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Abstract

I present the theory and analysis behind the experiment by Fomalont
and Kopeikin involving Jupiter and quasar J0842+1845 that purported
to measure the speed of gravity. The computation of the vJ/c correction
to the gravitational time delay difference relevant to the experiment
is derived, where vJ is the speed of Jupiter as measured from Earth.
Since the vJ/c corrections are too small to have been measured in the
Jupiter/quasar experiment, it is impossible that the speed of gravity
was extracted from the data, and I explain what when wrong with the
data analysis. Finally, mistakes are shown in papers by Fomalont and
Kopeikin intended to rebut my work and the work of others.
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1. Introduction

Albert Einstein constructed his general theory of relativity so that classical gravity

would be compatible with the principles of special relativity. As such, gravitational

waves and the influences of gravity are suppose to propagate at the speed of light c.

For example, if hypothetically the Sun were to explode into two pieces then the force

of gravity on the Earth would change. However, it would not happen suddenly but 8

and 1/3 minutes later, since this is the time it takes gravitational effects (and light)

to travel from the Sun to the Earth. In other words, the Earth would continue in its

almost circular orbit as governed by the gravity of a single massive central body for

another 8 and 1/3 minutes, only after which would its motion be determined by the

two exploding pieces. Since gravitational waves have not yet been detected, it has not

been possible to test whether they travel at the speed c, nor has there been a system

in which the speed of propagation of gravitational influences cg has been measured.

The lack of a measurement of cg inspired S. Kopeikin to propose an experiment

to test whether cg is the speed of light.[1] The ideas behind his proposal are outlined

in the next four paragraphs.

When electromagnetic waves pass by a massive object M , two effects occur:

Firstly, the waves are very slighly bent, and, secondly, there is a tiny delay in the

transmission time. Both are prominent effects of general relativity, and the latter is

known as the Shapiro time delay.[2, 3, 4]

The physical solution of Einstein’s equations involve the position ~xM of gravity-

generating objects at retarded times:

tret = t− |~x− ~xM (tret)|/c . (1.1)

Here, ~x is the location at which gravity is exerting its influence. The use of retarded

times tret as given in Eq. (1.1) implies that the effect of gravity propagates at c. To

allow for gravity to propagate at a different speed cg, one would expect to replace

Eq. (1.1) by

tret = t− |~x− ~xM (tret)|/cg . (1.2)

On September 8, 2002, a conjunction of Jupiter and quasar J0842+1845 took

place. Kopeikin argued that this event could be used to measure the speed of prop-
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agation of gravity.[1] The thinking behind his proposal originates from the previous

paragraph. Being very far away, the location of quasar J0842+1845 in the sky is

virtually fixed. Jupiter, however, moves. Its position at the retarded time depends

sensitively on its velocity and on cg through Eq. (1.2). Therefore, one might expect

that a precise measurement of the Shapiro time delay due to Jupiter on the signal

from quasar J0842+1845 would permit a determination of cg.

The possible effect of Jupiter’s velocity ~vJ on the Shapiro time delay can be

illustrated from an example: Suppose that Jupiter is moving toward the direction

of the quasar waves. If cg were infinite, which corresponds to the Newtonian limit

of general relativity, then it would appear that the instantaneous position of Jupiter

would be relevant. If cg = c, then the position of Jupiter evaluated at the retarded

time is somewhat farther away than the instantaneous position, and if cg < c, then

the position as determined by Eq. (1.2) is even further away. See Figure 1.

Using an array of radio telescopes that stretched across the United States all the

way to Germany, E. Fomalont and S.Kopeikin measured the tiny Shapiro time delays.

By applying Very Long Baseline Interferometry (VLBI), they achieved a remarkable

sensitivity at the picosecond level. The results for cg, which were announced in Jan-

uary 2003 meeting of the American Astronomical Society held in Seattle, Washington,

immediately caught the attention of the media. The New York Times, for example,

featured an article entitled “Einstein Was Right on Gravity’s Speed.”[5] At the meet-

ing, Fomalont and Kopeikin announced that cg = c to within 20% and this result was

subsequently published.[6]

If this result is correct then it is a fundamental confirmation of Einstein’s gen-

eral theory of relativity. However, shortly after the American Astronomical Society

meeting, a debate among astrophysicists arose about the Jupiter/quasar experiment.

Several papers appeared arguing that Fomalont and Kopeikin had not accomplished

their goal of measuring cg. H.Asada had published an early work[7] stating that

Kopeikin’s idea actually measures the speed of light instead of the speed of gravity,

C. M. Will also argued that the measurements were not directly sensitive to cg,[8] and

other papers also appeared criticizing the theory behind the experiment.[9, 10, 11]

The difficulty that many of the above works were addressing is that there is no agreed
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upon method for extending Einstein’s theory to the case for which cg 6= c. Kopeikin

has repeatly tried to defend these criticisms of his work.[12, 13]

In a Physical Review Letter[14] (hereafter referred to as my Physical Review

Letter), I bypassed the issue of how to extend general relativity to the case where the

speed of gravity does not equal the speed of light and computed the vJ/c corrections to

the Shapiro time delay in Einstein’s theory using a relatively simple method. The vJ/c

corrections did not agree with those derived by Kopeikin[1, 12] when his parameter

cg was set to c. The correct theoretical formula implied that the vJ/c dependence

was at least 100 times smaller than could have been measured by the array of radio

telescopes used in the Fomalont/Kopeikin experiment. In other words, the speed of

gravity could not have been extracted from the Jupiter/quasar measurement. My

Physical Review Letter definitively settled the speed of gravity controversy: The

parameter cg has not been measured.

