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High resolution N-body simulations have all but converged on a common empirical form for the

shape of the density profiles of halos, but the full understanding of the underlying physics of halo

formation has eluded them so far. We investigate the formation and structure of dark matter halos

using analytical and semi-analytical techniques. Our halos are formed via an extended secondary

infall model (ESIM); they contain secondary perturbationsand hence random tangential and ra-

dial motions which affect the halo’s evolution at it undergoes shell-crossing and virialization.

Even though the density profiles of NFW and ESIM halos are different their phase-space density

distributions are the same:ρ/σ3 ∝ r−α, with α = 1.875 over∼ 3 decades in radius. We use two

approaches to try to explain this “universal” slope: (1) TheJeans equation analysis yields many

insights, however, does not answer whyα = 1.875. (2) The secondary infall model of the 1960’s

and 1970’s, augmented by “thermal motions” of particles does predict that halos should have

α = 1.875. However, this relies on assumptions of spherical symmetry and slow accretion. While

for ESIM halos these assumptions are justified, they most certainly break down for simulated

halos which forms hierarchically. We speculate that our argument may apply to an “on-average”

formation scenario of halos within merger-driven numerical simulations, and thereby explain why

α = 1.875 for NFW halos. Thus,ρ/σ3 ∝ r−1.875 may be a generic feature of violent relaxation.
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1. Introduction

There is a broad consensus that gravity driven evolution of the space distribution of collision-
less dark matter, starting from some realistic matter powerspectrum results in virialized objects
whose spherically averaged density profile is well represented by the NFW prescription [3] or its
close variants [2]. However, why the dark matter profiles have this shape is as yet to be determined.
In an effort to shed light on the issue, [4] investigated the phase-space structure of dark matter halos
from N-body simulations. They found that the “poor man’s” phase-space density,f (r) = ρ/σ3, is
a power law over 3 decades in radius,f (r) ∝ r−α, with exponentα = 1.875= 15/8.

We have developed an alternative method of generating dark matter halos, based on [5]. It is an
analytical scheme which treats collapse, shell-crossing and virialization of spherically symmetric
halos. The halo contains secondary perturbations whose properties are calculated from the same
power spectrum that gives rise to the main halo. These secondary perturbations induce random
tangential and radial motions within the halo. The ensuing collapse can be likened to slow accretion
of lumpy matter; there are no major mergers in our scheme; [6]. We call these halos ESIM, or
Extended Secondary Infall Model halos. Even though ESIM andNFW halos are generated in very
different ways, and have different density profiles, their phase-space density distribution, and the
value ofα is the same for both. Our goal is to understand why isα = 1.875= 15/8 for both.

2. The Jeans equation analysis of phase-space density distribution

Equilibrium, non-rotating halos with isotropic velocity ellipsoids obey this Jeans equation:

d
dr

[

−r2

Gρ
d(ρσ2)

dr

]

=
d
dr

M(< r). (2.1)

Following [4] we use scaled variables,x = r/r0, andy = ρ/ρ0. We assume power law behavior
of f (r) with constantα for any given halo, but allow the density profile to have changing log-log
slope,y ∝ x−β(x). With these, eq. 2.1 can be rewritten in terms ofx, y, exponentsα andβ, and a
normalization constant. Unlike [4] we work with an equationobtained by differentiating eq. 2.1:

15β′′
−3β′(8α−5β−5) = (2α+β−6)(2α−5β)(2/3[α−β]+1) (2.2)

Here,β′ andβ′′ are derivatives ofβ with respect to− lnx. (Recall thatβ =−d lny/d lnx.)
Because eq. 2.2 has many solutions (i.e. halo density profiles), it would help to make analytic

inroads into the analysis of its solution space. We do just that: we derive a family of solutions:

β′ = β′

m −2/3(β−β0)
2, β′

m = 3(2α+5)2/200, β0 = (14α+15)/20. (2.3)

All the halos that obey these three equations asymptote to very nearly constantβ slopes at large and
small radii, and have non-zero derivatives ofβ in-between. We will refer to this as themain family
of solutions. Each member is completely defined by specifying α. As far as we can tell, this is the
only family that has a closed form analytical description. Note that the ‘critical solution’ identified
by [4] is a member of this family; it is obtained by settingα = 1.875.

Figure 1(a) is a schematic representation of all solutions of eq. 2.2. A few main family so-
lutions are shown as solid vertical red line segments; the inner density cusp for each is given by
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Figure 1: (a) Pictorial depiction of solutions of eq. 2.2.α = 1.875 is the slope of the phase-space density
profiles of NFW and ESIM halos;α = 1.9444 results in periodic, zero-damping solutions of eq. 2.2. Six
solid vertical line segments are examples of the main familyof solutions. Labeled lines: factors in eq. 2.2;
β0 is given in eq. 2.3.(b) A set of solutions of eq. 2.2, with constantα = 1.875 but varying initial values of
β = 1.25,1.75, ...3.25; initial β′ = 0 for all. The thick line belongs to the main family of solutions; note that
NFW empirical fit follows this solution closely for intermediate values ofβ. Dotted and dashed lines are two
ESIM halos; short vertical line segments indicate their virial radii. Normalization of radiusx is arbitrary.

