξ′′ + 2Hh′ + 12Hξ′ − 2k2ξ = 9H2
[

σB +
4

3
Rνσν

]

, (4.7)

where the background equations (2.3)–(2.5) have already been used to eliminate the energy

and pressure densities5. By combining appropriately Eqs. (4.4) and (4.6), it is possible to

obtain a further useful equation

h′′ +Hh′ = 3H2[2Rνδν + 2(1 −Rν)δγ + 2ΩB +Ωbδb +Ωcδc]. (4.8)

The evolution equations of the peculiar velocities and density contrasts of the various species

of the plasma can be obtained by perturbing the covariant conservation of the energy-

momentum tensor. The result is the following:

δ′ν = −4

3
θν +

2

3
h′, (4.9)

δ′γ = −4

3
θγ +

2

3
h′, (4.10)

δ′b = −θb +
1

2
h′, (4.11)

δ′c = −θc +
h′

2
, (4.12)

θ′ν = −k2σν +
k2

4
δν , (4.13)

θ′γ =
k2

4
δγ , (4.14)

θ′b = −Hθb +
FB

4πρba4
, (4.15)

5In this section the density contrasts and the peculiar velocity field are named in the same way as in the

longitudinal gauge. It is understood that the density contrasts and the peculiar velocity fields are not equal

in the two gauges and are related by the transformations listed below (see Eqs. (4.26) and (4.28)).
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θ′c = −Hθc (4.16)

σ′ν =
4

15
θν −

3

10
kFν3 +

2

15
h′ +

4

5
ξ′. (4.17)

As anticipated the synchronous gauge modes can be made harmless by eliminating the

constant solution for h and by fixing, for instance, the CDM velocity field to zero. These

two requirements specify the coordinate system completely.

The force-free solution can also be obtained within the synchronous description. In

particular, for the metric fluctuations the solution is the following

ξ = −2C +
Rν − 1

5
ΩB +

[

5 + 4Rν
6(15 + 4Rν)

C − Rν − 1

60
ΩB

]

k2η2, (4.18)

h =

[

ΩB

10
− C

]

k2η2. (4.19)

The constant introduced in Eqs. (4.18) and (4.19) has been defined in order to match the

standard notation usually employed in the literature (see for instance [6]) to characterize

the adiabatic (inflationary) mode. By solving Eqs. (4.9)–(4.17) the solution for the density

contrasts

δγ = −ΩB +

[

2Rν + 3

30
ΩB − 2

3
C

]

k2η2, (4.20)

δν = −ΩB +

[

2R2
ν + 3Rν − 5

30Rν
ΩB − 2

3
C

]

k2η2, (4.21)

δb = −3

4
ΩB +

[

Rν − 1

20
ΩB − C

2

]

k2η2, (4.22)

δc = −3

4
ΩB +

[

Rν − 1

20
ΩB − C

2

]

k2η2, (4.23)

and for the peculiar velocities

θγ = −ΩB

4
k2η +

[

2Rν + 3

360
ΩB − C

18

]

, (4.24)

θν = −ΩB

4
k2η +

[

2R2
ν + 7Rν − 9

360Rν
ΩB − 23 + 4Rν

15 + 4Rν

]

, (4.25)

can be obtained. The solution derived in the previous equations of the present section can

be transformed into the longitudinal gauge by using the appropriate transformation, i. e.

φL = − 1

2k2
[(6ξ + h)′′ +H(6ξ + h)′],

ψL = −ξ + H
2k2

(6ξ′ + h′),

δ
(λ)
L = δ(λ)s + 3(wλ + 1)

H
2k2

(h′ + 6ξ′),

θ
(λ)
L = θ(λ)s − 1

2
(h′ + 6ξ′), (4.26)
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where the subscripts refer to the quantities evaluated either in the longitudinal or in the

synchronous gauge. By setting ΩB = 0 in Eqs. (4.18)–(4.19) and (4.20) –(4.25), we recover

the standard adiabatic mode discussed in the appendix with the constant C determined as

C =
15 + 4Rν

20
φ0, (4.27)

where φ0 is the value of the adiabatic mode in the longitudinal gauge discussed previously.