Kopeikin had argued that there is an enhancement in the vJ/c correction to the

Shapiro time delay by a factor of 1/θ where θ is the angle between Jupiter and the

quasar.[1, 12] Since θ is small, it would seem to be that the vJ/c correction is sizeable.

However, no such 1/θ enhancement is actually present.

My Physical Review Letter pinpointed the source of the discrepancy. The leading-

order, velocity-independent part of the term that Fomalont and Kopeikin measured

depends on the distance ξ of closest approach of the radios waves to Jupiter as 1/ξ.

This distance is determined by the position of Jupiter and the radio waves as the

latter pass by Jupiter. If REJ and θobs respectively denote the Earth-Jupiter distance

and the angle that an astronomer observes between Jupiter and the quasar, then

ξ = REJθobs . (1.3)

The angle θobs is the one determined by the geometry of the positions of Jupiter, the

quasar and the Earth at the time in which the radio waves pass by Jupiter.

Fomalont and Kopeikin parametrized their data in terms of an angle θ1 determined

by the geometry of the positions of the above three objects at the time in which the

radio waves arrived on Earth. These two angles differ: During the time in which the

quasar signals travel from Jupiter to Earth, Jupiter moves a significant distance. The
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relation between the two angles is

θobs ≈ θ1 +
~n · ~vJ
c

, (1.4)

where ~n is a unit vector pointing from Jupiter to the quasar’s radio waves at the time of

closest approach. When the factor 1/ξ appearing in the leading velocity-independent

term is expressed in terms of θ1, it appears to become velocity dependent because

1

ξ
=

1

REJθobs
≈

1

REJθ1

(

1−
~n · ~vJ
cθ1

)

. (1.5)

In summary, parametrizing the Shapiro time delay using θ1 makes the leading term

seem to depend on the velocity of Jupiter. Furthermore, the fictitious velocity-

dependent term appears enhanced.

Fomalont and Kopeikin took their data and fit them to the leading order term but

parametrized them in terms of θ1. They then extracted the vJ/c dependence calling

it the vJ/cg correction. Given this procedure and that the data have error bars, it

is not surprising that such a procedure produced the purported result that cg = c to

within 20%. The conclusion that the speed of gravity is the speed of light to within

experimental errors is not valid due to faulty analysis and a flaw in the theoretical

understanding of the situation.

Since the difference between θobs and θ1 is due to the change in the position of

Jupiter as the quasar’s radio waves propagate from Jupiter to Earth, it is clear that

the parameter c in Eq. (1.5) is the speed of light and has nothing to do with the speed

of gravity. Therefore there was no justification in using cg in lieu of c when expressing

the leading term in terms of θ1.

The measurement of Fomalont and Kopeikin of the Shapiro time delay due to

Jupiter is a remarkable experimental achievement. One should remember that the

non-Newtonian effects of general relativity due to a planet had hitherto never been

detected. However, the experiment has little theoretical significance or fundamental

importance, and it indicates nothing about the speed of gravity.

Most of our notation conforms to that of references [1], [12] and [14]. There are sev-

eral small dimensionless parameters characterizing the Jupiter/quasar measurement:

GNMJ/(ξc
2) ≈ 6× 10−9, where GN and MJ are respectively Newton’s constant and
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the mass of Jupiter; vJ/c ∼ 10−4; B/ξ ≤ 0.006 where B is the distance between

any two VLBI stations on Earth; and θobs = ξ/REJ ∼ 0.001. These parameters, in

the order given above, respectively represent the weakness of Jupiter’s gravity on the

radio waves, the non-relativistic nature of Jupiter’s motion, the diminutive size of

Earth compared to Jupiter, and the small observational angle between Jupiter and

the quasar.

In our analysis, we neglect the square of any of the above quantities. In particular,

relativistic and high-order gravitational effects are ignored.

2. The Leading Order Result

Suppose that Jupiter is not moving. We refer to this as the static situation. Then,

the Shapiro time delay for an electromagnetic wave travelling from the quasar past

Jupiter to Earth is

∆t =
2GNMJ

c3

(

1 + ln

(

4RJQREJ

ξ2

))

, (2.1)

where RJQ is the distance from Jupiter to the quasar. Eq. (2.1) is a textbook

result.[15]

In the quasar/Jupiter experiment, a series of radio telescopes detected the quasar

signals during the conjunction. The time difference ∆ (t1, t2) between two such

Shapiro delays ∆t2 and ∆t1 was measured:

∆ (t1, t2) = ∆t2 −∆t1 . (2.2)

The experimental situation is shown in Figure 2. Signals 1 and 2 propagate from

the quasar past Jupiter and arrive at times t1 and t2 on Earth at detectors located

at positions ~x1(t1) and ~x2(t2).

