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Abstract. Our ability to correct the observational photometry of galaxies depends upon our knowl-
edge of the attenuation of light produced by the dust contained in the interstellar medium. We
will present a model based on the statistical properties of the local density in isothermal turbu-
lence which might be appropriate to calculate the radiativetransport through the diffuse interstellar
medium. The model will be applied to study the attenuation caused by a distant foreground screen
and a non scattering slab where the sources are mixed within the turbulent medium. It will be shown
how the turbulent structure affects the attenuation curve and how the attenuation curve varies with
the thickness of a foreground screen.

INTRODUCTION

It is a well known phenomena that the collective star light from galaxies, in particular
at UV and optical wavelengths, is obscured by dust grains distributed in the diffuse
interstellar medium. To derive accurate measurements of important parameters such as
the star-formation rate as a function of redshift, the famous Madau-plot [1], a correction
can be essential but is still uncertain.

For sake of clarity we want to differentiate between the dustextinction in the case
of point sources such as stars and theattenuation in the case of extended sources such
as galaxies. In this scheme the dustextinction is caused by dust absorption and dust
scattering along the line of sight and is simply proportional to the wavelength dependent
extinction coefficientkλ and the column densityN. In contrast the dustattenuation is the
wavelength dependent loss of the intrinsic light of all stars and can be explained by an
effective optical depth. This optical depth is determined by several different conditions
such as the relative distribution of emitting stars and the attenuating dust, the viewing
angle to the galaxy, the variation of dust properties with radiation field and density
throughout the ISM, and the structure of the ISM itself, which is far from homogeneous.
In addition it might be important that light scattered out ofthe observed direction might
be partly compensated by photons scattered into the observed direction. It is no surprise
that, due to its complexity, the attenuation of the starlight of galaxies is still a rather
unsolved problem.

http://arxiv.org/abs/astro-ph/0412417v1


MODEL

Many different attempts have been made to take the inhomogeneous nature of the ISM of
galaxies into account either to model the spectral energy distributions [2, 3] or to derive
corrections for dust attenuation [4, 5, 6]. The model presented in the following is based
on a realistic description of an inhomogeneous structure ofthe local density caused by
turbulent motion. The basic idea of this model is the fact that the transmission of a distant
foreground screen is, if we neglect any variations of the optical properties, primarily
determined by the probability distribution function (PDF)of the column density. By
using a simplified description of the turbulent density structure this PDF can be related
in a simple way to its statistical properties and the thickness∆ of the dusty screen in
front of the emitting sources.

Model of the Isothermal Turbulent Medium

The turbulent medium is taken to be isotropic and we assume that inside a certain
interval the power spectrumP(k)=|ρ(k)|2 of the local densityρ(r) can be described by a
simple power lawP̃(k) ∝ kn with powern. The scaling relation extends from a minimum
scaleLmin to a maximum scaleLmax.

As has been shown by using hydrodynamic simulations of turbulence in compressible
fluids the PDF of the local density can be described by a log-normal density distribu-
tion if the turbulence is approximately isothermal [7, 8, 9]. As found analytically [10],
the log-normal density distribution should be the exact solution if supersonic isother-
mal turbulence is considered. The PDF of the local densityρ in the ISM is therefore
approximated by:

p(ρ) =
1
ρ

p(lnρ) =
1√

2πσρ
e

1
2x2/σ2

lnρ (1)

with x = lnρ− lnρ0 (2)

whereσlnρ is the standard deviation of the log-normal density distribution and whereρ0

is defined by the mean value ln〈ρ〉= lnρ0+0.5σ2
lnρ.

In general the density contrast increases as consequence ofhigher compression result-
ing from higher Mach numbersM. In particular for non-magnetised forced turbulence it
has been found by using 3D-simulation [8, 10] that the standard deviation

σρ = 〈ρ〉
√

e−
1
2σ2

lnρ −1 (3)

of the local density is almost linearly correlated with the Mach number by

σρ ≈ βM 〈ρ〉 (4)

whereβ ≈ 0.5. The more general case appears to be more complicated as formagnetised
turbulence no simple correlation between density contrastand Mach number has been
found. As might be also expected from the additional pressure support to the plasma
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FIGURE 1. Standard deviation of the column density, given by the ratioσN/〈N〉/σρ/〈ρ〉, as function
of slice thickness∆/Lmax. The power spectrum of the local density is taken to be Kolmogorov with
n = −10/3. Also shown is the dependence on the dynamic rangekmax/kmin taken to be 101, 102, 103,
and 105. The long dashed line shows the behaviour in the limit of thick slices where the thickness is larger
then the maximum turbulent scaleLmax.

provided by magnetic fields, it seems that the density contrast becomes weaker when
magnetised turbulence is considered [10, 11].