Of course, the solutions of the longitudinal gauge can also be directly transformed into the

synchronous gauge using the appropriate transformation, which can be easily derived:

ξ = −ψL − H
a

∫

aφLdη,

h = 6ψL + 6
H
a

∫

aφLdη,−2k2
∫

dη′′

a(η′′)

∫ η′′

a(η′)φL(η
′)dη′,

δ(λ)s = δ
(λ)
L + 3H(w + 1)

1

a

∫

φLadη,

θ(λ)s = θ
(λ)
L − k2

a

∫

aφLdη. (4.28)

Up to now we always studied adiabatic (or quasi-adiabatic) solutions. However, also

isocurvature solutions can be generalized to include fully inhomogeneous magnetic fields.

In order to look for isocurvature solutions it is useful to recall that in looking for perturbative

solutions (both in the longitudinal and in the synchronous gauge) there are various small

parameters. One is certainly kη, which is small outside the horizon. However, also Ωb

and Ωc are small parameters deep within the radiation-dominated epoch. Let us make this

statement more precise by considering the scale factor

a(η) =

[(

η

η1

)

+

(

η

η1

)2]

, (4.29)

interpolating between the radiation-dominated phase for η ≪ η1 and the matter dominated

epoch for η ≫ η1. In this case we can also write

Ωb,c = Ωb,c
a(η)

a(η) + 1
, (4.30)

ΩB = ΩB
1

a(η) + 1
, (4.31)

where the subscripts in Eq. (4.30) refer either to baryons or to CDM and where we took,

for simplicity, η1 = 1.

We can then insert Eqs. (4.29) and (4.30)–(4.31) into the evolution equations for the

perturbations in the synchronous gauge, regarding Ωb,c as small paramters deep within the

radiation-dominated epoch (η → 0). The result of this procedure is summarized by the

following solutions, which are valid in the case σB = ΩB/3:

h ≃ (−4Ωbη + 6Ωbη
2), (4.32)

ξ ≃ 2

3
Ωbη − Ωbη

2, (4.33)
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for the metric perturbations and

δγ ≃
(

−8

3
Ωbη + 4Ωbη

2
)

,−ΩB(1− η + η3), (4.34)

δb = (1− 2Ωb + 3Ωbη
2), (4.35)

δν ≃
(

−8

3
Ωbη + 4Ωbη

2
)

, (4.36)

δc ≃ 2Ωb + 3Ωbη
2, (4.37)

θγ ≃ −1

3
Ωbk

2η2 − k2

16
ΩB(4η − 2η2 + η4), (4.38)

θν ≃ −1

3
Ωbk

2η2 − k2

16
ΩB(4η − 2η2 + η4)

Rγ
Rν

, (4.39)

θc = 0, (4.40)

σν ≃ −2

3

Ωb

2Rν + 15
k2η3 − ΩB

4Rν
(1− η + η3), (4.41)

for the fluid quantities. Clearly, for this mode, the adiabaticity condition is not satisfied.

Furthermore, by transforming the solution to the Newtonian gauge, it is easy to check that

the longitudinal fluctuations of the metric vanish for η → 0. In the limit ΩB → 0 this mode

reduces to the baryon isocurvature mode already discussed in [37]. A similar solution can

be obtained by changing Ωb → Ωc.

5 Tight-coupling expansion in magnetoactive plasmas

One of the analytical tools often employed in the theory of the CMB anisotropies is the

so-called tight-coupling expansion [43]. Defining the differential optical depth as done in