Using Eq. (2.1) in Eq. (2.2) yields

∆ (t1, t2) = ∆t2 −∆t1 =
2GNMJ

c3
ln

(

r2Jξ
2
1

r1Jξ
2
2

)

≈
4GNMJ∆ξ

ξc3
, (2.3)

where ∆ξ = ξ1 − ξ2 and r1J (respectively, r2J) is the distance between the first

(respectively, second) detector and Jupiter. The last equality in Eq. (2.3) follows

because ∆ξ is significantly smaller than either ξ1 or ξ2, and the differences in the
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distances r1J and r2J between Jupiter and detector can be neglected. We use ξ

without a subscript to denote either of the detector-specific impact parameters ξ1 or

ξ2 when the distinction between the two is not important. Although gravitational

effects are often long-ranged, the Shapiro time delay difference ∆ (t1, t2) is generated

in the vicinity of Jupiter as is evident from Eq. (2.3): ∆ (t1, t2) depends only on impact

parameters.

It is convenient to express ∆ξ = ξ1 − ξ2 in terms of the displacement between the

two detectors ~B = ~x2(t2)−~x1(t1) because ~B is easily determined experimentally. See

Figure 2. The radio signals from the quasar are bent slightly by an amount ∆ϕ as

they pass by Jupiter. However, it turns out that this effect can be neglected as we

now show.

The bending of a single wave is given by[15]

∆ϕ =
4GNMJ

ξc2
. (2.4)

The angle that eventually arises between the two rays is

δ∆ϕ = ∆ϕ2 −∆ϕ1 =
4GNMJ∆ξ

ξ2c2
. (2.5)

Since the separation between the rays starts as ∆ξ and increases as the distance times

δ∆ϕ,

−~n · ~B = ∆ξ +REJδ∆ϕ = ∆ξ

(

1 +
4GNMJREJ

ξ2c2

)

≈ ∆ξ . (2.6)

The last equality follows because

4GNMJREJ

ξ2c2
≤

4GNMJREJ

R2
Jc

2
∼ 0.001 ,

where RJ is the radius of Jupiter. Since the angular deflection caused by Jupiter is

so small, the separation between the two rays remains essentially constant. Indeed,

including the second term in Eq. (2.6) in our analysis below only leads to corrections

proportional to Newton’s constant squared.

Substituting Eq. (2.6) into (2.3), one obtains the following for the static situation

∆ (t1, t2) = −
4GNMJ~n · ~B

θobsREJc3
, (2.7)
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where we have used ξ = θobsREJ . Eq. (2.7) is expressed in quantities measurable on

Earth.

3. The vJ/c Corrections

Now consider the case in which Jupiter is moving with a velocity ~vJ with respect

to the Earth. In principle, one should start with Einstein’s equation

Rµν −
1

4
gµνR = −

8πGN

c2
T µν , (3.1)

in which Rµν , the curvature tensor, is related to the stress-energy tensor T µν .

For a static Jupiter, the stress-energy tensor only has a “00” component: T 00 =

ρJ(x), where ρJ is Jupiter’s mass density. The metric gµν in spherical-like coordinates

about the center of Jupiter is given by the Schwarzschild solution

c2dτ 2 =
(

1−
2MJGN

rc2

)

c2dt2 −
(

1−
2MJGN

rc2

)

−1

dr2 − r2θ2 − r2 sin2 θdϕ2 , (3.2)

a result that is only valid exterior to Jupiter.

For a moving Jupiter, the stress-energy tensor has additional components T 0i,

which are proportional to viJ/c and generate vJ/c corrections, and T ij, which are

proportional to viJv
j
J/c

2 and may be neglected because Jupiter’s speed is considerably

less than the speed of light. The easiest way to obtain T µν , Rµν and gµν for the

non-static case is to construct the Lorentz transformation that takes a non-moving

Jupiter and sends it moving with velocity ~vJ . This Lorentz tranformation is then

applied to the tensors of the static case. Having obtained the metric for a non-static

Jupiter, one would then need to compute the Shapiro time delay for this case.

The above procedure for computing the vJ/c corrections to the Shapiro time de-

lay difference ∆ (t1, t2) is, in principle, the one adopted by Kopeikin and is quite

involved.[16] However, some simplifications occur because Jupiter’s gravity is weak

and vJ/c is small. One begins with the Newtonian approximation to Einstein’s equa-

tions and incorporates the vJ/c effects as perturbative corrections, which is the com-

monly used post-Newtonian approximation.

There is a simpler way to proceed, however, and that is to adopt a reference frame

in which Jupiter is static. In such a frame, the Earth moves at a velocity ~vE given by

~vE = −~vJ , (3.3)
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while Jupiter’s velocity is zero. The formula in Eq. (2.7) for the static case is then

valid. One only needs to incorporate the effects of having moving observation stations

on Earth into the Shapiro time delay difference. This procedure is valid because (1)

Einstein’s theory is Lorentz invariant and (2) during the time in which the quasar

rays propagate from Jupiter to the Earth, Jupiter moves almost in a straight line with

constant speed. The propagation period is sufficiently short that the orbital motion

of Jupiter around the Sun is not important. Since the same is true for the Earth,

observers on both planets are essentially inertial during the time scales relevant to

the experiment.