(2α−5βin) = 0, the outer density profile slope is given by(2/3[α−βout ]+1) = 0. Fig. 1(a) illus-
trates the role these factors on the RHS of eq. 2.2 play in defining main family solutions.

One of these six vertical line segments is forα = 1.875; the correspondingβ(x) is shown as
thick solid curve in fig. 1(b). Other curves are what we callα-family solutions, obtained by keeping
α constant, but varying initial conditions:β andβ′. Note that one of the members of theα-family
is a power law density profile,β=const. Theβ value for the power law solution of an arbitrary
α-family is obtained by solving(2α+β−6) = 0; see eq. 2.2 and long-dash line in fig. 1(a).

Does eq. 2.2 allow any specialα values? The equation is a non-linear damped oscillator. For
someα the x-averaged value of the ’dissipation’ term,−3β′(8α− 5β− 5) is zero. This value is
α = 35/18≈ 1.9444. Whenα = 35/18 any initial condition forβ andβ′ results in a periodic,
constant amplitude function ofβ vs. x. Valueα = 35/15 is only∼ 4% different fromα = 1.875.
Aside from this coincidence (or not?), and many other interesting insights provided by the analysis
of eq. 2.2, we were not able to identify whyα = 1.875 is special. Next, we take a different, and
more promising approach to uncover whyα = 1.875 for ESIM and NFW halos alike.

3. Secondary infall analysis of phase-space density distribution

Consider the initial stages of halo collapse in the context of secondary infall models. A small
constant central mass excess,δM0 is surrounded by material of average density. The dynamics of
the pre-turn-around period is described by the parametric equations of [1]. The turn-around radius
for a shell of initial comovingri, is rm = riδ̄−1, andδ̄ is the initial fractional overdensity insideri.
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Then,M(< ri) ∝ ρr3
i , sori ∝ M1/3. Also, δ̄ = δM0/M ∝ M−1. Combining these scalings we get

rm ∝ M4/3. After reaching turn-around each shell collapses back a little; one typically assumes a
constant collapse factor. Assume that each shell spends most of the time at its apocenter, and so
most of its mass is located at that radius, which is∝ rm. The resulting density distribution in the
proto-halo is,ρ(r) ∝ r−2 dM/dr, or, ρ ∝ M−3 ∝ r−9/4

m . This is a well known result.
In the real Universe the collapse of material will not be purely radial; there will be some

random motion of particles, and associated kinetic energy.We speculate that during the early stages
of collapse the kinetic energy will be derived from the gravitational potential energy, and therefore
will be proportional to the potential energy:1

2v2 ∝ GM/rm. Kinetic energy of random motion gives

an estimate of the velocity dispersion:σ ∝ [M/rm]
1/2 ∝ r−1/8

m . So,σ3 ∝ r−3/8
m . Combiningρ(r)

from the previous paragraph withσ(r), we getρ/σ3 ∝ (r−9/4)/(r−3/8) ∝ r−15/8, i.e. α = 1.875!
The result obtained above says that the phase-space densityis a function ofr. Because

E ∝ GM/r, E is a monotonic function ofr, at least for systems that are, on average, spherically
symmetric. In equilibrium, the total energyE of a particle is its integral of motion. If the halo
collapse proceeds slowly then the halo passes through a series of quasi-equilibrium stages. Maybe
we can assume that energy is an ‘approximate’ integral of motion in a slowly collapsing galaxy.
In that case, our relationρ/σ3 ∝ r−1.875 can be interpreted as saying that the phase-space density
(ρ/σ3) is a function ofE only, in compliance with Jeans Theorem.

If dark matter is collisionless, then the collapse will preserve the phase-space density as calcu-
lated above. So the final virialized dark matter halos, whatever their density and velocity dispersion
profiles, will have the same phase-space density distribution that was characteristic of the early
stages of collapse. Therefore, virialized halos are expected to haveρ/σ3 ∝ r−1.875. This argument
relies on many approximations, most of which can be justifiedfor spherically symmetric, smoothly
accreting ESIM halos. However, one is hard pressed to see whythese approximations would hold
in a hierarchical formation model. We speculate that the argument could apply to an ’average’
situation; after all, NFW is an average shape of numericallygenerated halos.

Finally, we note the connection between the above argument and theα-family solutions of § 2.
The various evolutionary stages of halos have different density profiles. We claim that all these are
represented by members of thesame α = 1.875-family. The earliest epoch halos have power law
density profiles withβ = 9/4, value derived at the top of this §; the same value is derivedusing
Jeans equation analysis—the horizontal line in fig. 1(b). Later stages of halo evolution develop
changing slope density profiles, represented by more and more curved lines in fig. 1(b). The final
stage, the thick solid line is a good approximation to the NFWprofile obtained from simulations.
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