Eq. (2.28) the exact tight-coupling limit is realized when σT → ∞ and 1/τ ′ → 0. If tight

coupling is exact, photons and baryons are synchronized so well that the photon phase-space

distribution is isotropic in the baryon rest frame. Since the photon distribution is isotropic,

the resulting radiation is not polarized. However, as the decoupling time approaches there

is a regime where |1/τ ′| < 1 without being zero. The idea is then to tailor a systematic

expansion in powers of |1/τ ′| and to consider not only the zeroth order but also higher

orders depending upon the accuracy required by the problem. The evolution equations to be

discussed are essentially the radiative transfer equations which are, in turn, the Boltzmann

equations written in terms of the brightness perturbations. Within the notation employed

in the present paper, these equations are derived in the equations (B.26)–(B.28) of the

appendix. The brightness perturbations should be studied for each of the four Stokes

parameters. The brightness perturbations ∆I, connected with the first Stokes parameter I,

are the temperature fluctuations, i.e. fluctuations in the intensity of the radiation field. As

discussed in the appendix, recalling that n̂ is the direction of the comoving-three momentum
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of the photon and defining µ = k̂ · n̂, the evolution of the brightness perturbation is

∆′

I + ikµ∆I = (ψ′ − ikµφ) + τ ′
[

−∆I +∆I0 + µvb −
1

2
P2(µ)S0

]

, (5.1)

where, in our notation, vb = θb/(ik) and

S0 = ∆I2 +∆Q0 +∆Q2, (5.2)

where, with obvious notation (discussed in detail in the appendix)

∆I(~k, n̂, η) =
∑

ℓ

(−i)ℓ(2ℓ+ 1)∆Iℓ(~k, η)Pℓ(µ),

∆Q(~k, n̂, η) =
∑

ℓ

(−i)ℓ(2ℓ+ 1)∆Qℓ(~k, η)Pℓ(µ), (5.3)

∆Iℓ and ∆Qℓ being the ℓ-th multipole of the brightness function ∆I and ∆Q.

The function P2(µ) = (3µ2 − 1)/2 in Eq. (5.2) is the Legendre polynomial of second

order, which appears in the collision operator of the Boltzmann equation for the photons

due to the directional nature of Thompson scattering. The evolution equations for the

brightness perturbations connected with the Q and U Stokes parameters are

∆′

Q + ikµ∆Q = τ ′[−∆Q +
1

2
(1− P2(µ))S0], (5.4)

∆′

U + ikµ∆U = τ ′ −∆U. (5.5)

Finally, in order to close the system, the baryon evolution equation should be added using

the definition vb = θb/(ik) either in Eq. (2.26) or in (3.8).:

v′b +Hvb = −ikφ− τ ′

α
[3i∆I1 + vb]− iWB(k), (5.6)

where

WB(k) =
FB

4πkρba4
, (5.7)

α =
3

4

ρb
ργ
. (5.8)

In (5.6) the dipole of the brightness function appears directly. In fact, using the results

derived in the appendix, the following chain of identities holds:

θγ =
3

4
kFγ1 = 3∆I1. (5.9)

where Fγ1 is the dipole of the photon phase-space distribution and ∆I1 is the monopole of

the brightness perturbation.

The idea is now to expand Eqs. (5.1) and (5.4) in powers of the small parameter

ǫ = |1/τ ′|, i.e. the inverse of the differential optical depth of Thompson scattering. Before
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doing the expansion, it is useful to derive the hierarchy for the brightness functions in full

analogy with what is discussed in the appendix for the case of the neutrino phase-space

distribution. To this aim, each side of Eqs. (5.1)–(5.4) and (5.6) will be multiplied by the

various Legendre polynomials and the integration over µ will be performed. Noticing that,

from the orthonormality relation for Legendre polynomials (Eq. (B.10) of the appendix),

∫ 1

−1
Pℓ(µ)∆Idµ = 2(−i)ℓ∆Iℓ, (5.10)

and recalling that

P0(µ) = 1, P1(µ) = µ, P2(µ) =
1

2
(3µ2 − 1), P3(µ) =

1

2
(5µ3 − 3µ), (5.11)

Eqs. (5.1)–(5.6) allow the determination of the first three sets of equations for the hierarchy

of the brightness. More specifically, multiplying Eqs. (5.1)–(5.4) and (5.6) by P0(µ) and

integrating over µ, the following relations can be obtained

∆′

I0 + k∆I1 = ψ′, (5.12)

∆′

Q0 + k∆Q1 =
τ ′

2
[∆Q2 +∆I2 −∆Q0], (5.13)

v′b +Hvb = −ikφ− τ ′

α
(3i∆I1 + vb)−

i

a
WB(k). (5.14)