Because the Earth is moving, the distance ~Bsf between points 1 and 2 as measured

in this static-Jupiter frame is not equal to ~B as measured on Earth. In other words,

if the first quasar signal arrives at ~x1(t1) at time t1, then the Earth will move a short

distance during the time in which it takes the second signal to arrive at ~x2(t2). Place

two observers in the static-frame (meaning that they are not moving with respect to

Jupiter) so that one is located at the point 1 at time t1 and the another is at the

point 2 at time t2. Then use these observers to make the time measurements. Since

the situation is completely static, the formula for the static case may be used.

The difference between the times at which the two measurements are made is

t2 − t1 = |~x2(t2)− ~x0|/c− |~x1(t1)− ~x0|/c+∆(t1, t2) . (3.4)

Here, ~x0 is the position of the quasar, and |~x2(t2)− ~x0|/c− |~x1(t1)− ~x0|/c is the time

difference that occurs when gravitational effects are absent. Eq. (3.4) is an alternative

definition of ∆ (t1, t2).

The leading contribution to this time difference is

t2 − t1 ≈ −
~K · ~B

c
+∆(t1, t2) , (3.5)

where the first term is, in general, larger than the second and arises from the first two

terms in Eq. (3.4). Here, ~K, which is perpendicular to ~n, is a unit vector pointing

in the direction of the quasar as seen from Earth. Since during the time t2 − t1, the

Earth moves a distance ~vE (t2 − t1), the displacement between detectors in the static
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frame ~Bsf is not the same as that in the Jupiter-moving frame ~B but the two are

related by

~Bsf = ~B + ~vE (t2 − t1) ≈ ~B −
~K · ~B

c
~vE +∆(t1, t2)~vE . (3.6)

The Earth’s motion gives rise to three vJ/c effects. The first occurs because ~Bsf

needs to be used in Eq. (2.7). When this substitution is performed, a correction of

4GNMJ~nsf · ~vE ~K · ~B/(ξc4) is generated. The effect of the last term in Eq. (3.6) may

dropped since it is proportional to G2
N .

The second vJ/c correction occurs if the Earth has any motion toward (or away

from) Jupiter. For example, if the Earth were moving toward Jupiter, then station

2 would be moving toward the quasar signal 2 during the time after station 1 had

detected signal 1 but before station 2 had received signal 2. Station 2 would then

record a smaller time delay than if the Earth had not been moving. In other words,

the time delay is reduced (or increased) by an amount δ∆(t1, t2) that is equal to the

time it takes light to travel the distance determined by the difference between ~Bsf and

~B. The corresponding correction due to the second term in Eq. (3.6) is independent

of Newton’s constant and is a contribution to the first part of Eq. (3.4) that involves

detector distance differences. The third term in Eq. (3.6) leads to

δ∆(t1, t2) = −
~K · ~vE
c

∆(t1, t2) . (3.7)

To convert the result to the Jupiter-moving frame, one substitutes ~vE = −~vJ .

Combining the above two effects with the leading term, one finds[14]

∆ (t1, t2) = −
4GNMJ

ξc3



~nsf · ~B



1 +
~K · ~vJ
c



+
~K · ~B~nsf · ~vJ

c



 . (3.8)

The above result is written in terms of quantities as measured by an observer on

Earth with the exception of ~nsf , which gives rise to a third effect. Because the Earth

is moving with respect to the static frame, the direction of the quasar as observed in

the two frames differ: ~Ksf ≈ ~K + (~n · ~vj/c)~n. Since ~n is defined to be perpendicular

to ~K, it too differs in the two frames: ~nsf ≈ ~n− (~n · ~vj/c) ~K. When ~nsf is substituted

into Eq. (3.8), the last term is cancelled:

∆ (t1, t2) = −
4GNMJ

ξc3
~n · ~B



1 +
~K · ~vJ
c



 . (3.9)
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As indicated by a lack of subscripts sf , all quantities are now those measured by an

observer on Earth. Equation (3.9) has no 1/θ2obs term so that there is no enhancement

of the velocity-dependent effects.

The leading term for ∆ (t1, t2) in Eq. (3.9) is of order 10−10 seconds, well within

the measuring capability of the Jupiter/quasar experiment. However, the vJ/c term

is not bigger than 10−14 seconds, which is more than 100 times smaller than what

was measurable by the VLBI stations. Therefore reference [6] was insensitive to the

vJ/c term. Furthermore, this vJ/c correction is masked by larger corrections that are

suppressed by factors such as B/ξ and θobs compared to the leading term. The above

analysis leaves no doubt that Fomalont and Kopeikin did not measure the speed of

gravity.

Here is an example of a correction down by the order of θobs that can be up to five

times bigger than the vJ/c term. If ~B has a component in the direction of the quasar,

then the differences in the distances r1J and r2J in Eq. (2.3) generate the following

correction:
2GNMJ

c3

~K · ~B

REJ

. (3.10)

It is smaller than the leading term by a factor of 0.5ξ/REJ ∼ 0.5θobs.