The variance of the local density is related to the power spectrum of the turbulent
density structure by:

σ2
ρ =

1
(2π)3

∫

dk P̃(k). (5)

PDF of the Column Density

The variance of the column densities. Equivalent to the variance of the local density
the variance of the column density is given by the total powerof the column densities:

σ2
N =

1
(2π)2

∫

dK P̃(K). (6)

In general the power spectrum of the column densities along thez-axis is determined by:

P̃(K) =
1
2π

∫

dkz P̃(K,kz)W̃ (kz∆) (7)

with W̃ (kz∆)= |W (kz∆)|2 whereW (kz∆) is the Fourier transform of the window function
which defines the shape of the slice through the turbulent density structure [12, 13]. For
a simple box-window, as used here, we haveW (kz∆) = ∆2sin2(kz∆/2)/(kz∆/2)2.

We want to call a slice through the turbulent medium thick or thin if its thickness is
either larger or smaller than the maximum scale lengthLmax. If the slice is thin with
∆ ≪ Lmax the power spectrum of the column density is given byP̃(K) ∝ Kn+1 for
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FIGURE 2. PDF of the column densityN/〈N〉 through a simulated density structure with a log-
normal density distribution of the local density. The powerspectrum of the local density is assumed to be
Kolmogorov withn = −10/3 and the standard deviation of the local densityσρ/〈ρ〉 = 1.5. The dynamic
range is chosen to beLmax/Lmin = 5.4. The slice thickness through the density structure is taken to be

1/Lmax < K ≪ 1/∆. On the other hand, if the thickness of the slice is larger than the
maximum ’cloud’ size (∆ > Lmax) the power spectrum is well described byP̃(K) ∝ Kn

and therefore by the same power law as the power spectrum of the local density [12, 13].
In the limit of very thin slices smaller than the minimum ‘cloud’ size the fluctuations

of the column densities are the ones of the local density. Dueto averaging effects in
the line of sights the fluctuations of the normalised column densities decrease with
slice thickness (Fig. 1). For slices thicker than the maximum cloud size the variation as
function of slice thickness becomes a simple power law withσN/〈N〉/σρ/〈ρ〉 ∝ ∆−1/2. The
actual value of the standard deviation of the column densitydepends on the statistical
properties. In a medium with a larger dynamic range the averaging effect in the line of
sights is larger and the fluctuations of the column densitiestherefore weaker.

The functional form of the PDF. Based on MHD simulation of isothermal forced
turbulence it has been found [11] that the functional form ofthe PDF of the column
density is approximately also log-normal. The convergenceof the log-normal density
distribution of the column density into a Gaussian density distribution in the limit of
thick slices has been analysed in some detail by Vázquez-Semadeni and García [14].
They found by using density structures that the PDF is skewedin comparison to the
ideal log-normal density distribution.

A more quantitative approach has been presented by Fischeraand Dopita [13] based
on simulated density structures of an idealised isothermalturbulent medium with a
log-normal density distribution of the local density and where the power is given by
a defined power law. The obtained distributions can be well approximated by a log-
normal density distribution (Fig. 2). However, deviationsdo exist as the fitted log-normal
density distribution predicts too high probabilities at low but too low probabilities at high
column densities. The deviation increases for broader distributions of the local densities.
In addition the standard deviation of the fitted distributions is in general lower than the
exact value [13]. Despite these uncertainties it seems to bea first good approximation
to simplify the functional form of the PDF by a simple log-normal density distribution
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FIGURE 3. The parameter space of the distant turbulent screen given bythe mean attenuation〈AV〉
and the standard variationσAV/〈AV 〉 = σN/〈N〉 of the column density. The attenuation curves Aλ/AV are
well defined by the absolute to relative attenuation RA

V shown as thin solid lines. The actual attenuation
AV is shown as the thick solid lines.

where the variance is simply determined by the thickness of the slice and the statistical
properties of the local density.