If Eqs. (5.1)–(5.4) and (5.6) are multiplied by P1(µ), the integration over µ of the various

terms implies

−∆′

I1 −
2

3
k∆I2 +

k

3
∆I0 = −k

3
φ+ τ ′

[

∆I1 +
1

3i
vb

]

, (5.15)

−∆′

Q1 −
2

3
k∆Q2 +

k

3
∆Q0 = τ ′∆Q1 (5.16)

v′b +Hvb = −ikφ− τ ′

α
(3i∆I1 + vb)−

i

a
WB(k). (5.17)

The same procedure, using P2(µ), leads to

−∆′

I2 −
3

5
k∆I3 +

2

5
k∆I1 = τ ′

[

9

10
∆I2 −

1

10
(∆Q0 +∆Q2)

]

, (5.18)

−∆′

Q2 −
3

5
k∆Q3 +

2

5
k∆Q1 = τ ′

[

9

10
∆Q2 −

1

10
(∆Q0 +∆I2)

]

, (5.19)

v′b +Hvb = −ikφ− τ ′

α

(

3i∆I1 + vb

)

− i

a
WB(k). (5.20)

For ℓ ≥ 3 the hierarchy of the brightness can be determined in general terms by using the

recurrence relation for the Legendre polynomials reported in Eq. (B.11) of the appendix:

∆′

Iℓ + τ ′∆Iℓ =
k

2ℓ+ 1
[ℓ∆I(ℓ−1) − (ℓ+ 1)∆I(ℓ+1)],

∆′

Qℓ + τ ′∆Qℓ =
k

2ℓ+ 1
[ℓ∆Q(ℓ−1) − (ℓ+ 1)∆Q(ℓ+1)]. (5.21)
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We are now ready to compute the evolution of the various terms to a given order in the

tight-coupling expansion parameter ǫ = |1/τ ′|. After expanding the various moments of the

brightness function and the velocity field in ǫ

∆Iℓ = ∆Iℓ + ǫδIℓ,

∆Qℓ = ∆Qℓ + ǫδQℓ,

vb = vb + ǫδvb, (5.22)

the obtained expressions can be inserted into Eqs. (5.12)–(5.17) and the evolution of the

various moments of the brightness function can be found order by order.

To zeroth order in the tight-coupling approximation, the evolution equation for the

baryon velocity field, i.e. Eq. (5.14), leads to:

vb = −3i∆I1, (5.23)

while Eqs. (5.13) and (5.16) lead, respectively, to

∆Q0 = ∆I2 +∆Q2.

∆Q1 = 0. (5.24)

Finally Eqs. (5.18) and (5.19) imply

9∆I2 = ∆Q0 +∆Q2,

9∆Q2 = ∆Q0 +∆I2. (5.25)

Taking together the four conditions expressed by Eqs. (5.24) and (5.25) we have, to zeroth

order in the tight-coupling approximation:

∆Qℓ = 0, ℓ ≥ 0,

∆Iℓ = 0, ℓ ≥ 2. (5.26)

Hence, to zeroth order in the tight coupling, the relevant equations are

vb = −3i∆I1, (5.27)

∆
′

I0 + k∆I1 = ψ′ (5.28)

This means, as anticipated, that to zeroth order in the tight-coupling expansion the CMB

is not polarized since the quadrupole moment of the brightness is vanishing. Summing up

Eqs. (5.15) and (5.17) and using Eq. (5.27) in order to eliminate vb from the obtained

expression, we get to the following equation

(α+ 1)∆
′

I1 +Hα∆I1 −
k

3
∆I0 =

k

3
(α+ 1)φ +

iα

3
WB(k). (5.29)
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Finally, the dipole term can be eliminated from Eq. (5.29) using Eq. (5.28). By doing so,

Eq. (5.29) leads to the wanted decoupled equation for the monopole:

∆
′′

I0 +
α′

α+ 1
∆

′

I0 +
k2

3(α+ 1)
∆I0 =

[

ψ′′ +
α′

α+ 1
ψ′ − k2

3
φ

]

− α

α+ 1

FB

12πρba4
. (5.30)

In the limit FB → 0 the usual decoupled equation for the evolution of the monopole is

recovered.