4. The Kopeikin Formula for ∆ (t1, t2)

Using the post-Newtonian approximation, Kopeikin obtained the following result

for ∆ (t1, t2)[12]

∆ (t1, t2) =



1 +
~K · ~vJ
c





2GNMJ

c3
ln





r1J (s1) + ~K · ~r1J (s1)

r2J (s2) + ~K · ~r2J (s2)



 , (4.1)

where ~r1J(s1) ≡ ~x1 − ~xJ (s1) and ~r2J(s2) ≡ ~x2 − ~xJ (s2) are respectively the distance

vectors between the observation points 1 and 2 and Jupiter evaluated at the retarded

times

s1 = t1 − |~x1 − ~xJ(s1)|/c ,

s2 = t2 − |~x2 − ~xJ(s2)|/c . (4.2)

Note that Kopeikin generally works in a frame in which Jupiter is moving and the

Earth is not so that Jupiter’s position ~xJ(t) varies with time t, while that of a detector

station does not.
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The term in Eq. (4.1) involving ~K · ~vJ/c is discarded by Fomalont and Kopeikin

due to its smallness. It is the main vJ/c correction in Eq. (3.9).

At time s, let θ1(s) (respectively, θ2(s)) be the angle between ~r1J(s) (respectively,

~r1J(s)) and ~K (the unit vector pointing toward the quasar). Then

r1J (s) + ~K · ~r1J (s) = r1Jθ
2

1
(s)/2 +O(θ4

1
(s)) ,

r2J (s) + ~K · ~r2J (s) = r2Jθ
2

2
(s)/2 +O(θ4

2
(s)) . (4.3)

The times s1 and s2 at which one is to evaluate ~r1J(s1) and ~r2J(s2) in Eq. (4.3) are

considerably earlier than the observation times t1 and t2. Indeed, since |~x1−~xJ (s1) |/c

is about the time it takes a quasar ray to travel from Jupiter to Earth, s1 in Eq. (4.2)

corresponds to when the quasar ray passes near Jupiter. The same is true for s2.

Therefore, it is Jupiter’s position at this moment that is revelant. This is physically

reasonable since this is when the planet exerts its biggest influence on the rays.

Combining the results of the previous paragraphs, one sees that Eq. (4.1) agrees

with Eqs. (2.3) and (3.9) since

r1Jθ
2

1
(s) ≈ ξ2

1
/r1J ,

r2Jθ
2

2(s) ≈ ξ22/r2J . (4.4)

5. The Faulty Analysis of the Jupiter/Quasar Experiment

Since Eq. (4.1) is the leading order result in Eq. (2.7) up to unmeasurable cor-

rections, and Eq. (2.7) has no vJ/c dependence in it, the question arises as to how

Fomalont and Kopeikin exacted cg from their data. Although the details of the analy-

sis have not been revealed, I have surmised what transpired through their publications

and through correspondence with Sergei Kopeikin.

Fomalont and Kopeikin express the result for the Shapiro delay time difference in

Eq. (4.1) of

S (s1, s2) ≡
2GNMJ

c3
ln





r1J (s1) + ~K · ~r1J (s1)

r2J (s2) + ~K · ~r2J (s2)



 , (5.1)
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which is a function of retarded times s1 and s2, as a fuction of the observation time

t1. The leading order contribution to S (s1, s2) is

4GNMJ

c3
ln

[

ξ1 (s1)

ξ2 (s2)

]

. (5.2)

If Jupiter is moving toward (or away from) the quasar then the distances ξ1 (t) and

ξ2 (t) between Jupiter and quasar-ray-trajectories decrease (or increase) with time t

and are smaller (or larger) if evaluated at the time of observation:

ξ1 (s1) ≈ ξ1 (t1) + ~n · ~vJ
REJ

c
,

ξ2 (s2) ≈ ξ2 (t1) + ~n · ~vJ
REJ

c
. (5.3)

See Figure 2.

As is physically clear, the difference ∆ξ = ξ1(t)− ξ2(t) does not change with time

as Eq. (5.3) shows. However, the leading order result in Eq. (5.2) now does since the

substitution in Eq. (5.3) leads to

ln

[

ξ1 (s1)

ξ2 (s2)

]

= ln

[

ξ1 (t1)

ξ2 (t1)

]

+
~n · ~vJREJ

c

(

1

ξ1 (t1)
−

1

ξ2 (t1)

)

. (5.4)

The second term in Eq. (5.4) is

~n · ~vJREJ

c

(

1

ξ1 (t1)
−

1

ξ2 (t1)

)

≈ −
∆ξ (t1)

ξ2 (t1)

~n · ~vJREJ

c
=

~n · ~B

θ21 (t1)

~n · ~vJ
cREJ

. (5.5)

Summarizing,

S (s1, s2)− S (t1, t1) ≡ ∆R ≈
4GNMJ~n · ~B~n · ~vJ

REJθ
2
1 (t1) c

4
. (5.6)

The right-hand side of the equation contains the artificially 1/θ2 enhancement claimed

by Kopeikin.[1, 12] It arises because the position of Jupiter changes as the quasar

signals travel from the Jupiter region to Earth. The distance from Jupiter of the

(almost) linear path of the quasar ray when it is detected at a VLBI station is different

from the distance when it passed by Jupiter. Fomalont and Kopeikin used tables to

determine Jupiter’s position at t1. Such information allows one to determine S (t1, t1)
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analytically. So if one experimentally measures S (s1, s2) and subtracts S (t1, t1), then

one can fit the data to ∆R in Eq. (5.6) to extract the artificially generated second term.