The Distant Foreground Screen

We first consider a situation where the stars are seen througha turbulent dusty screen
which is distant from the observer and the emitting stars. Inthis case the scattering
makes only a small contribution to the collected star light and can be neglected. For
simplicity we assume that the dust properties are not varying with local density or
radiation field so that the optical depth is proportional to the column density. As the
underlying extinction curve we use the mean extinction curve of our Galaxy which we
adopted from Weingartner & Draine [15].

At each wavelength the turbulent screen leads on average to an effective extinction
given by

τeff =− ln

(

∫

dy p(y)e−ey〈τ〉
)

, (8)

wherep(y) is the normal density distribution and whereey = τ/〈τ〉.
In general a turbulent screen is more transparent in comparison to a homogeneous

screen and the attenuation curve flatter than the underlyingextinction curve. The effect
of the turbulent screen on the attenuation increases with dust content or〈AV〉 and wider
distributions of the column density (Fig. 3). The flatteningcan be characterised by the
absolute to relative attenuation RA

V = AV/E(B−V) which is higher in case of flatter
attenuation curves. In case of the foreground screen the RA

V-value is furthermore a perfect
parameter to determine the curvature of the attenuation curves (Fig. 4) over the whole
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FIGURE 4. Attenuation curves Aλ/AV and reddening curves E(λ−V)/E(B−V) of a distant fore-
ground screen. The curves are well defined by the absolute to relative attenuation RAV which is varied from
3.5 to 10 in steps of∆RA

V = 0.5. The thick line is the assumed extinction curve given by Weingartner and
Draine [15]. The actual curves do not strongly depend on the absolute attenuation in V which is taken to
be AV = 10. The broken line is the so called ‘Calzetti-extinction-curve’.

wavelength range [16].1 The dependence on the mean attenuation〈AV〉 on the other hand
is only weak. In the limit of small fluctuations withσlnAV < 1 the relative attenuation
Aλ/〈Aλ〉 and the curvature depend only on the productσ2

lnAV
〈AV〉 [16] so that in highly

optically thick media also small fluctuations can lead to flatter attenuation curves.

The ‘Calzetti Extinction Law’

For the nearby universe we have some knowledge about the dustobscuration. The so
called ‘Calzetti-extinction-law’ [17] has been obtained from a huge sample of star-burst
galaxies and can be used to derive the intrinsic spectrum of those galaxies. The curve is
flatter in comparison to the mean extinction curve in our galaxy and also flatter than the
ones derived for the Large and the Small Magellanic Cloud. Inaddition the feature at
2200 Å which is very prominent in case of the mean extinction curve of the Milky Way
seems to be absent. The absence is generally explained by thedestruction of the carriers
of this feature by the higher UV-radiation field in those galaxies. The flatter curvature in
the optical is thought to be related to the clumpy medium in front of the stars.

The overall curvature of the Calzetti-Curve can be naturally explained by a turbulent
foreground screen [18]. Theχ2-fit based on photometric measurements from star-burst
galaxies is excellent (even though the minimumχ2 of 0.048 suggest an overestimate
of the errors) (Fig. 5). The fit provides a most likely RA

V-value of 4.75±0.45 which is
in excellent agreement with the original value RA

V = 4.88±0.98 derived for star-bursts
[19]. Based on IR-measurements this value has been corrected to RA

V = 4.05±0.80. The
agreement with our value of a turbulent screen, however, is still good.

1 In general the curvature depends also on the geometry so thatattenuation curves of different geometries
but the same RAV-value might deviate.
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FIGURE 5. Result of theχ2-fit to the ‘Calzetti extinction curve’. The ’Calzetti-curve’ is shown as thick
solid line in the left hand figure. Also shown is the mean extinction curve of our galaxy (Weingartner and
Draine [15]) used in the model. The fit has been applied to the data point which are based on Calzetti [19]
and Leitherer et al. [20]. The best fit is shown as dashed line.Regions of confidence are given as filled
contours (68, 90, 95, 99%) on the right hand figure in the parameter plane defined by AV andσAV/〈AV 〉.
The dashed lines show the range of AV determined for star-burst galaxies. The dashed-dotted line is the
mean value.

The measured range of AV of star-burst galaxies provides a standard deviation of the
optical depth (column density) in the range 0.66 to 11.2. If we apply the relation between
Mach-number and standard deviation we obtain a minimum Machnumber in the range
1.3 to 22.