The presence of the magnetic field modifies the evolution of the monopole. Hence, also

the dipole will be modified since the relation (5.28) stipulates that the monopole is a source

of the dipole.

To first order in the tight-coupling limit, the relevant equations can be obtained by

keeping all terms of order ǫ and by using the first-order relations to simplify the expressions.

From Eq. (5.16) the condition δQ1 = 0 can be derived; from Eqs. (5.13) and (5.18)–(5.19),

the following remaining conditions are obtained respectively:

−δQ0 + δI2 + δQ2 = 0, (5.31)

9

10
δI2 −

1

10
[δQ0 + δQ2] =

2

5
k∆I1, (5.32)

9

10
δQ2 −

1

10
[δQ0 + δI2] = 0. (5.33)

Finally from Eqs. (5.31)–(5.33) the remaining relations are:

δQ0 =
5

4
δI2, (5.34)

δQ2 =
1

4
δI2, (5.35)

δI2 =
8

15
∆I1. (5.36)

Condition (5.36) can be also written

∆I2 = ǫδI2 =
8

15

k

τ ′
∆I1. (5.37)

Now, from Eqs. (5.34) and (5.35), the quadrupole moment of ∆Q is proportional to the

quadrupole of ∆I, which is, in turn, proportional to the dipole evaluated to first order in

ǫ. But ∆Q measures exactly the degree of linear polarization of the radiation field. So, to

first order in the tight-coupling expansion, the CMB is linearly polarized. Furthermore, as

discussed in Eq. (5.30) the presence of the magnetic field modifies the evolution of both

the monopole and the dipole. Thus, according to Eq. (5.37), also the polarization will be

modified.

All the the solutions discussed in the previous sections can be used to determine the

initial conditions for the evolution of the brightness using the tight-coupling expansion.
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Consider, as a possible example, the case when initial conditions are set deep within the

radiation epoch. In this case, recalling Eq. (5.8), Eq. (5.30) can be written for, α≪ 1, as

∆′′

0 + ω2∆0 = −ω2(φ+ ψ)− FB

16πργ
, (5.38)

where ∆0 = ∆I0−ψ and ω = k/
√
3; we also posit a4ργ = ργ . The solution of Eq. (5.38) can

be easily obtained in terms of arbitrary integration constants. These constants are fixed

by specifying the initial conditions for the velocity field vb, which determines, according to

Eq. (5.23), the value of the dipole. Suppose, for instance, to be interested in the case of

quasi-adiabatic initial conditions in the presence of the reduced Lorentz force. Then, from

Eqs. (3.59) and (5.23), recalling that θb = ikvb,

∆I1 =
kφ0
6
η +

FB

12πρba3
. (5.39)

From Eq. (5.17) the initial condition for ∆0 can be determined to be:

∆0 ≃ −3

2

(

1 +
4

15
Rν

)

φ0 +
Rν
5
ΩB − 3

5
σB. (5.40)

The same strategy can be applied to more specific cases, such as the one where the scale

factor interpolates between a radiation-dominated phase and a matter-dominated phase, as

discussed in Eq. (4.29). In this case the solution of Eq. (5.30) will be more complicated

but always analytically tractable.

6 Concluding remarks

In this paper a systematic treatment of scalar perturbations has been discussed in the pres-

ence of a fully inhomogeneous magnetic field. No specific configuration has been assumed

and the results are, in this sense, rather general. Large-scale magnetic fields have been

described in a fully consistent one-fluid MHD approach in curved space-time, which is par-

ticularly suitable for the analysis of the low-frequency part of the plasma spectrum. In this

approach the charged components of the plasma (baryons and electrons) are in thermal

equilibrium at a common temperature. The neutral components of the plasma (photons,

neutrinos and CDM particles) are not affected directly by the presence of the magnetic

fields. However, since magnetic fields gravitate and appear in the perturbed Einstein equa-

tions, also the initial conditions for the evolution of the neutral species are modified in a

specific fashion. Since in MHD the Ohmic current is solenoidal, the baryon evolution equa-

tion is affected by a reduced Lorentz force term whose characteristic form is well known in

flat-space MHD. The combination of these different effects leads to a set of initial condi-

tions for the CMB anisotropies, which is rather different from the standard adiabatic (or

isocurvature) modes.