Since S (s1, s2) has no measureable vJ/c dependence in it, there is implicit vJ/c

dependence in S (t1, t1). This is because

S (t1, t1) ≈ −
4GNMJ~n · ~B

θ1r1Jc3
(5.7)

can be written as

S (t1, t1) ≈ −
4GNMJ~n · ~B

(θobs −
~n·~vJ
c
)r1Jc3

(5.8)

to order (vJ/c)
2.

The Introduction argued that perhaps one way to extend Einstein’s theory to the

cg 6= c case is to replace 1/c by 1/cg in the evalution of retarded times. Kopeikin does

this in S (s1, s2) when parametrizing it in terms of t1. This, however, is incorrect. The

difference ∆R between S (s1, s2) and S (t1, t1) is due to Jupiter’s change of position

during the time it takes quasar rays to travel from the vicinity of Jupiter to Earth.

This depends on the speed of rays, which is the speed of light, and not on the speed

of gravity.

Thus, when data with error bars are fit to ∆R and the fitting function uses cg

instead of c, one is guaranteed to obtain the result cg ≈ c. Fomalont and Kopeikin’s

announcement that the speed of gravity is the speed of light to within 20% has no

content.

6. Can the Speed of Gravity Be Defined for the Jupiter/Quasar Exper-

iment?

This section addresses the theoretical issues raised in references [7, 8, 9, 10, 11].

Those references argued that Kopeikin’s formula for the Shapiro time delay difference

should involve the speed of light and not the speed of gravity. This debate is over

how to define the speed of gravity in Einstein’s general theory of relativity.

In the static frame, Jupiter is not moving. The curvature of space-time created

by the massive planet is governed by Eq. (3.2) and is static. The effects of gravity

are not propagating and the speed of gravity concept is non-existent. The velocity

dependent corrections obtained in Eq. (3.9) arise due to the motion of the VLBI

13



stations as they detect the radio waves. Since radio waves travel at the speed of light,

the velocity dependent corrections must be proportional to vJ/c, and this is evident

in the derivation of Eq. (3.9) in Section 3. It makes no sense to replace vJ/c by vJ/cg

from the viewpoint of the static frame.

On the other hand, in the frame in which Jupiter moves, the Introduction sug-

gested that to extend Einstein’s theory to the case cg 6= c one should replace retarded

times as determined by c by retarded times as determined by cg. It would therefore

seem as if the speed of gravity concept could be defined for this situation.

However, results as measured in one frame must be consistent with those measured

in another. One is forced to conclude that the speed of gravity concept is theoretically

inconsistent for the Jupiter/quasar experiment. If one tries to define the general

theory of relativity with cg 6= c for this problem, one violates Galilean invariance.

Originally, C.Will has suggested that perhaps the speed of gravity might enter as a

v2J/c
2
g effect.[8] However, the above reasoning still applies. In relating the static frame

results to the Jupiter-moving frame, one needs to use Lorentz transformations if higher

velocity effects are to be considered. Therefore, an extension of Einstein’s theory to

describe the Jupiter/quasar experiment for which the linear velocity corrections are

of the form vJ/c but the quadratic corrections are of order v2J/c
2
g for cg 6= c would

violate Lorentz invarince (but not Galilean invariance). Recently, C.Will has also

come to the same conclusion that cg does not appear in any higher power (vj/c)
n

correction for a constantly moving Jupiter.[17]

As mentioned in my Physical Review Letter, the above argument would fail if

Jupiter (or another massive object) were accelerating toward (or away from) the

quasar rays (or other electromagnetic waves). It is possible that the speed of grav-

ity could be defined for this situation. The parameter cg would then be associated

with acceleration effects. It might be worth analyzing this case as a theoretical pos-

sibility. Unfortunately, it is unlikely that such a system within or beyond the solar

system exists with sufficiently large effects as to be measurable with current VLBI

instruments.
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7. The Response by Fomalont and Kopeikin

In fairness to Fomalont and Kopeikin, it should be said that they have not ac-

cepted the conclusions of my Physical Review Letter nor the criticisms of others.

They have continued submitting papers[13, 18, 19] arguing that they did indeed mea-

sure the speed of gravity. This section addresses those papers. Derivations of the

formula in Eq. (4.1) mostly make up the content of these attempted rebuttals, while

a few paragraphs are devoted to addressing the criticisms of other authors and of my

Physical Review Letter. These paragraphs contain errors and false statements.

For example, reference [13] says, “This part of the experiment was drastically mis-

understood by Samuel who assumed that we measured position of quasar with respect

to Jupiter by measuring the relative position of the quasar with respect to Jupiter in

radio.” Similar statements appear in reference [19] (“A fundamental flaw in Samuel’s

interpretation was his assumption that the direction to Jupiter was directly measured

by VLBI network in the detection experiment so he confused the propagation of grav-

ity and the propagation of radio waves.”) and reference [18] (“Unfortunately, Samuel

incorrectly assumed that the experiment directly compared the radio position of the

quasar with that of Jupiter, and that the direction of Jupiter was determined by a

photon reflected from its surface.”). My Physical Review Letter never made such

statements, nor does this review: The criticism of the manner in which the data anal-

ysis was performed, which is presented in Section 5, focuses on the parametrization

of and the expansion about the observation time t1 by Kopeikin of the Shapiro time

delay difference.