It might be useful to compare those numbers with the expectation of the cold neutral
medium (CNM) and the warm neutral medium (WNM) in our own galaxy. The velocity
dispersion for the CNM and for the WNM has been measured (based on HI and CO
observation, respectively) to be 6-8 km/s and 7-10 km/s. Assuming a temperature of 100
and 6000 K for the CNM and the WNM the Mach number is roughly 12 and 1.8. If we
use the relation 4 the expected range forσρ/〈ρ〉 is in the range 0.9 to 6 consistent with
the Mach numbers found by fitting the Calzetti curve by a simple turbulent screen.

The Effect of Slice Thickness on the Attenuation Curve

For a better understanding of a turbulent density structureon the attenuation it is
important to know how the attenuation changes with the thickness of the dust layers
in front of the stars. As an application one might think of a simple geometry of disk-
like galaxies where the stars are embedded in a turbulent dusty layer and therefore
seen through a turbulent screen. If the medium would be homogeneous the optical
thickness of the dusty layers in front of the stars would increase with inclination angle
as 1/cosi. The dependence is somewhat weaker if the medium is turbulent as the
relative attenuation Aλ/〈Aλ〉 decreases with the thickness of the screen. In addition
the attenuation curves should flatten with viewing angle as the RA

V-value increases as a
function of∆/Lmax.
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In the limit of thick slices (or high inclination anglesi) the relative attenuation
Aλ/〈Aλ〉 and the absolute to relative attenuation RA

V approach asymptotically a mini-
mum and a maximum value, respectively. The limiting values are, for a given power
spectrum and dynamic range, only determined by the product〈τV〉Lmax

σ2
ρ/〈ρ〉 [16].

The Relation between RA
V and AV

The relation between the two observable quantities AV and RA
V has consequences

for the interpretation of the change of an intrinsic spectral energy distribution from
galaxies caused by dust obscuration. A stellar spectrum well described over a certain
wavelength range by a simple power lawIλ ∝ λβ with powerβ [21] will have a different
functional form if seen through a dusty screen. If the spectrum is observed at two
different wavelengthsλ1 andλ2 the inferred power̃β would be different fromβ by

∆β = β− β̃ =
τλ1

− τλ2

lnλ1− lnλ2
=

1

R̃A
λ2

τλ2

lnλ1− lnλ2
. (9)

Here, we introduced the absolute to relative attenuationR̃A
λ2

= τλ2
/(τλ1

− τλ2
). τλ1

and
τλ2

are the effective optical depths at wavelengthλ1 andλ2.
Due to turbulence the variation of∆β is in general not directly proportional to Aλ.

As RA
λ2

≥ Rλ2
the change of the spectral indexβ should be furthermore less strong in
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comparison to a homogeneous screen.

The Non-Scattering Turbulent Slab

To demonstrate the effect of the geometry on the attenuationcurve we consider the
extreme case that the stars are homogeneously distributed throughout the turbulent slab.
For simplicity the scattering is ignored so that the dust layers in front of the stars at each
depth can be approximated by a distant foreground screen.

The slab-geometry leads even in case of the homogeneous medium to a lower attenu-
ation and to a flatter attenuation curve (Fig. 7). In the limitof an optically thin and opti-
cally thick limit the effective optical depth is̃τ = 0.5〈τ〉 andτ̃ = ln〈τ〉, respectively. The
RA

V-value increases strongly when the slab becomes optically thick. In the limit of an op-
tically thick slab the absolute to relative attenuation varies as RAV = ln〈τ〉/ ln(1+1/RV)
and therefore is directly proportional to the effective optical depthτ̃.

By introducing a turbulent density structure the medium becomes more transparent
and the relative attenuation decreases in comparison to thehomogeneous slab (Fig. 7).
In the region〈τ〉 <∼ 4 the turbulence furthermore leads to a flatter attenuation curve.
The behaviour at higher mean optical depth depends on the dust content per maximum
scale length. In rather optically thick environments the attenuation curve can be slightly
steeper than the very flat attenuation curve expected for a homogeneous medium.

CONCLUSION

The described model relates the dust attenuation to the physical properties of the tur-
bulent ISM and therefore might be a solution to obtain accurate corrections important



to measure the star-formation rate against redshift. As shown, a distant turbulent screen
can naturally explain the attenuation curve derived for star-burst galaxies and may be
also applicable for other star-forming regions.

The idealised model of a turbulent density structure might also be helpful to under-
stand the radiative transport through the turbulent ISM in the disks of normal galaxies.
The model may furthermore provide, if used in a full radiative transfer code which also
includes the thermal emission from dust grains, a better understanding of the SED of
star-burst galaxies or HII-regions.
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