The main new results of the present analysis can be summarized as follows:
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• the problem of initial conditions for magnetized CMB anisotropies has been solved

both in the conformally Newtonian gauge (more useful for theoretical calculations)

and in the synchronous gauge (more appropriate for numerical discussions);

• if the curvature fluctuations are adiabatic, magnetic fields modify the conventional

adiabatic mode in a computable way and, as a consequence, the whole system of

initial conditions for CMB anisotropies is modified;

• for the modified adiabatic mode, deep outside the horizon, the density contrasts still

satisfy the adiabaticity condition, however, as the horizon is crossed, a small non-

adiabatic component develops;

• if the fluctuations are isocurvature from the beginning, magnetic fields modify quan-

titatively their amplitude, as shown in the case of the baryon isocurvature mode;

• the tight-coupling expansion has been revisited in the presence of a fully inhomoge-

neous magnetic field;

• it has been shown that, because of the reduced Lorentz force, both the zeroth and

first order in the tight-coupling expansion are modified and this allows the initial

conditions for the evolution of the brightness functions to be computed reliably in

both the adiabatic and isocurvature cases when fully inhomogeneous magnetic fields

are present.

It is appropriate to conclude with some remarks concerning the interplay between large-scale

magnetic fields and CMB physics. In various investigations, limits on the magnetic field

intensity are obtained on the basis of CMB considerations. Most of the times these limits

refer to specific configurations. These discussions are certainly valuable; however, the limits

obtained should always be associated with a specific set of analytical initial conditions. As

far as scalar fluctuations are concerned, this was not done up to now. An example is Ref.

[8] where no specific analysis of the initial condition problem was presented, but rather

stringent limits were claimed.

We must bear in mind that the analysis of CMB anisotropies requires the determination

of a sizeable set of parameters. If the magnetic field were the only unknown, the task

would be easier. However, this is unfortunately not the case. Hence, even within a specific

magnetic field configuration, the limits should always refer to the specific set of initial

conditions assumed in the analysis, as is normally done in the case when magnetic fields are

absent. We do hope that future analyses along these directions may take the results of the

present paper as a useful format for the systematic investigation of the effects of large-scale

magnetic fields on the CMB anisotropies.
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A Boltzmann hierarchy

As discussed in the bulk of the paper neutrinos are collisionless particles. In the following

we are going to discuss the collisionless Boltzmann equation following the notation discussed

in the present paper. The phase-space distribution of massless particles (massless neutrinos

or photons) is defined to be

f(xi, Pi, η)dx
1dx2dx3dP1dP2dP3 = dN , (B.1)

giving the number of particles in a differential volume of phase space. The function appear-

ing in Eq. (B.1) is scalar under canonical transformations, Pi is the conjugate momentum.

To derive and use the Boltzmann equation in curved space-time it is more convenient to

work directly with the modulus q and the direction ni of the comoving three-momentum qi
(where qi = qni with nin

i = 1). Denoting the longitudinal degrees of freedom of the per-

turbed geometry as in Eq. (2.6) and adopting the metric signature of Eq. (2.2), the relation

between the comoving three-momentum and the components of the conjugate momentum

are Pi = −qi(1− ψ) and P0 = q(1 + φ),

The total variation of the distribution function can be written as

Df

Dη
=
∂f

∂η
+
∂xi

∂η

∂f

∂xi
+
∂f

∂q

∂q

∂η
+
∂f

∂ni

∂ni

∂η
=

(

∂f

∂η

)

coll
, (B.2)

where the collisional term has been kept for later convenience, but it is zero in the case of

neutrinos. The collisionless part of Eq. (B.2) can be perturbed around a configuration of

thermal equilibrium by splitting the phase-space distribution as

f(xi, Pj , η) = f0(q)[1 + f (1)(xi, q, nj, η)], (B.3)

where f0(q) is the unperturbed phase-space distribution, which only depends upon the

comoving three-momentum.