The unpublished work [18] continues “The experiment monitored the position of

the quasar as a function of the atomic time by the arrival of the quasar’s photons

at the telescope, while the Jupiter’s position was determined separately via a precise

JPL ephemeris, evaluated at the same atomic time as the arrival of a photon (via

standard transformations from ephemeris time to atomic time). Hence the actual

angle used for measuring ∆ is θ1, not Samuel’s θobs. Thus, the vJ/c correction ∆R

was clearly separated from ∆S and measured with a precision of 20%.” Although

these statements are intended to underpin my Physical Review Letter, anyone who
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truly understands the situation will realize that they actually support the Letter and

the criticism in Section 5 levelled at the data analysis of the Fomalont/Kopeikin

measurement.

Here is example of mistating the work of others as a means of defending the

theory behind the quasar/Jupiter experiment. Reference [19] says, “Our definition of

the speed of gravity is more general than that used by Asada, Samuel, and Will [[7],

[14], [8]] who limited its meaning as the speed of propagation of gravitational waves.”

and “In their formulations of the experiment, these authors [Asada, Samuel, Will]

assumed only far-field gravitational effects, where gravitational waves are dominant

and differentiation between c and cg occurs only at orders of (v/c)2 beyond Shapiro

delay and higher. This was one reason why the ‘speed of light’ was interpreted as

causing the observed aberration. However, the experiment was performed in the

near-field of the quasar radio wave-Jupiter interaction where gravitational modes not

associated with gravitational waves are dominant.”

The work of the three above-cited authors focused on the speed of propagation

of the effects of gravity and not on the speed of gravity waves as falsely claimed in

these quotes. My Physical Review Letter and this review did not discuss gravitational

waves and have emphasized that the Shapiro time delay difference is due to relatively

short-distance effects; I never “assumed only far-field gravitational effects”. In actual

fact, it is Kopeikin’s formalism that ends up distorting and mixing up the short- and

long-distance gravitational effects of Jupiter as explained in Section 5.

Reference [13] states, “The goal of the jovian deflection experiment was to distin-

guish two angles θ1 and θobs. Confirmation that the apparent position of the quasar

in the sky makes the angle θ1 rather than θobs with respect to Jupiter is a proof that

gravity propagates with the speed cg.” This is not true: The difference between θ1

and θobs is due to the motion of Jupiter during the period in which the quasar waves

travel to Earth. Quasar waves travel at the speed of light so that cg cannot be ex-

tracted from a difference of θ1 and θobs; See Eqs. (1.4) and (5.6) where it is incorrect

to replace c by cg.
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Reference [13] presents another example of faulty reasoning: “The equation

∆ (t1, t2) = −
4GNMJ

c3θr1J







1 +
~K · ~vJ
cg



~n · ~B + ~K · ~B

(

~n · ~vE
c

−
~n · ~vJ
cg

)



 (7.1)

does not contain terms being quadratic in 1/θ. It may make an impression that

the orbital motion of Jupiter does not provide any significant deviation from the

Einstein’s prediction of the light deflection because all velocity-dependent terms in

the right side of Eq. (7.1) are smaller than the main term (proportional to (~n · ~B)/θ)

by a factor of 10−4 and can not be observed with the present-day technology. This

was the reason for Samuel’s statement that terms of order v/c beyond the Shapiro

time delay are not observable. This statement is erroneous because the Shapiro time

delay must be calculated in terms of the present position of Jupiter at the time of

observation t1.”

The last statement is incorrect. Kopeikin’s own formalism (the right-hand side

of Eq. (4.1)) leads to the conclusion that the Shapiro time delay difference ∆ should

be computed at the retarded time, which is near the time at which the quasar rays

pass Jupiter. Furthermore, it is not necessary to evaluate ∆ at t1: Since the Shapiro

time delay difference is generated when the rays are in the vicinity of Jupiter, t1,

which determines the retarded time s1 in Eq. (4.2), may be evaluated at any time

after the rays have passed well beyond Jupiter. As is physically clear, tens of millions

of kilometers beyond Jupiter, the Shapiro time delay difference will have been almost

100% generated and then remain essentially unchanged. As is evident from Eqs. (2.3)

and (3.10), there is only very weak dependence of ∆ on the Earth-Jupiter distance

REJ .

In both references [13] and [19], Kopeikin claims that his formalism is Lorentz

invariant, which is not the case. In Section 6, we argued that if cg 6= c then not only

is Lorentz invariance violated for the Jupiter/quasar experiment but also Galilean

invariance.