Inserting Eq. (B.3) into Eq. (B.2), only the terms that are first order will be kept.

Since the unperturbed phase-space distribution only depends upon the comoving three-

momentum, Eq. (B.2) becomes:

∂f (1)

∂η
+ ni

∂f (1)

∂xi
+
∂ ln f0
∂ ln q

[ψ′ − ni∂
iφ] =

1

f0

(

∂f

∂η

)

coll
, (B.4)

where the geodesic equation has been used in order to obtain the expression of the time

derivative of q to first-order in the amplitude of the metric perturbations, i.e.

dq

dη
= qψ′ − qni∂

iφ. (B.5)

Up to this point the derivation is valid for both photons and massless neutrinos.
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A.1 Massless neutrinos and photons

Going now to Fourier space and defining the reduced phase-space distribution for massless

neutrinos as

Fν(~k, n̂, η) =
∫

q3dqf0f
(1)

∫

q3dqf0
, (B.6)

Eq. (B.4) becomes, in the absence of collision term,

∂Fν
∂η

+ ikµFν = 4(ψ′ − ikµφ), (B.7)

where µ = n̂ · k̂. The factor 4 appearing in Eq. (B.7) follows from the explicit expression of

the Fermi-Dirac phase-space distribution and observing

∫

q3dq
∂ ln f0
∂ ln q

= −4

∫

q3dqf0. (B.8)

The reduced phase-space distribution can be expanded in series of Legendre polynomials as

Fν(~k, n̂, η) =
∑

ℓ

(−i)ℓ(2ℓ+ 1)Fνℓ(~k, η)Pℓ(µ). (B.9)

Equation (B.9) will now be inserted into Eq. (B.7). The orthonormality relation for Leg-

endre polynomials,
∫ 1

−1
Pℓ(µ)Pℓ′(µ) =

2

2ℓ+ 1
δℓℓ′ , (B.10)

together with the well-known recurrence relation

(ℓ+ 1)Pℓ+1(µ) = (2ℓ+ 1)µPℓ(µ)− ℓPℓ−1(µ) (B.11)

allows to get a hierarchy of equations to be obtained for the various multipole moments.

The procedure is to take the various moments of both sides of Eq. (B.7). In doing so,

expressions like

ik

∫ 1

−1
µPℓ′(µ)Fνdµ = 2ik

[

(−i)ℓ′+1 ℓ
′ + 1

2ℓ′ + 1
Fν(ℓ′+1) + (−i)ℓ′−1 ℓ′

2ℓ′ + 1
Fν(ℓ′−1)

]

, (B.12)

will appear; they can be evaluated by using Eqs. (B.10) and (B.11). The full form of the

Boltzmann hierarchy is then

F ′

ν0 = −kFν1 + 4ψ′, (B.13)

F ′

ν1 =
k

5
[Fν0 − 2Fν2] +

4

3
kφ,

F ′

νℓ =
k

2ℓ+ 1
[ℓFν,(ℓ−1) − (ℓ+ 1)Fν(ℓ+1)]. (B.14)

Equation (B.14) holds for ℓ ≥ 2.
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The components of the energy-momentum tensor can be connected with the monopole

and dipole of the distribution function

T νµ = −
∫

d3P√−g
PµP

ν

P 0
f(xi, Pj , η). (B.15)

Recalling the connection between conjugate momenta and comoving three-momenta we get,

to zeroth order:

ρν =
1

a4

∫

d3qqf0(q), (B.16)

while to first order the density contrast (monopole), the peculiar velocity field (dipole) and

the quadrupole become

δν =
1

4π

∫

dΩFν(~k, n̂, η) = Fν0, (B.17)

θν =
3i

16π

∫

dΩ(~k · n̂)Fν(~k, n̂, η) =
3

4
kFν1, (B.18)

σν = − 3

16π

∫

dΩ

[

(~k · n̂)2 − 1

3

]

Fν(~k, n̂, η) =
Fν2
2
. (B.19)

Inserting Eqs. (B.17) and (B.19) into Eqs. (B.13)–(B.14), the system following from the

perturbation of the covariant conservation equations can be partially recovered

δ′ν = −4

3
θν + 4ψ′, (B.20)

θ′ν =
k2

4
δν − k2σν + k2φ, (B.21)

σ′ν =
4

15
θν −

3

10
kFν3, (B.22)

with the important addition of the quadrupole (appearing in Eq. (B.20)) and of the whole

Eq. (B.22), which couples the quadrupole, the peculiar velocity field, and the octupole Fν3.
Equation (B.22) is important. After neutrino decoupling, when initial conditions are set,

Fν3 = 0.

Equation (B.4) can also be made explicit in the case of photons. In order to do so the

collision term should be specified. Before writing down the Boltzmann equation for the

photons it is useful, in order to match with the standard notations, to define the photon

brightness perturbation, conventionally denoted by ∆:

f(xi, q, nj , η) = f0

(

q

1 + ∆

)

, (B.23)

where f0(q), i.e. the unperturbed phase-space distribution, denotes now the Bose-Einstein

distribution. Comparing Eq. (B.3) with the expression given in Eq. (B.23) and expanding

for ∆ < 1, the two definitions are connected as

∆ = −f (1)
(

∂ ln f0
∂ ln q

)

−1

, Fγ = −∆

∫

q3dq ∂ ln f0∂ ln q
∫

q3dqf0
= 4∆, (B.24)
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where Fγ is the reduced phase-space distribution for the photons defined in full analogy with

the case of the massless neutrinos, i.e. Eq. (B.6). The second identity of Eq. (B.24) follows

from the first and from Eq. (B.8). Using the relation between the brightness perturbation

and the phase-space distribution, the collisionless part of the Boltzmann equation can be

written as

∆′ + ikµ(∆ + φ) = ψ′. (B.25)

The brightness perturbation, as defined in Eq. (B.23), corresponds physically to a pertur-

bation in the first Stokes parameter (conventionally denoted by I), i.e. to the sum of the

squared amplitudes of the radiation field. By specifying the collision term, the full form of

the Boltzmann equation for photons can be written as

∆′

I + ikµ∆I = (ψ′ − ikµφ) + τ ′
[

−∆I +∆I0 + µvb −
1

2
P2(µ)S0

]

, (B.26)

∆′

Q + ikµ∆Q = τ ′
[

−∆Q +
1

2
(1− P2(µ))S0

]

, (B.27)

∆′

U + ikµ∆U = −τ ′∆U. (B.28)

Concerning Eqs. (B.26)–(B.28) a few comments are in order. The brightness functions ∆Q

and ∆U correspond, respectively, to the Stokes parameters Q and U. The parameter Q

being the difference of the squares of the amplitudes of the radiation field, is sensitive to

the linearly polarized radiation. Since Q and U (unlike I and V) change under rotations,

once Q is included also U must follow. The source term appearing in Eq. (B.26), S0 is,

within our conventions:

S0 = ∆I2 +∆Q0 +∆Q2, (B.29)

where, with obvious notations, ∆Iℓ denotes the ℓ-th multipole of ∆I and similarly for ∆Q.

The peculiar velocity field for the baryons has been written as

vb =
θb
ik
. (B.30)

The notation vb is preferred here in view of the application to the tight-coupling expansion of

the Boltzmann hierarchy for the photon brightness. Finally, τ ′ = xeneσT
a
a0

is, as previously

introduced, the differential optical depth for Thompson scattering. The evolution equation

for vb can be easily obtained, for instance by Fourier transforming Eq. (4.26) and by using

Eq. (B.30):

v′b +Hvb + ikφ+
τ ′

α

(

3i∆I1 + vb

)

= − i

4πk

FB(k)

a4ρb
, (B.31)

having defined

α =
3

4

ρb
ρr
. (B.32)

Equations (B.26)–(B.28) and (B.31) are discussed in Section 4.
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