Kopeikin derived Eq. (7.1) in part to show that his formalism agreed with the result

in my Physical Review Letter when cg = c. Eq. (7.1) is Kopeikin’s generalization to

arbitrary values of the speed of gravity. In this equation, ~vE and ~vJ are the velocities of

the Earth and Jupiter as determined in a coordinate system in which the Sun is at rest.
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However, Eq. (7.1) does not depend on ~vJ−~vE as required by Galilean invariance. The

frame-dependence is manifest: Hypothetically place the Sun at another location, give

it a velocity of ~vS relative to the original static Sun, have the Earth and Jupiter move

with the same velocities that they originally had in the Jupiter/quasar experiment,

then Eq. (7.1) becomes

∆ (t1, t2) =

−
4GNMJ

c3θr1J







1 +
~K · (~vJ − ~vS)

cg



~n · ~B + ~K · ~B

(

~n · (~vE − ~vS)

c
−

~n · (~vJ − ~vS)

cg

)





(7.2)

because, with respect to the “new” Sun, Jupiter and the Earth now move with veloc-

ities ~vJ − ~vS and ~vE − ~vS. The dependence on the “new” Sun’s velocity ~vS does not

drop out. How can the Shapiro time delay difference due to Jupiter and observed on

Earth be so dependent on the Sun’s motion? The answer is that Eq. (7.1) is wrong.

In a frame in which both the Earth and Jupiter move, the correct result is Eq. (3.9)

with ~vJ replaced by ~vJ − ~vE .

Reference [19] emphasizes incorrectly that it is the postion of Jupiter at the time of

observation that is relevant: “the gravitational force, acting on photons as a space-like

vector, is sensitive to the present position of Jupiter.” For the sake of argument, let us

assume that this is the case. When Kopeikin expands about the time of observation

t1, he obtains, for the case cg = c, a vJ/c correction of[1]

∆ (t1, t2) = −
4GNMJ

θ21r1Jc
4

(

~B · ~vJ − ~K · ~vJ ~K · ~B
)

. (7.3)

It is easy to see that this equation leads to physically unreasonable results. Suppose,

for example, that Jupiter is moving toward the quasar rays. Hypothetically place

a second planet twice as far away as Earth is to Jupiter and put VLBI stations

on it along the same lines of observation as determined by quasar ray trajectories

that pass through VLBI stations on Earth. Then one would expect to measure to

a high precision the same Shapiro time delay difference. However, Eq. (7.3) predicts

that more than twice the Earth-based correction will be measured. This follows

because 1/(θ2
1
r1J) = r1J/ξ

2
1
(t1) where ξ1(t1) is the distance between Jupiter and the

worldline of the quasar ray 1 at the time of observation t1. In making the observations
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“downstream” on the hypothetical planet, r1J is doubled and ξ1(t1) is smaller if

Jupiter is moving toward the rays because the measurement is made later compared

to the Earth-based one. How can Jupiter, which is so far away, have such a dramatic

long-ranged influence on ∆?

The answer is that vJ/c corrections are not given by Eq. (7.3); The correct result

is given in Eq. (3.9). Kopeikin should not have performed an expansion about the

observation time that separated the leading Shapiro time difference result into two

pieces. As explained in Section 5, his leading order result actually has implicit vJ/c

dependence in it (because it is written in terms of θ1 instead of θobs or ξ), which,

when combined with his purported vJ/c correction, gives the vJ/c-independent result

of Eq. (2.7) to order v2J/c
2. This leading order term does not depend on how far

“downstream” the measurement is made. The same is true of the vJ/c correction in

Eq. (3.9).

8. Summary

This work provides the leading vJ/c corrections to the Shapiro time delay differ-

ence and shows that they do not correspond to the ones used in the data analysis by

Fomalont and Kopeikin even when the speed of gravity parameter cg is set equal to c.

The error made by Kopeikin is that he separated the leading vJ/c-independent term

into two pieces by expanding about the time of observation t1 through the subtraction

procedure involving ∆R in Eq. (5.6). This introduced an artificially vJ/c-dependent

term. It is enhanced by 1/θ1 and is an artefact of the t1 expansion. Although this

vJ/c-dependent term should depend the speed of light c because it is related to the

change in position of Jupiter during the time in which radio waves travel to Earth,

Kopeikin incorrectly replaces c by cg. Hence, when data is parametrized in this way,

one is guaranteed to obtain a result for cg that is the speed of light to within ex-

perimental errors. Finally, when cg 6= c we agree with others[7, 9, 10, 11] that the

theoretical formalism[16, 21, 12, 20, 13, 18, 19] of Kopeikin and his co-workers is

flawed when applied to Jupiter/quasar system and demonstrated this by showing

that not only does it violate Lorentz invariance but also Galilean invariance. While

the Jupiter/quasar measurement was an extraordinary experimental undertaking and
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a fine achievement in precision, it had nothing to do with the determination of the

speed of gravity.
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Figure Captions

Figure 1. The Expected Effect of the Speed of Gravity on the Gravitational Force

Due to the Motion of Jupiter.

Jupiter, shown as an open circle, is assumed to be moving toward the electromagnetic

wave. In the top figure, cg = ∞ and it is the instantaneous position of Jupiter at time

t, which is given by the shaded circle, that is relevant. In the middle figure, cg = c

and the relevant distance is farther away: Since it takes time for the gravitational

influence of Jupiter to propagate to the electromagnetic wave, it is Jupiter’s position

at an earlier time that is relevant. In the lower figure, cg < c.

Figure 2. The Definitions of Various Quantities Relevant in the Jupiter/Quasar Ex-

periment.

The diagram is not drawn to scale for reasons of clarity, and, in particular, angles are

much larger than in the actual experiment.
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